2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)
- 格式:docx
- 大小:193.07 KB
- 文档页数:9
第十三章轴对称13. 4课题学习最短路径问题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A2.直线l是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是lA.B.C.D.【答案】D【解析】本题的依据就是两点之间线段最短.首先作点P关于直线l的对称点P′,连接P′Q就是最短的路程.故选D.学&科网3.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是A.4 B.5C.6 D.7【答案】A二、填空题:请将答案填在题中横线上.4.已知,如图△ABC为等边三角形,高AH=10 cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为__________cm.【答案】10学&科网【解析】如图,连接PC,∵△ABC为等边三角形,D为AB的中点,∴CD⊥AB,∴CD=AH=10 cm.∵AH⊥BC,∴PB=PC,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10 cm.故答案为:10.学&科网5.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为__________.【答案】8三、解答题:解答应写出文字说明、证明过程或演算步骤.6.要在燃气管道L上修建一个泵站P,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?在图上画出P 点位置,不写作法,保留痕迹.【解析】如图,作点A 关于燃气管道L 的对称点A ′,连接A ′B 交L 于点P ,即点P 即为所求.7.如图所示的方格纸中,每个小方格的边长都是1,点(41)A -,,(33)B -,,(12)C -,. (1)作ABC △关于y 轴对称的A'B'C'△;(2)在x 轴上找出点P ,使PA PC +最小,并直接写出点P 的坐标.。
13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。
第05讲最短路径课程标准学习目标①最短路径的基本原理②最短路径的基本模型 1.掌握最短路径的基本原理,即两点之间线段最短,点到直线的距离最短。
2.掌握最短路径的几种模型,能够熟练的运用轴对称,垂直平分线的性质解决相应题目。
知识点01最短路径的基本原理1.最短路径的基本原理:①两点之间,线段最短。
如图,②号线最短②点到直线的距离最短。
如图,PC最短。
③垂直平分线上任意一点到线段两端点的距离相等。
如图,MN是垂直平分线,CA=CB。
知识点02最短路径的基本类型1——直线上一点到同侧两点的距离之和最短1.如图,存在直线l以及直线外的点P和点Q,直线l上存在一点M,使得MP+MQ的值最小:方法点拨:作其中一点关于直线的对称点,连接对称点与另一点,线段与直线的交点即为要找的点M。
解:如图,作点P关于直线l的对称点p’。
连接P’Q,P’Q与直线l交于点M,则此时MP+MQ最小。
证明:∵P与P’关于直线l对称∴直线l是PP’的垂直平分线∴MP=MP’∴MP+MQ=MP’+MQ=P’Q。
∴MP+MQ此时有最小值,为P’Q的长度题型考点:①基本作图。
②求值计算。
【即学即练1】1.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点【解答】解:如图,点M′是点M关于直线l的对称点,连接M′N,则M′N与直线l的交点,即为点P,此时PM+PN最短,∵M′N与直线l交于点C,∴点P应选C点.故选:C.【即学即练2】2.如图,在等边△ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,EB+EF存在最小值,则这个最小值是()A.5B.6C.7D.8【解答】解:如图,连接CE,∵等边△ABC中,AD是BC边上的中线,∴AD是BC边上的高线,即AD垂直平分BC,∴EB=EC,∴BE+EF=CE+EF,∴当C、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,即EF+BE的最小值为6.故选:B.知识点03最短路径基本类型——角内一点与角两边构成的三角形周长最短1.如图,已知∠MON 以及角内一点P ,角的两边OM 与ON 上存在点A 与点B ,使得△PAB 的周长最小:方法点拨:分别作点P 关于OM 与ON 的对称点P ’与P ’’,连接P ’P ’’。
