二极管、三极管、场效应管的学习
- 格式:doc
- 大小:15.96 MB
- 文档页数:23
一、二极管三极管MOS器件基本原理P-N结及其电流电压特性晶体二极管为一个由 p 型半导体和 n 型半导体形成的 p-n 结,在其界面处两侧形成空间电荷层,并建有自建电场。
当不存在外加电压时,由于 p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。
当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流:。
当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流 I0 。
当外加的反向电压高到一定程度时, p-n 结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
双极结型三极管相当于两个背靠背的二极管 PN 结。
正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。
在共发射极晶体管电路中 , 发射结在基极电路中正向偏置 , 其电压降很小。
绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。
首页[1][2][3]下一页尾页由于 VBE 很小,所以基极电流约为 IB= 5V/50 k Ω = 0.1mA 。
如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC= β*IB=10mA。
在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,现了双极晶实体管的电流放大作用。
金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。
当栅 G 电压 VG 增大时, p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。
二极管三极管 mos管二极管、三极管和MOS管是现代电子技术中常用的三种元件。
它们分别具有不同的特性和应用范围,为电子设备的设计和制造提供了重要的支持和便利。
我们来探讨一下二极管。
二极管是一种具有两个电极的电子元件,由P型半导体和N型半导体组成。
二极管具有单向导电特性,即只允许电流在一个方向上通过。
当二极管的正端施加正电压,负端施加负电压时,电流可以顺利通过;而当施加的电压方向相反时,电流则无法通过。
这一特性使得二极管可以用于电路的整流、开关和保护等方面。
接下来,我们来探讨一下三极管。
三极管是一种具有三个电极的半导体器件,分别为发射极、基极和集电极。
三极管可以通过控制基极电流的大小来控制集电极电流的变化。
三极管有两种工作模式,分别为放大模式和开关模式。
在放大模式下,三极管可以将微弱的输入信号放大成较大的输出信号,常用于放大电路中。
而在开关模式下,三极管可以根据基极电流的变化来控制集电极电流的开关,常用于逻辑电路和开关电源等方面。
我们来探讨一下MOS管。
MOS管是金属氧化物半导体场效应管的简称,由金属栅极、绝缘氧化层和半导体基底构成。
MOS管具有高输入阻抗和低功耗的特点,常用于集成电路中。
MOS管有两种类型,分别为N沟道MOS管和P沟道MOS管,根据其导电性质的不同有所区别。
MOS管可以通过控制栅极电压来改变导电性能,实现电流的放大和开关控制。
MOS管广泛应用于数字电路、模拟电路和功率电子等领域。
总结起来,二极管、三极管和MOS管分别具有不同的特性和应用范围。
二极管可以实现单向导电,用于整流、开关和保护等方面;三极管可以放大和开关控制电流,用于放大电路、逻辑电路和开关电源等方面;MOS管具有高输入阻抗和低功耗,用于集成电路、数字电路、模拟电路和功率电子等领域。
这些电子元件的发展和应用,为现代电子技术的发展和进步提供了重要的支持和推动力。
随着科技的不断创新和发展,相信二极管、三极管和MOS管的应用将会更加广泛和深入。
mos管分四种,N沟道增强型和耗尽型,P沟道增强型和耗尽型。
箭头指向g 的且带虚线的为N增强,没有虚线的为N耗尽。
