2019版高考数学(理)一轮复习精选练习:第10章 计数原理、概率、随机变量及其分布 10-7a
- 格式:doc
- 大小:137.50 KB
- 文档页数:12
[基础送分 提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56答案 B解析 分别记《爱你一万年》《十年》《父亲》《单身情歌》为A 1,A 2,A 3,A 4,从这四首歌中选出两首歌进行表演的所有可能结果为A 1A 2,A 1A 3,A 1A 4,A 2A 3,A 2A 4,A 3A 4,共6个,其中A 1未被选取的结果有3个,所以所求概率P =36=12.故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )A .①B .②④C .③D .①③答案 C解析 从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C.3.(2017·安徽“江南十校”联考)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.15答案 D解析 令选取的a ,b 组成实数对(a ,b ),则有C 13C 15=15种情况,其中b >a 的有(1,2),(1,3),(2,3)3种情况,所以b >a 的概率为315=15.故选D.4.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b ),n =(1,2),则向量m 与向量n 不共线的概率是( )A.16B.1112C.112D.118答案 B解析 若m 与n 共线,则2a -b =0.而(a ,b )的可能性情况为6×6=36个.符合2a =b 的有(1,2),(2,4),(3,6)共三个.故共线的概率是336=112,从而不共线的概率是1-112=1112.故选B.5.一个袋子里装有编号为1,2,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是( )A.116B.316C.14D.716答案 B解析 据题意由于是有放回地抽取,故共有12×12=144种取法,其中两次取到红球且至少有一次号码是偶数的情况共有6×6-3×3=27种可能,故其概率为27144=316.故选B.6.(2018·湖南常德模拟)现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( )A.13B.12C.23D.1136答案 D解析 将这枚骰子先后抛掷两次的基本事件总数为6×6=36(个),这两次出现的点数之和大于点数之积包含的基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个.∴这两次出现的点数之和大于点数之积的概率P =1136.故选D.7.(2018·安徽黄山模拟)从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A.310B.15C.12D.35答案 A解析 从1,2,3,4,5这5个数中任取3个不同的数的基本事件有C 35=10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P =310.故选A.8.(2018·河南开封月考)有5张卡片,上面分别写有数字1,2,3,4,5.从这5张卡片中随机抽取2张,那么取出的2张卡片上的数字之积为偶数的概率为( )A.13B.23C.710D.310答案 C解析 从5张卡片中随机抽取2张共有C 25=10种等可能情况;2张卡片上的数字之积为偶数的为1奇1偶和2偶,共有C 13C 12+C 22=7种等可能情况,故所求概率为P =710.故选C.9.(2018·广东海珠综合测试)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为( )A.427B.827C.49D.89答案 C解析 因为3种不同的精美卡片随机放进4袋食品中,根据分步乘法计数原理可知共有34=81种不同放法,4袋食品中共有3种不同的卡片的放法有3×C 24×A 22=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C.10.(2017·湖南郴州三模)从集合A ={-2,-1,2}中随机抽取一个数记为a ,从集合B ={-1,1,3}中随机抽取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14答案 A解析 (a ,b )所有可能的结果为C 13C 13=9种.由ax -y +b =0得y =ax +b ,当⎩⎪⎨⎪⎧a ≥0,b ≥0时,直线不经过第四象限,符合条件的(a ,b )的结果为(2,1),(2,3),共2种,∴直线ax -y +b =0不经过第四象限的概率P =29,故选A.二、填空题11.(2017·陕西模拟)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为________.答案 35解析 如图,从A ,B ,C ,D ,O 这5个点中任取2个,共有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6种,因此所求概率P =610=35.12.(2017·云南昆明质检)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.答案 1928解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.答案 815 1415解析 (1)由于“取得两个红球”与“取得两个绿球”是互斥事件,因此事件C “取得两个同色球”,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P (C )=715+115=815.(2)由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.14.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.三、解答题15.(2018·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.16.(2015·北京高考)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解 (1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.。
[基础送分 提速狂刷练]一、选择题1.(2017·陕西榆林二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,0≤x <1,ln x +e ,1≤x ≤e在区间[0,e]上随机取一个实数x ,则f (x )的值不小于常数e 的概率是( )A.1e B .1-1e C.e 1+e D.11+e答案 B解析 当0≤x <1时,f (x )<e ,当1≤x ≤e 时,e ≤f (x )≤1+e ,∵f (x )的值不小于常数e ,∴1≤x ≤e ,∴所求概率为e -1e =1-1e ,故选B.2.(2018·绵阳模拟)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案 C解析 如图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S4”等价于事件“|BP |∶|AB |>14”,即P ⎝ ⎛⎭⎪⎫△PBC 的面积大于S 4=|P A ||BA |=34.故选C.3.已知实数a 满足-3<a <4,函数f (x )=lg (x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2.故P 2=47.∴P 1<P 2.故选C.4.(2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4 B.π12 C.π4 D .1-π12 答案 A解析 鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.5.(2017·铁岭模拟)已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.故选C.6.