课时目标1.能利用轴对称和平移解决简单的最短路径问题,培养学生从实际问题抽象出熟悉模型的能力,增强应用意识.2.体会图形的变换在解决最值问题中的作用,培养学生几何直观和模型观念.3.通过解决问题感悟转化思想,进一步获得数学活动的经验,增强数学的应用意识.学习重点1.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.2.利用轴对称和平移将造桥选址问题转化为“两点之间,线段最短”问题.学习难点最短路径问题的解决思路及证明方法.课时活动设计情境引入1.如图,连接A,B两点的所有线中,哪条最短?为什么?解:②最短,因为两点之间,线段最短.2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?解:PC最短,因为垂线段最短.3.以前还学习过哪些有关线段大小的结论?解:三角形三边关系:两边之和大于第三边;斜边大于直角边.4.如图,如何做点A关于直线l的对称点?解:过点A作直线l的垂线,交直线l于点O,延长AO到点A',使AO=A'O.设计意图:通过四个问题的设计回顾,为解决最短路径问题提供理论依据,培养学生运用定理的意识和在实际问题中发现数学问题的能力,培养学生的几何直观和空间观念.新知探究利用轴对称解决最短路径问题探究1“饮马问题”.问题:如图,牧马人从A地出发,到一条笔直的河流l边饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?分析:即把A,B两地抽象为两点,将河流l抽象成为一条直线,在直线l上找一点C,使AC+BC最短.学生讨论并回答,师生共同总结得出,可以转化为两点在直线异侧的问题.追问1:能否通过图形变换(轴对称和平移)将点B“移”到l的另一侧B'处,满足直线l上的任意一点C,都保持CB与CB'的长度相等?作法:(1)作点B关于直线l的对称点B';(2)连接AB',与直线l相交于点C.则点C即为所求.追问2:如何证明这条路径最短?证明:如图,在直线l上任取一点C'(与点C不重合),连接AC',BC',B'C'.由轴对称的性质知,BC=B'C,BC'=B'C'.∴AC+BC=AC+B'C=AB',AC'+BC'=AC'+B'C'.在△AB'C'中,AB'<AC'+B'C',∴AC+BC<AC'+BC'.即AC+BC最短.探究2“造桥选址问题”.问题:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥建在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)分析:把河的两岸看成两条平行线a和b,N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,把问题转化为:当点N在直线b的什么位置时,AM+MN+NB最小.学生讨论并回答,师生共同归纳.追问1:能否通过将AM沿着与河岸垂直的方向平移,点M移动到点N,点A移动到点A',使A'N+NB最小?作法:(1)将AM沿着与河岸垂直的方向平移,点M移动到点N,点A移动到点A';(2)连接A'B ,点N 即为所求.追问2:如何证明点N 即为所求?小组合作交流,教师找学生展示答案.分析:如图,在直线b 上任意取一点N',过点N'作N'M'垂直于a ,垂足为M',连接AM',A'N',N'B.同“饮马问题”可证,AM +MN +AM'<AM'+A'N'+N'B.解:如图,在路径A →M →N →B 的左侧和右侧各任意作一条路径,即A →M 1→N 1→B 和A →M 2→N 2→B ,AM +MN +NB =BC +AC ,则AM 1+M 1N 1+N 1B =N 1C +N 1B +AC >BC +AC ,AM 2+M 2N 2+N 2B =N 2C +N 2B +AC >BC +AC.所以A →M →N →B 是最短路径.设计意图:通过问题层层递进,培养学生分析问题和解决问题的能力;培养学生用数学眼光看世界的能力,和用文字语言、图形语言、符号语言三种语言表达问题的能力以及三种语言的相互转化能力,培养学生严密的数学思维和严谨的科学态度.典例精讲例1(1)如图1,在AB 直线一侧C ,D 两点,在AB 上找一点P ,使C ,D ,P 三点组成的三角形的周长最短.说明理由.(2)如图2,在∠AOB 内部有一点P ,是否在OA ,OB 上分别存在点E ,F ,使得E ,F ,P 三点组成的三角形的周长最短,找出E ,F 两点.(3)如图3,在∠AOB 内部有两点M ,N ,是否在OA ,OB 上分别存在点E ,F ,使得E ,F ,M ,N ,四点组成的四边形的周长最短,找出E ,F 两点.解:(1)如图1,作C关于直线AB的对称点C',连接C'D交AB于点P.则点P就是所求作的点.理由如下:因为C和C'关于直线对称,所以PC=PC'.因为CD长度不变,所以DP+CP最短时,C,D,P三点组成的三角形的周长最短.因为两点之间线段最短,所以点P就是所求作的点.(2)如图2,作P关于OA的对称点P',关于OB的对称点P″,连接P'P″,交OA于点E,OB于点F,则点E,F就是所求作的点.(3)如图3,作M关于OA的对称点M',作N关于OB的对称点M″,连接M'M″,交OA于点E,OB于点F,则点E,F就是所求作的点.