圆锥曲线几何性质之离心率的求法.ppt
- 格式:ppt
- 大小:4.48 MB
- 文档页数:38
圆锥曲线离心率的求法进修目的1.控制求解椭圆.双曲线离心率及其取值规模的几类办法;2.造就学生的剖析才能.懂得才能.常识迁徙才能.解决问题的才能; 进修重难点重点:椭圆.双曲线离心率的求法;难点:经由过程回归界说,联合几何图形,树立目的函数以及不雅察图形.设参数.转化等门路肯定离心率教授教养进程:温习回想:圆锥曲线离心率的概念 一.求离心率探讨一:应用界说直接求a ,c例1.已知椭圆E 的短轴长为6,核心F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于.演习1:在正三角形ABC 中,点D.E 分离是AB.AC 的中点,则以B.C 为核心,且过D.E 的双曲线的离心率为( )A.53B.3-1C.2+1D.3+1 探讨二:结构关于e 的(a,b,c 的齐次)方程 例2.已知椭圆22221(0)y x a b a b +=>>的上核心为F ,左.右极点分离为12,B B ,下极点为A ,直线2AB 与直线1B F 交于点P ,若22AP AB =,则椭圆的离心率为___________演习2.双曲线x2a2-y2b2=1(a>0,b>0)的左.右核心分离是F1.F2,过F1作竖直角为30°的直线交双曲线右支于M 点,若MF2垂直于x 轴,则双曲线的离心率为( )A.6B.3C.2D.33探讨三:以直线与圆锥曲线的地位关系为布景,设而不求肯定e 的方程例3.椭圆x2 a2 +y2b2 =1(a>b >0),点F 的直线交椭圆于A.B 两点,→OA +→OB 求e?二.求离心率的规模(1.直接依据题意树立,a c 不等关系求解. 例 4.已知双曲线12222=-by a x (0,0>>b a )的半焦距为c,若042<-ac b, 则双曲线的离心率规模是( ) A.521+<<e B522+<<e C.5252+<<-eD.223<<e2.借助平面几何干系树立,a c 不等关系求解 例5.设12F F ,分离是椭圆22221x y a b+=(0a b >>)的左.右核心,若在直线x=2a c 上消失,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值规模是( )A .(02,B .(0C .1)2 D.1)3.应用圆锥曲线相干性质树立,a c 不等关系求解.例6.已知双曲线x2a2-y2b2=1(a>0,b>0) ,F1是左核心,O 为坐标原点,若双曲线上消失点P,使|PO|=|PF1|,则此双曲线的离心率的取值规模是()A .(1,2] B .(1,+∞)C.(1,3) D .[2,+∞)4.应用数形联合树立,a c 不等关系求解 例7.已知双曲线22221(0,0)x y a b a b-=>>的右核心为F,若过点F 且竖直角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值规模是 ( )(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞ 5.应用函数思惟求解离心率 例8.设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值规模是A .)2,2( B.)5,2( C.)5,2( D.)5,2(演习 3. 设A1.A2,若在椭圆上消失异于A1.A2的点P ,使得02=⋅PA PO ,个中O 为坐标原点,则椭圆的离心率e 的取值规模是A. B. C.小结:求离心率的症结是列出一个与a,b,c,e有关的等式或不等关系求离心率的症结是列出一个与a,b,c,e有关的等式或不等关系.在此,要活用圆锥曲线的特点三角形.经常应用办法:1.应用曲线变量规模.圆锥曲中变量的变更规模对离心率的影响是直接的,充分应用这一点,可优化解题.2.应用直线与曲线的地位关系.依据题意找出直线与曲线相对的地位关系,列出相干元素的不等式,可敏捷解题.3.应用点与曲线的地位关系.依据某点在曲线的内部或外部,列出不等式,再求规模,是一个主要的解题门路.4.联立方程组.假如有两曲线订交,将两个方程联立,解出交点,再应用规模,列出不等式并求其解.5.三角函数的有界性.用三角常识树立等量关系,再应用三角函数的有界性,列出不等式易解.6.用根的判别式依据前提树立与a.b.c相干的一元二次方程,再用根的判别式列出不等式,可得简解7.数形结正当:解析几何和平面几何都是研讨图形性质的,只不过平面几何只限于研讨直线形和圆.是以,在题设前提中有关圆.