(2018·沧州七校联考)用一平面截一半径为5的球面得到一个圆,则此圆面积小于9π的概率是( )A.45B.15C.13D.12 答案 B解析 如图,此问题属几何概型,球的直径为10,用一平面截该球面,所得的圆面积大于等于9π的概率为P (A )=810=45.∴所截得圆的面积小于9π的概率为P (A -)=1-45=15.故选B. 7.(2017·福建宁德一模)若从区间(0,e),(e 为自然对数的底数,e =2.71828…)内随机选取两个数,则这两个数之积小于e 的概率为( )A.2eB.1e C .1-2e D .1-1e 答案 A 解析设随机选取的两个数为x ,y ,由题意得⎩⎨⎧0<x <e ,0<y <e ,该不等式组在坐标系中对应的区域面积为e 2,又不等式组⎩⎨⎧0<x <e ,0<y <e ,xy <e在坐标系中对应的区域面积为e +⎠⎛1e ex d x=2e ,∴所求概率为2e ,故选A.8.(2017·河南三市联考)在区间[-π,π]内随机取两个数分别为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π4 答案 B解析 函数f (x )=x 2+2ax -b 2+π2有零点,需Δ=4a 2-4(-b 2+π2)≥0,即a 2+b 2≥π2成立.而a ,b ∈[-π,π],建立平面直角坐标系,满足a 2+b 2≥π2,点(a ,b )如图阴影部分所示,所求事件的概率为P =2π×2π-π32π×2π=4π2-π34π2=1-π4.故选B .9.(2018·江西模拟)向面积为S 的平行四边形ABCD 中任投一点M ,则△MCD 的面积小于S3的概率为( )A.13B.35C.23D.34 答案 C解析 设△MCD 的高为ME ,ME 的反向延长线交AB 于F ,当“△MCD 的面积等于S 3”时,12CD ·ME =13CD ·EF ,即ME =23EF ,过M 作GH ∥AB ,则满足△MCD 的面积小于S3的点M 在▱CDGH 中,由几何概型的概率公式得到△MCD 的面积小于S3的概率为2S 3S =23.故选C .10.(2018·湖北襄阳优质高中联考)已知λ=3⎠⎛01x 2d x ,在矩形ABCD中,AB =2,AD =1,则在矩形ABCD 内(包括边界)任取一点P ,使得AP →·AC →≥λ的概率为( )A.18 B .14 C.34 D.78 答案D解析 由已知得λ=3⎠⎛01x 2d x =3×13x 310=1.建立如图所示的平面直角坐标系.则A(0,0),C (2,1),设P (x ,y ),则AP →=(x ,y ),AC →=(2,1),故AP →·AC →=2x +y ,则满足条件的点P (x ,y )使得2x +y ≥1,由图可知满足条件的点P 所在的区域(图中阴影区域)的面积S =2×1-12×1×12=2-14=74,故所求概率为742=78,故选D.二、填空题11. 如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率是________.答案 25解析 ∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.12.一个长方体空屋子,长、宽、高分别为5米、4米、3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.答案 π120解析 依题意,放在地面一角处的捕蝇器能捕捉到的空间体积V 0=18×4π3×13=π6(立方米),又空屋子的体积V =5×4×3=60(立方米),三个捕蝇器捕捉到的空间体积V ′=3V 0=π2(立方米). 故苍蝇被捕捉的概率是π260=π120.13.(2018·湖北八校联考)正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案 23解析 利用定积分直接求面积,再利用几何概型的概率公式求解.正方形内阴影部分的面积S =2⎠⎛-11(1-x 2)d x =2⎝ ⎛⎭⎪⎫x -13x 3|1-1=2×43=83,所以所求概率为834=23.14.(2018·河南洛阳模拟)已知O (0,0),A (2,1),B (1,-2),C ⎝⎛⎭⎪⎫35,-15,动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,则点P 到点C 的距离大于14的概率为________.答案 1-5π64解析 ∵O (0,0),A (2,1),B (1,-2),C ⎝ ⎛⎭⎪⎫35,-15,动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,∴⎩⎨⎧0≤2x +y ≤2,0≤x -2y ≤2.如图,不等式组⎩⎨⎧0≤2x +y ≤2,0≤x -2y ≤2对应的平面区域为正方形OEFG 及其内部,|CP |>14对应的平面区域为阴影部分.由⎩⎨⎧x -2y =0,2x +y =2解得⎩⎪⎨⎪⎧x =45,y =25,即E ⎝ ⎛⎭⎪⎫45,25,∴|OE |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255, ∴正方形OEFG 的面积为45,则阴影部分的面积为45-π16, ∴根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.三、解答题15.(2018·广东深圳模拟)已知复数z =x +yi (x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.解 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16.(2)依条件可知,点M 均匀地分布在平面区域{(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧0≤x ≤3,0≤y ≤4内,属于几何概型.该平面区域的图形为图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎨⎧ x +2y -3≤0,x ≥0,y ≥0,其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴,y 轴的交点分别为A (3,0),D ⎝ ⎛⎭⎪⎫0,32, ∴三角形OAD 的面积为S 1=12×3×32=94.∴所求事件的概率为P =S 1S =9412=316.16.设f (x )和g (x )都是定义在同一区间上的两个函数,若对任意x ∈[1,2],都有|f (x )+g (x )|≤8,则称f (x )和g (x )是“友好函数”,设f (x )=ax ,g (x )=b x .(1)若a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数”的概率;(2)若a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数”的概率. 解 (1)设事件A 表示f (x )和g (x )是“友好函数”,则|f (x )+g (x )|(x ∈[1,2])所有的情况有x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x ,共6种且每种情况被取到的可能性相同.又当a >0,b >0时ax +b x 在⎝⎛⎭⎪⎫0, b a 上递减,在⎝ ⎛⎭⎪⎫ b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,∴对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x-1x ,故事件A 包含的基本事件有4种,∴P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数”,∵a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,∴点(a ,b )所在区域是长为3,宽为3的正方形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立,需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b 2≤8,∴事件B 表示的点的区域是如图所示的阴影部分.∴P (B )=12×⎝ ⎛⎭⎪⎫2+114×33×3=1924, 故所求的概率是1924.。