例2如图,荆州古城河在CC'处直角转弯,河宽相同,从A处到B处,须经两座桥DD',EE'(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD',E'EB的路程最短?解:如图,将A点向F平移得到点F,B点向右平移得到点G.连接GF,与河岸相交于点E',D'.作DD',EE'即为桥.理由:由作图法可知,AF∥DD',AF=DD',则四边形AFD'D为平行四边形,于是AD=FD',同理,BE=GE',由两点之间线段最短可知,GF最小.设计意图:通过题目巩固所学知识,总结解决最短路径问题的方法:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而做出最短路径的选择.增强学生应用意识和创新能力.巩固训练1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是(D)2.有两棵树位置如图,树的底部分别为A,B,地上有一只昆虫沿着A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处.问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.解:如图所示.3.如图,A和B两地在一条河的两岸,现要在河上建一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)解:如图所示.设计意图:通过练习,巩固所学知识,提高学生分析问题和解决问题的能力.课堂小结1.谈谈今天的收获.2.教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)怎样解决最短路径问题?(3)本节课你学到了哪些研究问题的方法?设计意图:通过小结,使学生梳理本节课所学内容和研究方法,把握本节课的核心内容,引导学生从知识内容和学习过程两个方面总结自己的收获,掌握几何直观和模型观念,提升知识转化和迁移能力.课堂8分钟.1.教材第93页复习题13第15题.2.七彩作业.教学反思。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题10 最短路径问题1.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为 .【答案】120°【解析】考点有轴对称(最短路线问题),三角形三边关系,三角形外角性质,等腰三角形的性质。
根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值。
13.4课题学习:最短路径问题夯实基础篇一、单选题:1.直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A.B.C.D.【答案】D【知识点】轴对称的应用-最短距离问题【解析】【解答】作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.2.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】作点M关于直线l的对称点M′,再连接M′N交l于点Q,则MQ+NQ=M′Q+NQ=M′N,由“两点之间,线段最短”,可知点Q即为所求.故答案为:C【分析】先作点M关于l的对称点M′,连接M′N交l于点Q,即可.3.如图,在等腰△AB C中,AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB,AD上的动点,则MN+BN的最小值是()C.4.5D.6A.3B.【答案】A【知识点】角平分线的性质;等腰三角形的性质;含30°角的直角三角形;轴对称的应用-最短距离问题【解析】【解答】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,AD⊥BC于D,∴∠ABC=∠C,AD是∠BAC 的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵∠ABC=∠C,∠ACB=75°,∴∠BAC=30°,∵BH⊥AC,∴BH=12AB=3.故答案为:A【分析】根据等腰三角形的三线合一,得到AD是∠BAC的平分线,由角平分线的性质可知,角平分线上的点到角两边的距离相等,得到BH是点B到直线AC的最短距离,再由三角形内角和定理得到∠BAC=30°,根据在直角三角形中,30度角所对的边是斜边的一半,求出MN+BN的最小值.4.如图:△AB C中, ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P在 ABC 的平分线BD上运动,则PE+PC的长度最小值为()A.1B.2C.3D.4【答案】B【知识点】三角形的角平分线、中线和高;轴对称的应用-最短距离问题【解析】【解答】作点E关于BD的对称点E',连接E'C,如下图:∵BD是∠ABC的平分线,∴通过作图知,BP垂直平分EE',∴PE'=PE∴此时PE+PC=PE'+PC=E'C,PE+PC的长度最小,∵点E、点E'关于BD的对称,∴BE'=BE=2,又∵AB=4,∴点E'是A B中点,CE'是中线.