直线的问题,或标题中结构出直线形与圆,可以应用平面几何的性质简化盘算. 演习1.如图,双曲线2222 1 (,0)x y a b a b -=>的两极点为1A ,2A ,虚轴两头点为1B ,2B ,两核心为1F ,2F . 若认为12A A 直径的圆内切于菱形1122F B F B ,切点分离为,,,A B C D . 则双曲线的离心率e =;2.设12,F F0)b>的两个核心,P 是C 上一点,若1PF PF +30,则C 的离心率为___. 3.如图,1,F 2C 的公共核心,B A ,分离是1C ,2C 21BF AF 2C ( )A .2B .3B .C .23D .264.设双曲线C :x2a2-y2=1(a>0)与直线l :x +y =1订交于两个不合的点A,B. 求双曲线C 的离心率e 的取值规模。
离心率是圆锥曲线的一个几何性质.与圆锥曲线离心率有关的问题主要考查圆锥曲线的定义、性质以及离心率的公式,属于一类基础性的问题.求圆锥曲线离心率的关键是求得圆锥曲线方程中a、b、c的值或关系式.本文重点介绍求圆锥曲线离心率的三种方法,以供大家参考.一、公式法公式法是指运用公式e=c a求出离心率的方法.在解题时,我们可以根据已知条件以及圆锥曲线的标准方程、性质建立与a、c相关的关系式,结合圆锥曲线中a、b、c之间的关系求出a、c的值,然后利用公式e=ca求得离心率的大小.例1.过双曲线C:x2-y2b2=1()b>0的左顶点A作斜率为1的直线l,若直线l与双曲线的两条渐近线分别交于B,C,且||AB=||BC,则双曲线的离心率为____.解:由双曲线的方程可知a=1,∴点A()-1,0,∴直线l方程为y=x+1,∵双曲线C:x2-y2b2=1()b>0知两条渐近线分别为y=bx,y=-bx,∴Bæèöø-1b+1,b b+1,Cæèöø1b-1,b b-1,∵||AB=||BC,∴b2=9,c=b2+1=10,∴e=c a=10.我们首先根据双曲线的方程求出a的值,然后由B、C两点的坐标以及已知条件||AB=||BC建立关于b的式子,求得b、c的值,便可利用离心率公式求得问题的答案.二、齐次式法齐次式法是求圆锥曲线离心率的重要方法之一.齐次式法是指通过构建齐次式来解答问题的方法.有些问题中a、c的值不易直接求出,我们可以结合已知条件构造关于a、c的齐次式,通过解方程得到e=ca的值.例2.已知F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若MF1的中点在双曲线上,则双曲线的离心率为____.解:结合题意绘制如图的图形,设||OF1=c,MF1的中点为P,∴点P的横坐标为-c2,∵||PF1=12||F1F2=c,由焦半径公式可得||PF1=-2x p-a,∴c=-c a׿èöø-c2-a,化简得c2-2a2-2ac=0,∴e2-2e-2=0,解方程得e1=1+3,e2=1-3()舍去,∴双曲线的离心率为1+3.在解答上题的过程中,需建立关于a、c的齐次式,再将其左右同除以a2,通过整理和化简得到关于e的一元二次方程,解方程便可求得e的值.三、定义法定义法是指利用圆锥曲线的定义求出离心率的方法.一般地,圆锥曲线的定义中都蕴含着a(动点到圆锥曲线上两焦点的距离之和或差)与c(焦点之间的距离)之间的关系.因此在求圆锥曲线的离心率时,我们可以根据圆锥曲线的定义绘制相应的图形,找出a、c对应的线段,建立关系式,便可求得圆锥曲线的离心率.例3.设F1,F2分别是椭圆x2a2+y2b2=1(a>0,b>0)的左,右焦点,点P在椭圆C,线段PF1的中点在y轴上,若∠PF1F2=30∘,则椭圆的离心率为_____.解:∵线段PF1的中点在y轴上,F1F2的中点为点O,∴PF2//y轴,∴PF2⊥F1F2,∵∠PF1F2=30∘,∴在Rt△PF1F2中,||PF1:||PF2:||F1F2=2:1:3,∵2a=||PF1+||PF2,2c=|F1F2∴e=c a=2c2a=||F1F2||PF1+||PF2=.解答本题,需结合题意绘制出图形,通过解直角三角形PF1F2得到||PF1、||PF2、||F 1F2的关系式,结合椭圆的定义求得a与c的值以及e的值.公式法、齐次式法、定义法都是解答圆锥曲线离心率问题的有效方法.其中公式法和定义法是比较常用的方法,齐次式法虽然较为复杂,但能有效地简化运算.(作者单位:广东省惠州市博罗县石湾中学)解题宝典翟勇超38Copyright©博看网 . All Rights Reserved.。
圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞ 2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+, (2)双曲线:222c b a =+3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解,或者带入曲线求解 (3)利用三角形的相似关系 (4)利用点线距离关系4、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的坐标是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、考点一:求离心率 方法一:焦点三角形问题例1(1):设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( )A .3 B .6 C .13 D .16答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
圆锥曲线是高中数学的一个重要内容,其中离心率的求解是常考知识点之一。
本文将介绍圆锥曲线中离心率的14种求解方法,包括定义法、两点法、点差法、判别式法、参数方程法、切线法、弦长公式法、基本不等式法等。
每种方法都有其适用条件和优缺点,同学们可以根据具体情况选择合适的方法进行解题。
方法一:定义法定义法是通过利用圆锥曲线的定义来求解离心率的。
对于椭圆和双曲线,可以利用椭圆和双曲线的中心和对称性,以及长度的不减性来求解离心率的范围。
这种方法适用于简单的情况,但在复杂的情况下需要结合其他方法进行求解。
方法二:两点法两点法适用于求解椭圆的离心率。
当焦点在x 轴上时,设左、右两个顶点分别为A1、A2,焦距为F1、F2,通过求出丨FA1丨-丨FA2丨来求出离心率e 的范围。
当焦点在y 轴上时,同样利用左右顶点及中心来解题。
这种方法简单直观,但需要学生掌握椭圆的性质。
方法三:点差法点差法适用于求解圆锥曲线的离心率的范围。
通过将圆锥曲线上两个点的坐标进行差分,得到关于离心率的方程,从而求解离心率的值或范围。
这种方法需要学生具有一定的技巧和经验,但对于一些较为复杂的问题,能够得到事半功倍的效果。
方法四:判别式法对于双曲线和抛物线,判别式法是一种常用的求解离心率的简便方法。
通过将圆锥曲线的方程化简为二次方程或一元二次方程,利用判别式小于零得到离心率的范围。
这种方法简单易行,但需要学生具有一定的数学基础和解题技巧。
方法五:参数方程法对于一些较为复杂的圆锥曲线,可以使用参数方程来求解离心率的值或范围。
通过将圆锥曲线转化为参数方程的形式,利用参数的几何意义或结合不等式进行求解。
这种方法能够解决一些较为困难的问题,但需要学生掌握参数方程的相关知识和技巧。
方法六:利用切线法求椭圆离心率根据椭圆的性质,椭圆的左、右焦点到相应准线的距离称为离心率;若过椭圆上某点作坐标轴的垂线,与以该点为起点的直角三角形相似,则此直角三角形的另一顶点在焦点上,此定点即为椭圆的上下顶点;而椭圆上的点到左右顶点的距离之和为定值(2a)。
圆锥曲线中离心率的求法在解析几何中,求离心率在高考中经常出现,解法较灵活,下面就介绍些常用的方法。
1、公式法:即利用ace =这一公式求离心率。
[例1]已知椭圆m y mx5522=+的离心率510=e ,求m 的值。
解:将椭圆方程化为标准方程得:1522=+my x (1)当50<<m 时,51055,5,,5222=-==-=∴==m ac e m c m b a ,可得3=m ;(2)当5>m 时,5105,5,5,222=-==-=∴==m m a c e m c b m a ,可得325=m ;3253==∴m m 或。
[例2]已知双曲线的渐近线为x y 43±=,求双曲线的离心率。
解:(1)当双曲线的焦点在X 轴上时,可得:43=a b ,从而451222=⎪⎭⎫⎝⎛+=+==a b a b a ac e ; (2)当双曲线的焦点在Y 轴上时,可得:43=b a ,同理可得35=e ; ∴双曲线的离心率为4535或。
2、几何法:求与焦点三角形有关的离心率,可根据三角形的特征设一条边,再想办法求出2a,2c ,从而可得离心率。
[例3]以椭圆的右焦点2F 为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线)(11为左焦点F MF 是圆2F 的切线,M 是切点,则椭圆的离心率是( )(A )13- (B )32- (C )22(D )23 解:如图,由题意得21F MF ∆为直角三角形,设12=MF ,则221=F F ,从而31=MF ,131322121-=+=+=∴MF MF F F e ,故选A 。