[基础送分提速狂刷练]一、选择题1.(2018·泉州模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种答案 C解析分两类,甲乙在一路口,其余3人中也有两人在一路口,则有C23A33种.当有3人在一路口时只能是甲、乙和其余三人中一个在一起,则有C13A33,所以共有C23A33+C13A33=36种,故选C.2.某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为()A.600 B.288 C.480 D.504答案 D解析对六节课进行全排列有A66种方法,体育课排在第一节课有A55种方法,数学课排在第四节课也有A55种方法,体育课排在第一节课且数学课排在第四节课有A44种方法,由排除法得这天课表的不同排法种数为A66-2A55+A44=504.故选D.3.某班级举办的演讲比赛中,共有5位选手参加,其中3位女生、2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.90 B.60 C.48 D.36答案 B解析先排3位女生,3位女生间及两端有4个空,从4个空中选2个排男生,共有A24A33=72种排法.若女生甲排在第一个,则3位女生间及一端有3个空,从3个空中选2个排男生,有A23A22=12种排法,所以满足条件的排法种数为72-12=60.故选B.4.(2018·山西质量监测)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种答案 B解析由题意知,不同的座次有A22A44=48(种),故选B.5.(2018·福建福州八中模拟)甲、乙等5人在9月3号参加了纪念抗日战争胜利70周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有()A.12种B.24种C.48种D.120种答案 B解析甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A44A22种排法,甲乙相邻且在两端有C12A33A22种排法,故甲乙相邻且都不站在两端的排法有A44A22-C12A33A22=24(种).故选B.6.(2017·黔江模拟)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18 C.12 D.6答案 B解析根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取2个数字排在个位与百位.∴排成的三位奇数有C23A22=6个.②当选数字2时,再从1,3,5中取2个数字有C23种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位奇数有C23C12A22=12个.∴由分类加法计数原理,共有18个符合条件的三位奇数.故选B.7.(2018·河北衡水模拟)某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每辆车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有()A.24种B.18种C.48种D.36种答案 A解析若大一的孪生姐妹乘坐甲车,则此时甲车中的另外2人分别来自不同年级,有C23C12C12=12种,若大一的孪生姐妹不乘坐甲车,则有2名同学来自同一个年级,另外2名分别来自不同年级,有C13C12 C12=12种,所以共有24种乘坐方式,故选A.8.在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案 C解析由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置中选一个位置把A排列,有A12=2种结果.∵程序B和C在实施时必须相邻,∴把B和C看作一个元素,同除A 外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果.根据分步计数原理知共有2×48=96种结果,故选C.9.(2018·福建漳州八校联考)若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是()A.540 B.480 C.360 D.200答案 D解析由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50种排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4种满足题意的选法,故满足题意的三位数共有C14×C15C15A22=200(个).故选D.10.(2018·赣州摸底)甲、乙、丙3名教师安排在10月1日至5日的5天中值班,要求每人值班一天且每天至多安排一人,其中甲不在10月1日值班且丙不在10月5日值班,则不同的安排方法有() A.36种B.39种C.42种D.45种答案 B解析当甲安排在10月2日值班时,则丙可以安排在1,3,4日中某一天,乙可以在剩余的3日中选一天,有C13C13=9种排法,同理可得甲安排在10月3日,4日中的一天值班时,有C13C13+C13C13=18种排法;当甲安排在10月5日值班时,有A24=12种排法,所以不同的安排方法有9+18+12=39种,故选B.二、填空题11.(2017·江西八所重点中学联合模拟)摄像师要对已坐定一排照像的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为________.(用数字作答)答案20解析从5人中任选3人有C35种,将3人位置全部进行调整,有C12·C11·C11种,故有N=C35·C12·C11·C11=20种调整方案.12.(2018·江西宜春模拟)将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.答案150解析标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)两组,共有C35+C25·C23A22=25种分法,再分配到三个不同的盒子中,共有25·A33=150种放法.13.(2017·河南天一大联考)如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有________种.答案720解析由题意知2,3,4,5的颜色都不相同,先涂1,有6种方法,再涂2,3,4,5,有A45种方法,故一共有6·A45=720种.14.两个家庭的4个大人与2个小孩一起到动物园游玩,购票后排队依次入园.为安全起见,首尾一定要排2个爸爸,另外,2个小孩一定要排在一起,则这6人入园顺序的排法种数为________.答案24解析第一步:将2个爸爸排在两端,有2种排法;第二步:将2个小孩视为一人与2个妈妈任意排在中间的三个位置上,有A33种排法;第三步:将2个小孩排序有2种排法.故总的排法有2×2×A33=24种.三、解答题15.某市委从组织机关10名科员中选3人担任驻村第一书记,求甲、乙至少有1人入选,而丙没有入选的不同选法的种数?解由于丙不入选,相当于从9人中选派3人.解法一:(直接法)甲、乙两人均入选,有C22C17种选法,甲、乙两人只有1人入选,有C12C27种选法.∴由分类加法计数原理,共有C22C17+C12C27=49种选法.解法二:(间接法)从9人中选3人有C39种选法,其中甲、乙均不入选有C37种选法.∴满足条件的选派方法有C39-C37=84-35=49种.16.(2018·保定调研)已知集合M={1,2,3,4,5,6},集合A,B,C 为M的非空子集,若∀x∈A,y∈B,z∈C,x<y<z恒成立,则称“A—B—C”为集合M的一个“子集串”,求集合M的“子集串”共有多少个.解由题意可先分类,再分步:第一类,将6个元素全部取出来,可分两步进行:第一步,取出元素,有C66种取法,第二步,分成三组,共C25种分法,所以共有C66 C25个子集串;第二类,从6个元素中取出5个元素,共C56种取法,然后将这5个元素分成三组共C24种分法,所以共有C56C24个子集串;同理含4个元素的子集串数为C46C23;含3个元素的子集串数为C36C22.所以集合M的子集串共C66C25+C56C24+C46C23+C36C22=111个.。