箭头背向g端的且带虚线的为P增强,不带虚线则为P耗尽。
希望说的你能明白,小妹新手,多多关照!有没说清楚的继续,呵呵···场效应管三极管开关电路基础发布时间:2008-12-08 23:08:32三极管简介:三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
图1双极面结型晶体管有两个类型:npn和pnp。
npn类型包含两个n 型区域和一个分隔它们的p型区域;pnp类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。
以下的说明将集中在npn BJT。
图2: npn BJT 的电路符号图3: pnp BJT 的电路符号BJT工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。
图4 四种工作模式BJT在电子学中是非常重要的元件。
它们被广泛应用在其他展品中,特别是模拟电路里的放大器和数码电路里的电子开关。
开关电路原则a. BJT三极管Transistors只要发射极e 对电源短路就是电子开关用法N管发射极E 对电源负极短路. 低边开关;b-e 正向电流饱和导通P管发射极E 对电源正极短路. 高边开关 ;b-e 反向电流饱和导通b. FET场效应管MOSFET只要源极S 对电源短路就是电子开关用法N管源极S 对电源负极短路. 低边开关;栅-源正向电压导通P管源极S 对电源正极短路. 高边开关;栅-源反向电压导通总结:低边开关用 NPN 管高边开关用 PNP 管三极管b-e 必须有大于C-E 饱和导通的电流场效应管理论上栅-源有大于漏-源导通条件的电压就就OK假如原来用NPN 三极管作ECU 氧传感器加热电源控制低边开关则直接用N-Channel 场效应管代换;或看情况修改下拉或上拉电阻基极--栅极集电极--漏极发射极--源极NPN和PNP 开关三极管(1)我把NPN三极管看成一个三个脚继电器.基极-----就是一个小电流的.继电器的信号吧集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流入了基极的话那么集电极和发射极就会通.(2)PNP三极管看成一个三个脚继电器.基极-----就是一个小电流的继电器信号集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流出了基极的话,那么集电极和发射极就会通.三极管VS场效应管三极管BJT--------TRANSISTORS ----------- 电流驱动场效应管----- FET ------------------------- 电压驱动MOS场效应管MOSFET ................ 电压驱动2N70022n7002 IC产品型号的一种描述:晶体管极性:N沟道漏极电流, Id 最大值:280mA电压, Vds 最大:60V开态电阻, Rds(on):5ohm电压@ Rds测量:10V电压, Vgs 最高:2.1V功耗:0.2W工作温度范围:-55to 150封装类型:SOT-23针脚数:3SVHC(温度关注物质):Cobalt dichloride (18-Jun-2010) SMD标号:702功率, Pd:0.2W外宽:3.05mm外部深度:2.5mm外部长度/高度:1.12mm封装类型:SOT-23带子宽度:8mm晶体管数:1晶体管类型:MOSFET温度@ 电流测量:25°C满功率温度:25°C电压Vgs @ Rds on 测量:10V电压, Vds 典型值:60V电流, Id 连续:0.115A电流, Idm 脉冲:0.8A表面安装器件:表面安装通态电阻, Rds on @ Vgs = 10V:5ohm通态电阻, Rds on @ Vgs = 4.5V:5.3ohm阈值电压, Vgs th 典型值:2.1V阈值电压, Vgs th 最高:2.5VSVHC(高度关注物质)(附加):Bis (2-ethyl(hexyl)phthalate) (DEHP) (18-Jun-2010)MOS管的基本知识(转载)2011-05-07 06:39:32| 分类:电路硬件设计| 标签:|字号大中小订阅现在的高清、液晶、等离子电视机中开关电源部分除了采用了PFC技术外,在元器件上的开关管均采用性能优异的MOS 管取代过去的大功率晶体三极管,使整机的效率、可靠性、故障率均大幅的下降。