[例4]F 1,F 2为椭圆的左右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PQ PF ⊥1,且||||1PQ PF =,求椭圆的离心率。
解:设2,1,111===Q F PQ PF 则,a QF PQ PF 411=++ ,()261212,2212222222221=-+=+=+=+=∴a PF PF c a ,3622-==∴ace 。
圆锥曲线中离心率的求法韩锋离心率是圆锥曲线的重要性质之一,也是高考中的一个重要考点,本文对圆锥曲线的离心率的求法予以归纳,并通过例题加以说明。
一、由圆锥曲线定义结合图形性质求离心率例 1. 已知21F F 、是双曲线1b y a x 2222=-的左右焦点,双曲线恰好通过正A F F 21∆的两边A F A F 21、的中点,求双曲线的离心率。
解:如图,双曲线恰好通过正A F F 21∆两边A F A F 21、的中点,所以12AF M F ⊥。
在21F MF Rt ∆中,︒=∠=30F MF ,c 2|F F |1221,所以c 3|MF |,c |MF |21==,由双曲线的定义知a 2|MF ||MF |12=-,即13a c e ,a 2c c 3+===-。
二、利用正弦定理求离心率例 2. 已知21F F 、是椭圆)0b a (1b y a x 2222>>=+的两个焦点,点P 在椭圆上,且︒=∠︒=∠15F PF ,105F PF 1221,求椭圆的离心率。
解:在21PF F ∆中,由正弦定理得.60sin |F F |105sin |PF |15sin |PF |2121︒=︒=︒ 由合比定理得.60sin |F F |105sin 15sin |PF ||PF |2121︒=︒+︒+.22105sin 15sin 60sin |PF ||PF ||F F |a 2c 2e 2121=︒+︒︒=+==三、由定比分点坐标公式求离心率例3. 已知等腰梯形ABCD 中,|CD |2|AB |=,AB ∥CD ,点E 分有向线段AC 所成的比为8:11,双曲线过C 、D 、E 三点,且以A 、B 为焦点,求双曲线的离心率。
解:建立如图所示平面直角坐标系。
因为C 、D 在双曲线上,且AB ∥CD ,所以C 、D关于y 轴对称。
设双曲线方程为),0b ,0a (1b y a x 2222>>=-)0,c (B ),0,c (A -,因|,CD |2|AB |=可设⎪⎭⎫ ⎝⎛n ,2c C 。
1.解析几何——难点突破——离心率专题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解析几何——难点突破——离心率专题离心率是圆锥曲线的重要几何性质,是描述圆锥曲线形状的重要参数.圆锥曲线的离心率的求法是一类常见题型,也是历年高考考查的热点.求解圆锥曲线的离心率的值或取值范围,其关键是建立恰当的等量或不等量关系,以过渡到含有离心率e 的等式或不等式使问题获解.[典例] (2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )[思路点拨]本题以椭圆内点线的交错关系为条件,而结论是椭圆的离心率,思考目标自然是要得到a ,b ,c 满足的等量关系,那么方向不外乎两个:坐标关系或几何关系,抓住条件“直线BM 经过OE 的中点”作为突破口适当转化,获得所需等式.[方法演示] 法一:数形结合法如图,设直线BM 与y 轴的交点为N ,且点N 的坐标为(0,m ),根据题意,点N 是OE 的中点,则E (0,2m ),从而直线AE 的方程为x -a +y 2m =1,因此点M 的坐标为-c ,2m a -ca. 又△OBN ∽△FBM , 所以|FM ||ON |=|FB ||OB |,即2m a -ca m =a +c a ,解得c a =13,所以椭圆C 的离心率为13. 法二:交点法同法一得直线AE 的方程为x -a+y 2m =1,直线BN 的方程为x a +y m =1.又因为直线AE 与直线BN 交于点M ,且PF ⊥x 轴,可设M (-c ,n ).则⎩⎪⎨⎪⎧-c -a +n 2m =1,-c a +nm =1,消去n ,解得ca =13,所以椭圆C 的离心率为13.法三:三点共线法同法一得直线AE 的方程为x -a+y 2m =1,由题意可知M ⎝⎛⎭⎫-c ,2m ⎝⎛⎭⎫1-c a ,N (0,m ),B (a,0)三点共线,则2m ⎝⎛⎭⎫1-c a -m-c =m -a,解得c a =13,所以椭圆C 的离心率为13.