[重点保分 两级优选练]A 级一、选择题1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23 答案 C解析 P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.2.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1 答案 B解析 由m +n +0.2=1,又m +2n =1.2,可得m =n =0.4,m -n2=0.2.故选B.3.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( )A .1,2,…,6B .1,2,…,7C .1,2,…,11D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.4.设X 是一个离散型随机变量,其分布列为:则q 等于( )A .1B .1±22C .1-22D .1+22 答案 C解析 由分布列的性质得⎩⎪⎨⎪⎧0≤1-2q <1,0≤q 2<1,0.5+(1-2q )+q 2=1⇒⎩⎨⎧0<q ≤12,q =1±22,∴q =1-22,故选C.5.已知某一随机变量X 的概率分布如下,且E (X )=6.9,则a 的值为( )A .5B .6C .7D .8 答案 B解析 因为在分布列中,各变量的概率之和为1,所以m =1-(0.2+0.5)=0.3,由数学期望的计算公式,可得4×0.3+a ×0.2+9×0.5=6.9,a =6,故选B.6.已知离散型随机变量X 的分布列为则P (X ∈Z )=( )A .0.9B .0.8C .0.7D .0.6 答案 A解析 由分布列性质得0.5+1-2q +13q =1,解得q =0.3, ∴P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.7.(2017·泰安模拟)若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( )A .(1-α)(1-β)B .1-(α+β)C .1-α(1-β)D .1-β(1-α)答案 B解析 显然P (X >x 2)=β,P (X <x 1)=α.由概率分布列的性质可知P (x 1≤X ≤x 2)=1-P (X >x 2)-P (X <x 1)=1-α-β.故选B.8.(2018·潍坊模拟)若随机变量X 的分布列为则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2) 答案 C解析 由随机变量X 的分布列,知P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].故选C.9.(2017·烟台模拟)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( )A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2) 答案 D解析 依题意知,(n -m )A 2mA 3n是取了3次,所以取出白球应为2个.故选D.10.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.若η=aξ-2,E (η)=1,则a 的值为( )A .2B .-2C .1.5D .3 答案 A解析 由题意知ξ的可能取值为0,1,2,3,4,则ξ的分布列为∴E (ξ)=0×12+1×120+2×110+3×320+4×15=32,∵η=aξ-2,E (η)=1,∴aE (ξ)-2=1,∴32a -2=1,解得a =2.故选A.二、填空题11.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.答案 10解析 由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 12.(2018·临汾联考)口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________.答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________.答案 310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 23C 24C 24C 26=15,P (ξ=1)=C 13C 24+C 23C 12C 14C 24C 26=715,又P (ξ=3)=C 13C 24C 26=130,∴P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=1-15-715-130=310. 14.如图所示,A ,B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=________.答案 45解析 解法一:由已知,ξ的取值为7,8,9,10,∵P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 11+C 12C 22C 35=310, P (ξ=9)=C 12C 12C 11C 35=25,P (ξ=10)=C 22C 11C 35=110,∴ξ的概率分布列为∴P (ξ≥8)=P (ξ=8)+P (ξ=9)+P (ξ=10) =310+25+110=45.解法二:P (ξ≥8)=1-P (ξ=7)=45.B 级三、解答题15.(2018·太原模拟)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图所示.(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求a ,b 的值;(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得的代金券总和X (单位:元)的分布列与数学期望.解 (1)由题意可知⎩⎪⎨⎪⎧2b =a +0.015,(0.01+0.015×2+b +a )×10=1, 解得a =0.035,b =0.025.(2)利用分层抽样从样本中抽取10人,易知其中属于高消费人群的有6人,属于潜在消费人群的有4人.从该10人中抽取3人,此3人所获得的代金券的总和为X (单位:元),则X 的所有可能取值为150,200,250,300.P (X =150)=C 36C 310=16,P (X =200)=C 26C 14C 310=12,P (X =250)=C 16C 24C 310=310,P (X =300)=C 34C 310=130.X 的分布列为E (X )=150×16+200×12+250×310+300×130=210.16.一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解 (1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =416×116+116×12=364.(2)X 可能的取值为400,500,800,并且 P (X =400)=1-416-116=1116,P (X =500)=116,P (X =800)=14. 所以X 的分布列为E (X )=400×1116+500×116+800×14=506.25.17.(2018·广州测试)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y =b ^x +a ^,其中b ^=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x .解 (1)依据分层抽样的方法,24名女同学中应抽取的人数为742×24=4名,18名男同学中应抽取的人数为742×18=3名,故不同的样本的个数为C 424C 318.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名, ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435,P (ξ=1)=C 24C 13C 37=1835,P (ξ=2)=C 14C 23C 37=1235,P (ξ=3)=C 33C 37=135.∴ξ的分布列为∴E (ξ)=0×435+1×1835+2×1235+3×135=97.②∵b ^=526812≈0.65,a ^=y -b ^x =83-0.65×76=33.60. ∴线性回归方程为y =0.65x +33.60.当x =96时,y =0.65×96+33.60=96. 可预测该同学的物理成绩为96分.18.(2018·豫北十校联考)某高中在招高一新生时,有统一考试招生和自主招生两种方式.参加自主招生的同学必须依次进行“语文”“数学”“科学”三科的考试,若语文达到优秀,则得1分,若数学达到优秀,则得2分,若科学达到优秀,则得3分,若各科未达到优秀,则不得分.已知小明三科考试都达到优秀的概率为124,至少一科考试优秀的概率为34,数学考试达到优秀的概率为13,语文考试达到优秀的概率大于科学考试达到优秀的概率,且小明各科达到优秀与否相互独立.(1)求小明语文考试达到优秀的概率; (2)求小明三科考试所得总分的分布列和期望.解 (1)依题意,设小明语文考试达到优秀的概率为p 1,科学考试达到优秀的概率为p 2,且p 1>p 2,故⎩⎪⎨⎪⎧13p 1p 2=124,1-(1-p 1)⎝ ⎛⎭⎪⎫1-13(1-p 2)=34,解得⎩⎪⎨⎪⎧p 1=12,p 2=14,则小明语文考试达到优秀的概率为12.(2)记小明三科的总得分为X ,则X 的可能取值为0,1,2,3,4,5,6. P (X =0)=12×23×34=14, P (X =1)=12×23×34=14,P (X =2)=12×13×34=18,P (X =3)=12×23×14+12×13×34=524, P (X =4)=12×23×14=112, P (X =5)=12×13×14=124, P (X =6)=12×13×14=124. 则X 的分布列为E (X )=0×14+1×14+2×18+3×524+4×112+5×124+6×124=2312.。