电子元器件知识:二极管、三极管与场效应管。
一、半导体二极管2、半导体二极管的分类分类:a 按材质分:硅二极管和锗二极管;b按用途分:整流二极管,检波二极管,稳压二极管,发光二极管,光电二极管,变容二极管。
3、半导体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的半导体二极管。
4、半导体二极管的导通电压是:a;硅二极管在两极加上电压,并且电压大于0.6V时才能导通,导通后电压保持在0.6-0.8V之间.B;锗二极管在两极加上电压,并且电压大于0.2V时才能导通,导通后电压保持在0.2-0.3V之间.5、半导体二极管主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
6、半导体二极管可分为整流、检波、发光、光电、变容等作用。
7、半导体二极管的识别方法:a;目视法判断半导体二极管的极性:一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极.在实物中如果看到一端有颜色标示的是负极,另外一端是正极.b;用万用表(指针表)判断半导体二极管的极性:通常选用万用表的欧姆档(R﹡100或R﹡1K),然后分别用万用表的两表笔分别出接到二极管的两个极上出,当二极管导通,测的阻值较小(一般几十欧姆至几千欧姆之间),这时黑表笔接的是二极管的正极,红表笔接的是二极管的负极.当测的阻值很大(一般为几百至几千欧姆),这时黑表笔接的是二极管的负极,红表笔接的是二极管的正极.c;测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
8、变容二极管是根据普通二极管内部“PN结”的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。
变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。
在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。
常用电子器件电子器件是当今现代工业中不可或缺的一部分。
随着科技的发展和进步,电子器件得到了充分应用和发展。
其中一些被广泛使用的电子器件包括半导体器件、电容器、电感器、二极管和晶体管等。
一、半导体器件半导体器件是现代电子学的基础之一。
半导体器件包括二极管、三极管、场效应晶体管(FET)、可控硅等。
二极管是最简单的半导体器件,它具有整流和波形截取功能。
三极管具有放大作用,它可放大电压和电流。
场效应晶体管是一个高阻器件,它在电子电路中常用来放大和调整电压信号。
可控硅是一种带有控制端的半导体器件,它可以通过施加一个触发脉冲来进行开关操作。
二、电容器电容器由两个电极和一个介质组成,它可以存储电荷并且能够在电路中储存电能,以及对电路的频率响应起着很大的影响。
电容器在各种电子器件中被广泛应用,包括滤波器、信号发生器、功率电子设备和放大器等。
电容器的容量和介质类型对电子电路的性能有很大的影响。
三、电感器电感器是一种两端带有线圈的器件,它可以储存电流并且可以作为变压器、滤波器、放大器和发生器的元件。
电感器的工作原理是通过在线圈内产生磁场来储存电能。
电感器的一般作用是在电路中阻止低频信号,它经常用于成阻抗元件,它能提高电路的频率选通性能,使电路成为带通滤波器或谐振回路等。
四、二极管二极管是一种既能导电又能负担反向电路的器件。
它能够把从电源或信号源来的动态信号转化成稳定的信号输出,广泛应用于整流、电源电路、自动控制、信号检测等领域。
二极管在LED、太阳能电池等领域中也有着广泛的应用。
五、晶体管晶体管是一种电子控制元器件。
它是由半导体材料制成的三极管,在电子电路中具有放大电流和电压的功能。
晶体管种类很多,如小信号晶体管、功率晶体管、场效应晶体管、双极型晶体管等。
晶体管在各种行业中都有着广泛的应用,如电源供电、振荡电路、放大器电路、计算机和通讯等。