法四:方程法设M (-c ,m ),则直线AM 的方程为y =m a -c (x +a ),所以E ⎝⎛⎭⎫0,ma a -c .直线BM 的方程为y =m -c -a (x -a ),与y 轴交于点⎝⎛⎭⎫0,ma a +c ,由题意知,2ma a +c =ma a -c ,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13.法五:几何法在△AOE 中,MF ∥OE ,所以MF OE =a -ca .在△BFM 中,ON ∥MF ,所以OE 2MF =a a +c ,即OE MF =2aa +c.所以MF OE ·OE MF =a -c a ·2a a +c =1,即a +c =2(a -c ),解得c a =13,所以椭圆C 的离心率为13. [答案] A [解题师说]1.本题的五种方法,体现出三个重要的数学解题策略.想求得离心率.由于椭圆(双曲线)的元素a,b,c在图形、方程中具有一定的几何意义,所以通常可借助坐标关系或几何关系来解决离心率的问题.2.在求解圆锥曲线(椭圆和双曲线)的离心率问题时,要把握一个基本思想,就是充分利用已知条件和挖掘隐含条件建立起a与c的关系式.[注意]在求离心率的值时需建立等量关系式,在求离心率的范围时需建立不等量关系式.[应用体验]1.(2018·新疆模拟)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()C.3 D.2解析:选A依题意,不妨设点P在双曲线的右支上,F1,F2分别为其左、右焦点,设椭圆与双曲线的离心率分别为e1,e2,则有e1=|F1F2||PF1|+|PF2|,e2=|F1F2||PF1|-|PF2|,则1e1+1e2=2|PF1||F1F2|.在△PF1F2中,易知∠F1F2P∈⎝⎛⎭⎫0,2π3,由正弦定理得|PF1||F1F2|=sin∠F1F2Psin∠F1PF2=23sin∠F1F2P,所以1e1+1e2=43sin∠F1F2P≤43=433,当且仅当sin∠F1F2P=1,即∠F1F2P=π2时取等号,因此1e1+1e2的最大值是433.2.已知双曲线x2a2-y2b2=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和s≥45c,则双曲线离心率的取值范围为__________.解析:设直线l的方程为xa+yb=1.由已知,点(1,0)到直线l的距离d1与点(-1,0)到直线l的距离d2之和s=d1+d2=b a-1a2+b2+b a+1a2+b2=2abc≥45c,整理得5a c2-a2≥2c2,即5e2-1≥2e2,所以25e2-25≥4e4,即4e4-25e2+25≤0,解得54≤e2≤5,52≤e≤ 5.故双曲线离心率的取值范围为52, 5.答案:52,5一、选择题1.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c2=14×2b ,解得c a =12,即e =12.2.(2016·全国卷Ⅱ)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )D .2解析:选A 法一:作出示意图如图所示,离心率e =c a =2c2a =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2. 法二:因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca = 2.3.(2018·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率等于( )或2516或54解析:选D 当m <0,n >0时,圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径R =1,由mx 2+ny 2=1,得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,对应的一条渐近线方程为y =±a b x ,设双曲线的一条渐近线为y =ab x ,即ax -by =0.∵一条渐近线与圆x 2+y 2-6x -2y +9=0相切,∴圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,所以8a 2-6ab =0,即4a -3b =0,b =43a ,平方得b 2=169a 2=c 2-a 2,所以c 2=259a 2,c =53a ,故离心率e =c a =53;当m >0,n <0时,双曲线的渐近线为y =±ba x ,设双曲线的一条渐近线方程为y =ba x ,即bx -ay =0, ∴|3b -a |a 2+b 2=1, 即9b 2-6ab +a 2=c 2=a 2+b 2,∴8b 2-6ab =0,即4b =3a ,平方得16b 2=9a 2,即16(c 2-a 2)=9a 2, 可得e =54. 