第2节排列与组合知识点、方法题号排列1,5,12组合2,7排列与组合的综合应用3,4,6,8,9,10,11,13,14基础巩固(时间:30分钟)1.(2017·濮阳市一模)某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段只保留其中的2个商业广告,新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则不同的播放顺序共有( B ) (A)60种(B)120种(C)144种(D)300种解析:要在该时间段只保留其中的2个商业广告,有=20种方法,增播一个商业广告,利用插空法有3种方法,再在2个空中,插入两个不同的公益宣传广告,共有2种方法,根据分步乘法计数原理,共有20×3×2=120种方法.故选B.2.(2017·太原市一模)现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( C )(A)135 (B)172 (C)189 (D)162解析:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有4种取法,两张红色卡片,共有种取法,故所求的取法共有-4-=189种.故选C.3.(2017·郑州市三模)为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这3种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为( A )(A)150 (B)180 (C)200 (D)280解析:人数分配上有两种方式即1,2,2与1,1,3.若是1,1,3,则有×=60种,若是1,2,2,则有×=90种,所以共有150种不同的方法.故选A.4.某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙2人至少有一人参加,若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序种数为( C ) (A)720 (B)520 (C)600 (D)360解析:根据题意,分2种情况讨论:若甲、乙其中一人参加,有=480种;若甲、乙2人都参加,共有=240种发言顺序,其中甲、乙相邻的情况有=120种,故有240-120=120种.则不同的发言顺序种数为480+120=600. 故选C.5.某高校从5名男大学生志愿者和4名女大学生志愿者中选出3名派到3所学校支教(每所学校一名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有( B ) (A)210种(B)420种(C)630种(D)840种解析:从这9名大学生志愿者中任选3名派到3所学校支教,则有种选派方案,3名志愿者全是男生或全是女生的选派方案有+种,故符合条件的选派方案有-(+)=420种.故选B.6.身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数为( D )(A)24 (B)28 (C)36 (D)48解析:穿红色衣服的人相邻的排法有=48种,同理穿黄色衣服的人相邻的排法也有48种.而红色、黄色同时相邻的有=24种.故穿相同颜色衣服的不相邻的排法有-2×48+24=48种.故选D.7.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法共有种.解析:将7个相同的球放入4个不同的盒子,即把7个球分成4组,因为要求每个盒子都有球,所以每个盒子至少放1个球,不妨将7个球摆成一排,中间形成6个空,只需在这6个空中插入3个隔板将它们隔开,即分成4组,不同的插入方法共有=20种,所以每个盒子都有球的放法共有20种.答案:208.(2017·长春市二模)某班主任准备请2016届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有种.(用数字作答)解析:根据题意,分2种情况讨论:①若甲、乙同时参加,先在其他6人中选出2人,有种选法,选出2人进行全排列,有种不同顺序,甲、乙2人进行全排列,有种不同顺序,甲、乙与选出的2人发言,甲、乙发言中间需恰隔一人,有2种情况,此时共有2=120种不同顺序;②若甲、乙有一人参与,在甲、乙中选1人,有种选法,在其他6人中选出3人,有种选法,选出4人进行全排列,有种不同情况,此时共有=960种,从而总共的发言顺序有1 080种不同顺序.答案:1 080能力提升(时间:15分钟)9.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有( B )(A)252个(B)300个(C)324个(D)228个解析:(1)若仅仅含有数字0,则选法是,可以组成四位数=12×6=72个;(2)若仅仅含有数字5,则选法是,可以组成四位数=18×6=108个;(3)若既含数字0,又含数字5,选法是,排法是若0在个位,有=6种,若5在个位,有2×=4种,故可以组成四位数(6+4)=120个.根据加法原理,共有72+108+120=300个.故选B.10.(2017·鹰潭市一模)用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有种不同的涂色方法.解析:A,C,E用同一颜色,此时共有4×3×3×3=108种方法.A,C,E用2种颜色,此时共有×6×3×2×2=432种方法.A,C,E用3种颜色,此时共有×2×2×2=192种方法.共有108+432+192=732种不同的涂色方法.答案:73211.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是.解析:(元素优先法)由题意知6必在第三行,安排6有种方法,第三行中剩下的两个空位安排数字有种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有种方法,剩下的两个数字有种排法,根据分步乘法计数原理,所有排列的个数是=240.答案:24012.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰有两人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人顺序已定.解:(1)=480.(2)=240.(3)=480.(4)=144.(5)-2+=504.(6)=120.13.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.14.按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.解:(1)无序不均匀分组问题.先选1本,有种选法;再从余下的5本中选2本,有种选法;最后余下3本全选,有种选法.故共有=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有=360(种).(3)无序均匀分组问题.先分三步,则应是种方法,但是这里出现了重复.不妨记六本书为A,B,C,D,E,F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共有种情况,而这种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法,故分配方式有=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式·==90(种).(5)无序部分均匀分组问题.共有=15(种).(6)有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式·=90(种).(7)直接分配问题.甲选1本,有种方法;乙从余下的5本中选1本,有种方法,余下4本留给丙,有种方法,故共有分配方式=30(种).。