电子器件是现代工业的重要组成部分,它们的应用范围很广,可以应用于电源供应、通信、汽车工业、电子家电、航空航天等。
半导体基本器件引言半导体是一种具有特定电子行为的材料,既不完全是导体,也不是绝缘体。
半导体在现代电子设备中起到至关重要的作用,因为它们可以用来制造各种各样的基本器件。
这些基本器件在电路中起到关键的作用,如放大信号、控制电流等。
本文将学习和讨论一些常见的半导体基本器件,包括二极管、三极管和场效应管。
二极管二极管是一种最简单的半导体器件。
它由两个相反类型的半导体材料(P型和N型)组成,其中P区具有多余的正电荷,N区具有多余的负电荷。
这种差异导致了一个电势能壕,使得电子很难穿过二极管。
当正向电压施加在二极管上时,电子可以通过二极管流动,形成一个电流。
而在反向电压下,电子无法通过二极管,形成一个开路。
二极管被广泛用于整流电路中。
整流电路可以将交流信号转换为直流信号,通过使用二极管的开关特性来选择正向电流流向。
在直流电源中,二极管还可以作为保护器件,防止电流逆向流动。
三极管三极管是一种用来放大电流的半导体器件。
它由三个区域组成:发射极(E)、基极(B)和集电极(C)。
发射极和基极之间是一个PN 结,称为发射结,而基极和集电极之间是另一个PN结,称为集电结。
三极管的放大作用是通过输入信号在基极端产生的小电流来控制集电极端的电流增益。
当输入信号为正向偏置时,基极电流增加,从而导致集电极电流增加。
因此,三极管可以被用作电流放大器。
此外,三极管还可以作为开关使用,当输入信号为正时,三极管工作在饱和区,导通集电极电流;当输入信号为负时,三极管工作在截止区,阻断集电极电流。
场效应管场效应管(FET)是一种用于放大和控制电流的半导体器件。
它由源极(S)、栅极(G)和漏极(D)组成。
在场效应管中,控制电流通过控制栅极电压来实现。
场效应管有两种主要类型:增强型和耗尽型。
增强型FET的栅极电压增加时,漏极电流也增加。
耗尽型FET的栅极电压增加时,漏极电流减小。
场效应管与三极管的一个重要区别是它的输入电阻更高,这使得场效应管在某些应用中更具优势。
二极管5.1.5 半导体二极管的型号命名1.国产半导体器件的命名方法二极管的型号命名通常根据国家标准GB-249-74规定,由五部分组成。
第一部分用数字表示器件电极的数目;第二部分用汉语拼音字母表示器件材料和极性;第三部分用汉语拼音字母表示器件的类型;第四部分用数字表示器件序号;第五部分用汉语拼音字母表示规格号。
如表5.1所示。
2.日本半导体器件的命名方法日本半导体器件命名型号由五部分组成。
第一部分用数字表示半导体器件有效数目和类型。
1表示二极管,2表示三极管;第二部分用S表示已在日本电子工业协会登记的半导体器件;第三部分用字母表示该器件使用材料、极性和类型;第四部分表示该器件在日本电子工业协会的登记号;第五部分表示同一型号的改进型产品。
具体符号意义如表5.2所示。
美国电子工业协会半导体分立器件命名型号由五部分组成。
第一部分为前缀;第二部分、第三部分、第四部分为型号基本部分;第五部分为后缀;这五部分符号及意义如表5.3所示。
5.1.6二极管的伏安特性实际的二极管伏安特性曲线如图5.5所示,实线对应硅材料二极管,虚线对应锗材料二极管。
图5.5 二极管的伏安特性曲线1.正向特性当二极管承受正向电压小于某一数值(称为死区电压)时,还不足以克服PN结内电场对多数载流子运动的阻挡作用,这一区段二极管正向电流I F很小,称为死区。
死区电压的大小与二极管的材料有关,并受环境温度影响。
通常,硅材料二极管的死区电压约为0.5V,锗材料二极管的死区电压约为0.1V。
当正向电压超过死区电压值时,外电场抵消了内电场,正向电流随外加电压的增加而明显增大,二极管正向电阻变得很小。
当二极管完全导通后,正向压降基本维持不变,称为二极管正向导通压降U F。
一般硅管的U F为0.7V,锗管的U F为0.3V。
以上是二极管的正向特性。
2.反向特性当二极管承受反向电压时,外电场与内电场方向一致,只有少数载流子的漂移运动,形成的漏电流I R极小,一般硅管的I R为几微安以下,锗管I R较大,为几十到几百微安。
这时二极管反向截止。
当反向电压增大到某一数值时,反向电流将随反向电压的增加而急剧增大,这种现象称二极管反向击穿。