综上,e =53或54.4.(2018·广西三市第一次联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1.∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a .∵|PA |=12|PF 1|=a +c ,∴4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.5.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作∠F 1PF 2的角平分线交x 轴于点M ,若2|PM |2=|PF 1|·|PF 2|,则该椭圆的离心率为( )解析:选B 记∠PF 1F 2=2α,∠PF 2F 1=2β,则有∠F 1MP =2β+π-2α+2β2=π2+(β-α),sin ∠F 1MP =cos(α-β)=sin ∠F 2MP ,则椭圆的离心率e =2c 2a =sin 2α+2βsin 2α+sin 2β=2sin α+βcos α+β2sin α+βcos α-β=cos α+βcos α-β.由已知得2|PM ||PF 1|=|PF 2||PM |,即2sin 2αcos α-β=cos α-βsin 2β,2sin 2αsin 2β=cos 2(α-β),cos(2α-2β)-cos(2α+2β)=cos 2(α-β),即[2cos 2(α-β)-1]-[2cos 2(α+β)-1]=cos 2(α-β),cos 2(α-β)=2cos 2(α+β),cos α+βcos α-β=22=e ,所以该椭圆的离心率e =22.6.(2018·云南11校跨区调研)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与C 在第二象限的交点为P ,O 为原点,若|OP |=|OF |,则C 的离心率为( )A .5解析:选A 依题意得F (-5,0),|OP |=|OF |=5,tan ∠PFO =43,cos ∠PFO =35,|PF |=2|OF |cos ∠PFO =6.记双曲线的右焦点为F 2,则有|FF 2|=10.在△PFF 2中,|PF 2|=|PF |2+|FF 2|2-2|PF |·|FF 2|·cos ∠PFF 2=8.由双曲线的定义得a =12(|PF 2|-|PF |)=1,则C 的离心率为e =ca =5.7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,若双曲线右支上存在两点B ,C 使得△ABC 为等腰直角三角形,则该双曲线的离心率e 的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选C如图,由△ABC 为等腰直角三角形,所以∠BAx =45°. 设其中一条渐近线与x 轴的夹角为θ,则θ<45°,即tan θ<1. 又其渐近线的方程为y =ba x , 则ba <1,又e = 1+b 2a 2,所以1<e <2,故双曲线的离心率e 的取值范围为(1,2).8.(2018·广东五校协作体诊断)已知点F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2且垂直于x 轴的直线与双曲线交于M ,N 两点,若MF 1―→·NF 1―→>0,则该双曲线的离心率e 的取值范围是( )A .(2,2+1)B .(1,2+1)C .(1,3)D .(3,+∞)解析:选B 设F 1(-c,0),F 2(c,0),依题意可得c 2a 2-y 2b 2=1,所以y =±b 2a ,不妨设M ⎝⎛⎭⎫c ,b 2a ,N ⎝⎛⎭⎫c ,-b 2a ,则MF 1―→·NF 1―→=-2c ,-b 2a ·⎝⎛⎭⎫-2c ,b 2a =4c 2-b 4a 2>0,得到4a 2c 2-(c 2-a 2)2>0,即a 4+c 4-6a 2c 2<0,故e 4-6e 2+1<0,解得3-22<e 2<3+22,又e >1,故1<e 2<3+22,得1<e <1+ 2.9.