[重点保分 两级优选练]A 级一、选择题1.(2018·广西柳州模拟)把一枚硬币任意抛掷三次,事件A =“至少有一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=( )A.37B.38C.78D.18 答案 A解析 依题意得P (A )=1-123=78,P (AB )=323=38,因此P (B |A )=P (AB )P (A )=37,故选A. 2.(2018·厦门模拟)甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827B.6481C.49D.89 答案 A解析 第四局甲第三次获胜,并且前三局甲获胜两次,所以所求的概率为P =C 23⎝ ⎛⎭⎪⎫232×13×23=827.故选A.3.(2017·山西一模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )A.13B.25C.23D.45答案 B解析 由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827, ∴所求概率为827÷2027=25,故选B.4.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球,1,第n 次摸取白球.如果S n为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235B .C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135C .C 47⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135D .C 37⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫135答案 B解析 S 7=3说明摸取2个红球,5个白球,故S 7=3的概率为C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135,故选B.5.(2017·天津模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582答案 D解析 “X =12”表示第12次取到红球,且前11次有9次取到红球,2次取到白球,因此P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.故选D.6.如果ξ~B ⎝ ⎛⎭⎪⎫15,14,那么使P (ξ=k )取最大值的k 值为( )A .3B .4C .5D .3或4 答案 D解析 采取特殊值法.∵P (ξ=3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (ξ=4)=C 415⎝ ⎛⎭⎪⎫144⎝ ⎛⎭⎪⎫3411,P (ξ=5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410,从而易知P (ξ=3)=P (ξ=4)>P (ξ=5).故选D.7.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13 答案 A解析 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示“第二个圆盘的指针落在奇数所在的区域”,则P (B )=23.则P (AB )=P (A )P (B )=23×23=49.故选A.8.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为( )A.3281B.1127C.6581D.1681 答案 B解析 P (X ≥1)=P (X =1)+P (X =2)=C 12p (1-p )+C 22p 2=59,解得p =13.⎝ ⎛⎭⎪⎫0≤p ≤1,故p =53舍去. 故P (Y ≥2)=1-P (Y =0)-P (Y =1)=1-C 04×⎝ ⎛⎭⎪⎫234-C 14×13×⎝ ⎛⎭⎪⎫233=1127.故选B.9.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 答案 B解析 1000粒种子每粒不发芽的概率为0.1,∴不发芽的种子数ξ~B (1000,0.1).∴1000粒种子中不发芽的种子数的期望E (ξ)=1000×0.1=100粒.又每粒不发芽的种子需补种2粒,∴需补种的种子数的期望E (X )=2×100=200粒.故选B.10.位于坐标原点的一个质点M 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B .C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝ ⎛⎭⎪⎫123D .C 25×C 35×⎝ ⎛⎭⎪⎫125答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.故选B. 二、填空题11.(2017·眉山期末)已知X ~B ⎝ ⎛⎭⎪⎫8,12,当P (X =k )(k ∈N,0≤k ≤8)取得最大值时,k 的值是________.答案 4解析 ∵X ~B ⎝ ⎛⎭⎪⎫8,12,∴P (X =k )=C k 8⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫128-k =C k 8⎝ ⎛⎭⎪⎫128,∴当P (X =k )(k ∈N,0≤k ≤8)取得最大值时只有C k 8是一个变量, ∴根据组合数的性质得到当k =4时,概率取得最大值. 12.(2017·安顺期末)甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为________.答案 23解析 每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4, 设甲中奖概率为P (A ),乙中奖的概率为P (B ),两人都中奖的概率为P (AB ),则P (A )=0.6,P (B )=0.6,两人都中奖的概率为P (AB )=0.4,则已知甲中奖的前提下乙也中奖的概率为P (B |A )=P (AB )P (A )=0.40.6=23.13.(2017·南昌期末)位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13,则电子兔移动五次后位于点(-1,0)的概率是________.答案 80243解析 根据题意,质点P 移动五次后位于点(-1,0),其中向左移动3次,向右移动2次;其中向左平移的3次有C 35种情况,剩下的2次向右平移;则其概率为C 35×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243.14.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )=________.答案 13解析 根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数,共有2×3×3=18个基本事件.∴事件A 发生的概率为P (A )=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”“2+6”“4+2”“4+6”“6+2”“6+4”,一共有6个基本事件,∴事件A ,B 同时发生的概率为P (AB )=66×6=16,∴P (B |A )=P (AB )P (A )=1612=13.B 级三、解答题15.(2017·河北“五个一名校联盟”二模)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI 的茎叶图如图. (1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数; (2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列和数学期望.