击穿时对应的电压称为反向击穿电压。
普通二极管发生反向击穿后,造成二极管的永久性损坏,失去单向导电性。
以上是二极管的反向特性。
5.2 晶体二极管的主要参数描述二极管特性的物理量称为二极管的参数,它是反映二极管电性能的质量指标,是合理选择和使用二极管的主要依据。
在半导体器件手册或生产厂家的产品目录中,对各种型号的二极管均用表格列出其参数。
二极管的主要参数有以下几种:1.最大平均整流电流I F(A V)I F(A V)是指二极管长期工作时,允许通过的最大正向平均电流。
它与PN结的面积、材料及散热条件有关。
实际应用时,工作电流应小于I F(A V),否则,可能导致结温过高而烧毁PN结。
2.最高反向工作电压V RMV RM是指二极管反向运用时,所允许加的最大反向电压。
实际应用时,当反向电压增加到击穿电压V BR时,二极管可能被击穿损坏,因而,V RM通常取为(1/2~2/3)V BR。
3.反向电流I RI R 是指二极管未被反向击穿时的反向电流。
理论上I R =I R (sat ),但考虑表面漏电等因素,实际上I R 稍大一些。
I R 愈小,表明二极管的单向导电性能愈好。
另外,I R 与温度密切相关,使用时应注意。
4.最高工作频率f Mf M 是指二极管正常工作时,允许通过交流信号的最高频率。
实际应用时,不要超过此值,否则二极管的单向导电性将显著退化。
f M 的大小主要由二极管的电容效应来决定。
5.二极管的电阻就二极管在电路中电流与电压的关系而言,可以把它看成一个等效电阻,且有直流电阻与交流电阻之别。
(1)直流等效电阻R D直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即R D 的大小与二极管的工作点有关。
通常用万用表测出来的二极管电阻即直流电阻。
不过应注意的是,使用不同的欧姆档测出来的直流等效电阻不同。
其原因是二极管工作点的位置不同。
一般二极管的正向直流电阻在几十欧姆到几千欧姆之间,反向直流电阻在几十千欧姆到几百千欧姆之间。
正反向直流电阻差距越大,二极管的单向导电性能越好。
(2)交流等效电阻r diu r d ∆∆=r d 亦随工作点而变化,是非线性电阻。
通常,二极管的交流正向电阻在几~几十欧姆之间。
需要指出的是,由于制造工艺的限制,即使是同类型号的二极管,其参数的分散性很大。
通常半导体手册上给出的参数都是在一定测试条件下测出的,使用时应注意条件。
5.3 晶体二极管的分类二极管按材料分有:硅二极管、锗二极管、砷二极管等。
按结构不同有点接触二极管、面接触二极管,外形如图5.6所示。
(a )接触二极管 (b)面接触二极管图5.6 二极管外形按用途分有:整流二极管、检波二极管、稳压二极管、变容二极管、发光二极管、光电二极管等。
无论构成二极管的材料如何、结构如何、特性如何,二极管均具有单向导电性和非线性的特点。
1.整流二极管整流二极管的主要功能是将交流电转换成脉动直流电。
整流二极管除有硅管和锗管之分外,还可分为高频整流二极管、低频整流二极管、大功率整流二极管及中、小功率整流二极管。
整流二极管具有金属封装、塑料封装、玻璃封装及表面封装等多种形式。
应用较多的有2CZ、4001等系列,其外形如图5.7所示。
(a)2CZ系列(b)4001系列图5.7 整流二极管外形通常可以采用流过负载的电流和加在负载两端的电压只有半个周期的正弦波的半波整流。
电路图和波形图分别如图5.8(a)和5.8(b)所示。
(a)电路图(b)波形图图5.8 单相半波整流电路及波形图2.检波二极管检波(也称解调)二极管的作用是利用其单向导电性将高频或中频无线电信号中的低频信号或音频信号取出来。
检波二极管广泛应用于半导体收音机、收录机、电视机及通信等设备的小信号电路中,其工作频率较高,处理信号幅度较弱。
常用的国产检波二极管有2AP系列锗玻璃封装二极管,其外形如图5.9所示。
图5.9 检波二极管外形3.稳压二极管硅稳压二极管简称稳压管,是一种特殊的二极管,它与电阻配合具有稳定电压的特点。
1)稳压管的伏安特性通过实验测得稳压管伏安特性曲线、符号与典型实物如图5.10所示。