(2018·贵阳检测)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎨⎧y <b a x ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+⎝⎛⎭⎫b a 2∈⎝ ⎛⎭⎪⎫52,+∞.10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F .若13<k <12,则椭圆C 的离心率的取值范围是( )解析:选C 由题意可知,|AF |=a +c ,|BF |=a 2-c 2a ,于是k =a 2-c 2a a +c .又13<k <12,所以13<a 2-c 2a a +c <12,化简可得13<1-e 21+e<12,从而可得12<e <23.11.已知F 1,F 2是双曲线y 2a 2-x 2b 2=1(a >0,b >0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆内,则双曲线的离心率的取值范围为( )A .(1,2)B .(2,+∞)C .(1,2)D .(2,+∞)解析:选A 如图,不妨设F 1(0,c ),F 2(0,-c ),则过点F 1与渐近线y =ab x 平行的直线为y =ab x +c .联立⎩⎨⎧y =ab x +c ,y =-ab x ,解得⎩⎨⎧x =-bc2a ,y =c2,即M ⎝⎛⎭⎫-bc 2a ,c 2.因为点M 在以线段F 1F 2为直径的圆x 2+y 2=c 2内,故⎝⎛⎭⎫-bc 2a 2+⎝⎛⎭⎫c 22<c 2,化简得b 2<3a 2,即c 2-a 2<3a 2,解得ca <2,所以双曲线的离心率的取值范围为(1,2).12.(2018·湘中名校联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥35|CD |,则双曲线离心率的取值范围为( ),+∞ ,+∞ C .1,53D .1,54解析:选B 将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,不妨取A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,所以|AB |=2b 2a .将x =c 代入双曲线的渐近线方程y =±b a x ,得y =±bc a ,不妨取C ⎝⎛⎭⎫c ,bc a ,D ⎝⎛⎭⎫c ,-bc a ,所以|CD |=2bc a .因为|AB |≥35|CD |,所以2b 2a ≥35×2bc a ,即b ≥35c ,则b 2≥925c 2,即c 2-a 2≥925c 2,即1625c 2≥a 2,所以e 2≥2516,所以e ≥54.二、填空题13.(2018·洛阳第一次统考)设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点为,C 是椭圆E 上关于原点对称的两点(B ,C 均不在x 轴上),若直线BF 平分线段AC ,则E 的离心率为________.解析:法一:设AC 的中点为M (x 0,y 0),依题意得点A (a,0),C (2x 0-a,2y 0),B (a -2x 0,-2y 0),F (c,0),其中y 0≠0.由B ,F ,M 三点共线得k BF =k BM ,2y 0c -a +2x 0=3y 03x 0-a ≠0,化简得a =3c ,因此椭圆E 的离心率为13.法二:连接AB ,记AC 的中点为M ,B (x 0,y 0),C (-x 0,-y 0),则在△ABC 中,AO ,BM 为中线,其交点F 是△ABC 的重心.又F (c,0),由重心坐标公式得c =x 0-x 0+a3,化简得a =3c ,因此椭圆E 的离心率为13.答案:1314.(2018·湖北部分重点高中联考)已知双曲线C 2与椭圆C 1:x 24+y 23=1具有相同的焦点,则两条曲线相交的四个交点形成的四边形面积最大时双曲线C 2的离心率为__________.解析:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知a 2+b 2=4-3=1,由⎩⎨⎧ x 24+y 23=1,x 2a 2-y 2b 2=1,解得交点的坐标满足⎩⎪⎨⎪⎧ x 2=4a 2,y 2=31-a 2,由椭圆和双曲线关于坐标轴对称知,以它们的交点为顶点的四边形是长方形,其面积S =4|xy |=44a 2·31-a 2=83·a 2·1-a 2≤83·a 2+1-a 22=43,当且仅当a 2=1-a 2,即a 2=12时,取等号,此时双曲线的方程为x 212-y 212=1,离心率e = 2. 