解 (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝⎛⎭⎪⎫3,35.∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为E (ξ)=3×35=1.8.16.党的十九大报告提出:要提高人民健康水平,改革和完善食品、药品安全监管体制.为加大监督力度,某市工商部门对本市的甲、乙两家小型食品加工厂进行了突击抽查,从两个厂家生产的产品中分别随机抽取10件样品,测量该产品中某种微量元素的含量(单位:毫克),所得测量数据如图.食品安全法规定:优等品中的此种微量元素含量不小于15毫克. (1)从甲食品加工厂抽出的上述10件样品中随机抽取4件,求抽到的4件产品优等品的件数ξ的分布列;(2)若从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,求甲、乙食品加工厂抽到的优等品的件数恰好相同的概率.解(1)由茎叶图,从甲食品加工厂抽出的10件样品中,优等品有8件,非优等品有2件,故抽取的4件样品中至少有2件优等品,ξ的可能取值为2,3,4.P(ξ=2)=C28C22C410=215,P(ξ=3)=C38C12C410=815,P(ξ=4)=C48C02C410=13.ξ的分布列为(2)甲食品加工厂抽取的样品中优等品有8件,乙食品加工厂抽取的样品中优等品有7件.故从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,则优等品的件数相同时,可能为1件、2件或3件.优等品同为3件的概率P1=C38C02C310×C37C03C310=49360;优等品同为2件时的概率P2=C28C12C310×C27C13C310=49200;优等品同为1件时的概率P3=C18C22C310×C17C23C310=7600.故所求事件的概率为P=P1+P2+P3=49360+49200+7600=7071800.17.(2018·郑州质检)2017年3月15日下午,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行最后一轮较量,AlphaGo获得本场比赛胜利,最终人机大战总比分定格在1∶4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图所示,将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解(1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而2×2列联表如下:将2×2列联表中的数据代入公式计算,得 K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-15×45)245×55×75×25=10033≈3.030,因为3.030<3.841,所以没有95%的把握认为“围棋迷”与性别有关.(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区学生中抽取一名“围棋迷”的概率为14.由题意知,X ~B ⎝⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=3×14=34,D (X )=3×14×34=916.18.(2018·湖南十三校联考)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为P 0(0<P 0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的得分和为X ,若X ≤3的概率为79,求P 0;(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,得分和的数学期望较大?解 (1)由已知得张三中奖的概率为23,李四中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的得分和X ≤3”为事件A ,则事件A 的对立事件为“X =5”.因为P (X =5)=23×P 0,所以P (A )=1-P (X =5)=1-23×P 0=79,所以P 0=13.(2)设张三、李四都选择方案甲抽奖的中奖次数为X 1,都选择方案乙抽奖的中奖次数为X 2,则这两人选择方案甲抽奖得分和的数学期望为E (2X 1), 选择方案乙抽奖得分和的数学期望为E (3X 2), 由已知可得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B (2,P 0), 所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0. 若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49; 若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1; 若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案甲进行抽奖时,得分和的数学期望较大;当49<P 0<1时,他们都选择方案乙进行抽奖时,得分和的数学期望较大;当P 0=49时,他们都选择方案甲或都选择方案乙进行抽奖时,得分和的数学期望相等.。
[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.某酒厂制作了3种不同的精美卡片,每瓶酒盒随机装入一张卡片,集齐3种卡片可获奖,现购买该种酒5瓶,能获奖的概率为( )A.3181B.3381C.4881D.5081答案 D解析 假设5个酒盒各不相同,5个酒盒装入卡片的方法一共有35=243种,其中包含了3种不同卡片有两种情况:即一样的卡片3张,另外两种不同的卡片各1张,有C 35×2×3=60种方法,两种不同的卡片各2张,另外一种卡片1张,有C 15×3×C 24=15×6=90种,故所求的概率为90+60243=5081.故选D.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-518,+∞ B.⎝ ⎛⎭⎪⎫-∞,718 C.⎝ ⎛⎭⎪⎫-718,518 D.⎝ ⎛⎭⎪⎫-518,718 答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.。
[重点保分 两级优选练]A 级一、选择题1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23 答案 C解析 P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.2.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )X123P 0.1 mn 0.1A .-0.2B .0.2C .0.1D .-0.1 答案 B解析 由m +n +0.2=1,又m +2n =1.2,可得m =n =0.4,m -n2=0.2.故选B.3.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( )A .1,2,…,6B .1,2,…,7C .1,2,…,11D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.4.设X 是一个离散型随机变量,其分布列为:则q 等于( )A .1B .1±22C .1-22D .1+22 答案 C解析 由分布列的性质得⎩⎪⎨⎪⎧0≤1-2q <1,0≤q 2<1,0.5+(1-2q )+q 2=1⇒⎩⎨⎧0<q ≤12,q =1±22,∴q =1-22,故选C.5.已知某一随机变量X 的概率分布如下,且E (X )=6.9,则a 的值为( )A .5B .6C .7D .8 答案 B解析 因为在分布列中,各变量的概率之和为1,所以m =1-(0.2+0.5)=0.3,由数学期望的计算公式,可得4×0.3+a ×0.2+9×0.5=6.9,a =6,故选B.6.已知离散型随机变量X 的分布列为则P (X ∈Z )=( )A .0.9B .0.8C .0.7D .0.6 答案 A解析 由分布列性质得0.5+1-2q +13q =1,解得q =0.3, ∴P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.7.