(a)伏安特性曲线(b)符号(c)典型实物图5.10 稳压管伏安特性曲线、符号与典型实物从特性曲线可以看到,稳压管正向偏压时,其特性和普通二极管一样;反向偏压时,开始一段和二极管一样,当反向电压达到一定数值以后,反向电流突然上升,而且电流在一定范围内增长时,管两端电压只有少许增加,变化很小,具有稳压性能。
这种―反向击穿‖是可恢复的,只要外电路限流电阻保障电流在限定范围内,就不致引起热击穿而损坏稳压管。
2)稳压管的主要参数稳压二极管的主要参数有:(1)稳定电压U Z稳定电压实际上就是稳压二极管的击穿电压。
通常是指管子电流为规定值时,管子的两端的电压值,不同型号管子有不同的稳定电压值,以适应各种不同的使用要求。
即使同一型号管子,由于工艺分散性也不尽相同,使用时要挑选。
(2)稳定电流I Z它通常是指稳压二极管工作于击穿区的最小工作电流,在使用时工作电流应大于此值,这样才能具有较好的稳压作用。
(3) 额定功耗P Z它是由管子温度所限定的参数,与PN结的材料、结构及工艺有关。
为保证管子不致因过热而损坏,使用中不允许超过此值。
3)稳压二极管的应用稳压二极管用来构成的稳压电路,如图5.11所示。
U I是不稳定的可变直流电压,希望得到稳定的电压U O ,故在两者之间加稳压电路。
它由限流电阻R和稳压管V DZ构成,RL是负载电阻。
图5.11 稳压管稳压电路4.发光二极管发光二极管是一种将电能直接转换成光能的固体器件,简称LED(Light Emitting Diode)。
发光二极管和普通二极管相似,也由一个PN结组成。
发光二极管在正向导通时,由于空穴和电子的复合而发出能量,发出一定波长的可见光。
光的波长不同,颜色也不同。
常见的LED有红、绿、黄等颜色。
发光二极管的驱动电压低、工作电流小,具有很强的抗振动和抗冲击能力。
由于发光二极管体积小、可靠性高、耗电省、寿命长,被广泛用于信号指示等电路中。
发光二极管通常有以下几种:(1)普通发光二极管普通发光二极管工作在正偏状态。
检测发光二极管,一般用万用表R×10k(Ω)挡,方法和普通二极管一样,一般正向电阻15kΩ左右,反向电阻为无穷大。
(2)红外线发光二极管红外线发光二极管工作在正偏状态。
用万用表R×1k(Ω)挡检测,若正向阻值在30kΩ左右,反向为无穷大,则表明正常,否则红外线发光二极管性能变差或损坏。
(3)激光二极管根据内部构造和原理,判断激光二极管好坏的方法是通过测试激光二极管的正、反向电阻来确定好坏。
若正向电阻为20~30kΩ,反向电阻为无穷大,说明正常,否则,要么激光二极管老化,要么损坏。
1)发光二极管的伏安特性发光二极管的伏安特性、符号与典型实物如图5.12所示。
它和普通二极管的伏安特性相似,只是在开启电压和正向特性的上升速率上略有差异。
当所施加正向电压UF未达到开启电压时,正向电流几乎为零,但电压一旦超过开启电压时,电流急剧上升。
发光二极管的开启电压通常称做正向电压,它取决于制作材料的禁带宽度。
例如GaAsP红色LED约为1.7V,而GaP绿色的LED则约为2.3V。
LED的反向击穿电压一般大于5V,但为使器件长时间稳定而可靠的工作,安全使用电压选择在5 V以下。
(a)伏安特性(b)符号(c)典型实物图5.12 发光二极管的伏安特性曲线、符号与典型实物2)发光二极管的应用(1)电源通断指示发光二极管作为电源通断指示电路,如图5.13所示,通常称为指示灯,在实际应用中给人提供很大的方便。
发光二极管的供电电源既可以是直流的也可以是交流的,但必须注意的是,发光二极管是一种电流控制器件,应用中只要保证发光二极管的正向工作电流在所规定的范围之内,它就可以正常发光。
具体的工作电流可查阅有关资料。
图5.13 发光二极管作为电源通断指示电路(2)电平表目前,在音响设备中大量使用LED电平表。
它是利用多只发光管指示输出信号电平的,即发光的LED数目不同,则表示输出电平的变化。
电路如图5.14所示。
由5只发光二极管构成的电平表。
当输入信号电平很低时,全不发光。
输入信号电平增大时,首先LED1亮,再增大LED2亮。
图5.14电平表电路(3)数码管数码管是电子技术中应用的主要显示器件,其就是用发光二极管经过一定的排列组成的,如图5.15(a)所示。
这是最常用的七段数码显示。
要使它显示0~9的一系列数字只要点亮其内部相应的显示段即可。