答案:215.已知点A (3,4)在椭圆x 2a 2+y 2b 2=1(a >b >0)上,则当椭圆的中心到直线x =a 2a 2-b 2的距离最小时,椭圆的离心率为__________.解析:因为点A (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的点,所以9a 2+16b 2=1,所以b 2=16a 2a 2-9.因为a >b >0,所以1=9a 2+16b 2>9a 2+16a 2=25a 2,从而a 2>25.设椭圆的中心到直线x =a 2a 2-b 2的距离为d ,则 d =a 2a 2-b 2=a 4a 2-16a 2a 2-9=a 21-16a 2-9=a 2a 2-9a 2-25=a 2-25+400a 2-25+41≥2400+41=9, 当且仅当a 2-25=400a 2-25,即a 2=45时,等号成立,此时b 2=20,c 2=25,于是离心率e =c a =2545=535=53. 答案:5316.已知抛物线y =14x 2的准线过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点,且双曲线C 与直线l :x +y =1相交于两点A ,B .则双曲线C 的离心率e 的取值范围为________.解析:抛物线y =14x 2化为x 2=4y ,所以准线为y =-1,所以双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的虚轴的一个端点为(0,-1),即b =1,所以双曲线C :x 2a 2-y 2=1(a >0).联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1, 消去y ,得(1-a 2)x 2+2a 2x -2a 2=0. ∵与双曲线交于两点A ,B ,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 21-a 2>0⇒0<a 2<2且a 2≠1. 而b =1,则c =a 2+b 2=a 2+1,∴离心率e =c a =a 2+1a =1+1a 2>1+12=62,且e =1+1a 2≠2, ∴e 的取值范围为⎝⎛⎭⎪⎫62,2∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫62,2∪(2,+∞)。
第一篇圆锥曲线专题05离心率的求法一、求离心率值的问题求离心率的值需要构造一个含有,,a b c 或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。
1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了,a c 的关系,因此如果能找出三条边的关系也就可以求出离心率的值。
例1:如图,12,F F 是椭圆221:14x C y +=和双曲线2C 的公共焦点,若四边形12AF BF 为矩形,则双曲线的离心率为____________.【解析】关于共焦点的问题,c 相等,在椭圆里面1224AF AF a +==在12RT AF F ∆中满足2221212+=AF AF F F ,解得12AF AF则在双曲线中a c ==62e =例2:设椭圆的两个焦点分别是12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为_________.2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。
例3:已知,A B 为双曲线E 的左右顶点,点M 在E 上,ABM ∆为等腰三角形且顶角为120︒,则E 的离心率为_________.上图中A,B 两点不是焦点,2AB a =,且条件中没有b 和c 的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含,a b 的等式,因此题目的关键不是构造等式而是求出点M 的坐标,代入到双曲线的方程中即可求出离心率。
【解析】从M 点作x 轴的垂线,垂足为C ,因为2,60BM a MBC ︒=∠=所以,BC a MC ==,所以点M 的坐标为(2)a 代入到双曲线中得2222(2)(3)1a a b -=整理得e =例4:设12,F F 分别是椭圆2222:1x y E a b+=的左右焦点,过点1F 的直线交椭圆E 于A,B 两点,11||3||AF BF =,若23cos 5AF B ∠=,求椭圆E 的离心率。