(2017·泰安模拟)若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( )A .(1-α)(1-β)B .1-(α+β)C .1-α(1-β)D .1-β(1-α)答案 B解析 显然P (X >x 2)=β,P (X <x 1)=α.由概率分布列的性质可知P (x 1≤X ≤x 2)=1-P (X >x 2)-P (X <x 1)=1-α-β.故选B.8.(2018·潍坊模拟)若随机变量X 的分布列为则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2] D .(1,2) 答案 C解析 由随机变量X 的分布列,知P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].故选C.9.(2017·烟台模拟)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( )A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2) 答案 D解析 依题意知,(n -m )A 2mA 3n是取了3次,所以取出白球应为2个.故选D.10.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.若η=aξ-2,E (η)=1,则a 的值为( )A .2B .-2C .1.5D .3 答案 A解析 由题意知ξ的可能取值为0,1,2,3,4,则ξ的分布列为∴E (ξ)=0×12+1×120+2×110+3×320+4×15=32,∵η=aξ-2,E (η)=1,∴aE (ξ)-2=1,∴32a -2=1,解得a =2.故选A.二、填空题11.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.答案 10解析 由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 12.(2018·临汾联考)口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________.答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=________.答案 310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 23C 24C 24C 26=15,P (ξ=1)=C 13C 24+C 23C 12C 14C 24C 26=715, 又P (ξ=3)=C 13C 24C 26=130,∴P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=1-15-715-130=310. 14.如图所示,A ,B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=________.答案 45解析 解法一:由已知,ξ的取值为7,8,9,10,∵P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 11+C 12C 22C 35=310, P (ξ=9)=C 12C 12C 11C 35=25,P (ξ=10)=C 22C 11C 35=110,∴ξ的概率分布列为ξ 78 9 10 P1531025110∴P (ξ≥8)=P (ξ=8)+P (ξ=9)+P (ξ=10) =310+25+110=45.解法二:P (ξ≥8)=1-P (ξ=7)=45.B 级三、解答题15.(2018·太原模拟)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图所示.(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求a ,b 的值;(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得的代金券总和X (单位:元)的分布列与数学期望.解 (1)由题意可知⎩⎪⎨⎪⎧2b =a +0.015,(0.01+0.015×2+b +a )×10=1, 解得a =0.035,b =0.025.(2)利用分层抽样从样本中抽取10人,易知其中属于高消费人群的有6人,属于潜在消费人群的有4人.从该10人中抽取3人,此3人所获得的代金券的总和为X (单位:元),则X 的所有可能取值为150,200,250,300.P (X =150)=C 36C 310=16,P (X =200)=C 26C 14C 310=12,P (X =250)=C 16C 24C 310=310,P (X =300)=C 34C 310=130.X 的分布列为E (X )=150×16+200×12+250×310+300×130=210.16.一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解 (1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2) =416×116+116×12=364.(2)X 可能的取值为400,500,800,并且 P (X =400)=1-416-116=1116,P (X =500)=116,P (X =800)=14. 所以X 的分布列为E (X )=400×1116+500×116+800×14=506.25.17.(2018·广州测试)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y =b ^x +a ^,其中b ^=∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x .解 (1)依据分层抽样的方法,24名女同学中应抽取的人数为742×24=4名,18名男同学中应抽取的人数为742×18=3名,故不同的样本的个数为C 424C 318.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名, ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435,P (ξ=1)=C 24C 13C 37=1835,P (ξ=2)=C 14C 23C 37=1235,P (ξ=3)=C 33C 37=135.∴ξ的分布列为∴E (ξ)=0×435+1×1835+2×1235+3×135=97.②∵b ^=526812≈0.65,a ^=y -b ^x =83-0.65×76=33.60. ∴线性回归方程为y =0.65x +33.60.当x =96时,y =0.65×96+33.60=96. 可预测该同学的物理成绩为96分.18.(2018·豫北十校联考)某高中在招高一新生时,有统一考试招生和自主招生两种方式.参加自主招生的同学必须依次进行“语文”“数学”“科学”三科的考试,若语文达到优秀,则得1分,若数学达到优秀,则得2分,若科学达到优秀,则得3分,若各科未达到优秀,则不得分.已知小明三科考试都达到优秀的概率为124,至少一科考试优秀的概率为34,数学考试达到优秀的概率为13,语文考试达到优秀的概率大于科学考试达到优秀的概率,且小明各科达到优秀与否相互独立.(1)求小明语文考试达到优秀的概率; (2)求小明三科考试所得总分的分布列和期望.解 (1)依题意,设小明语文考试达到优秀的概率为p 1,科学考试达到优秀的概率为p 2,且p 1>p 2,故⎩⎪⎨⎪⎧13p 1p 2=124,1-(1-p 1)⎝ ⎛⎭⎪⎫1-13(1-p 2)=34,解得⎩⎪⎨⎪⎧p 1=12,p 2=14,则小明语文考试达到优秀的概率为12.(2)记小明三科的总得分为X ,则X 的可能取值为0,1,2,3,4,5,6. P (X =0)=12×23×34=14, P (X =1)=12×23×34=14,P (X =2)=12×13×34=18,P (X =3)=12×23×14+12×13×34=524, P (X =4)=12×23×14=112, P (X =5)=12×13×14=124, P (X =6)=12×13×14=124. 则X 的分布列为E (X )=0×14+1×14+2×18+3×524+4×112+5×124+6×124=2312.。