∵△AB C中,∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∠ABC=45 ,∴CE'又是底边AB的高,∴△BE'C也是等腰直角三角形,∴E'C=2,即:PE+PC的长度最小值为2.故选B.【分析】此题考查最短路径问题,利用轴对称,作点E关于BD的对称点E',连接E'C,可知此时PE+PC的长度最小,PE+PC=PE'+PC=E'C.再根据作图和等腰直角三角形性质求出E'C的长即可.5.如图,在锐角△AB C中,AB=AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.245C.5D.6【答案】C【知识点】等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,∵AD 是∠BAC 的平分线,AB =AC ,∴点B 关于AD 的对称点为点C ,过点C 作CN ⊥AB 于N 交AD 于M ,由轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,∵AB =10,S △ABC =25,∴12×10•CN =25,解得CN =5,即BM +MN 的最小值是5.故答案为:C.【分析】根据AD 是∠BAC 的平分线,AB =AC 可得出确定出点B 关于AD 的对称点为点C ,根据垂线段最短,过点C 作CN ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,利用三角形的面积求出CN ,从而得解.6.如图,等边ABC 中,D 为A C 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ,3QD ,在BD 上有一动点E ,则PE QE 的最小值为()A .7B .8C .10D .12【答案】C【知识点】等边三角形的判定与性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,ABC ∵是等边三角形,BA BC ,∵D 为A C 中点,∴BD AC ,∵4AQ ,3QD ,7AD DC AQ QD ,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE +QE 的值最小,最小值PE +QE =PE +EQ '=PQ ',4AQ ∵,7AD DC ,3QD DQ ,4CQ BP ,10AP AQ ,60A ∵,APQ 是等边三角形,10PQ PA ,∴PE +QE 的最小值为10.故答案为:C.【分析】作点Q关于BD的对称点Q',连接PQ'交BD于E,连接QE,此时PE+QE 的值最小,最小值PE+QE=PE+EQ'=PQ',进而判断△APQ'是等边三角形,即可解决问题.7.如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.7.5B.8.5C.10.5D.13.5【答案】D【知识点】三角形的面积;线段垂直平分线的性质;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,连接AM、AD∵EF垂直平分线段AC∴CM=AM∴CM+MD=AM+MD≥AD即当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长∵△CMD的周长=CM+MD+CD=AM+MD+AD∴△CMD的周长的最小值为AD+CD ∵D为BC的中点,AB=AC∴1 1.52CD BC,AD⊥BC∴13182ABCS AD∴AD=12∴AD+CD=12+1.5=13.5即△CDM周长的最小值为13.5故答案为:D.【分析】连接AM、AD,由线段垂直平分线的性质可得CM=AM,当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长;根据等腰三角形三线合一的性质可得1 1.52CD BC,AD⊥BC,利用△ABC的面积可求出AD的长,从而求出此时△CDM的周长即可.二、填空题:8.如图的4×4的正方形网格中,有A,B,C,D四点,直线a上求一点P,使PA+PB 最短,则点P应选点(C或D).【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,∵A ′B 与直线a 交于点C ,∴点P 应选C 点.故答案为:C.【分析】点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,据此即得结论.9.如图,在ABC 中,3,4,,AB AC AB AC EF 垂直平分BC ,点P 为直线EF 上一动点,则ABP 周长的最小值是.【答案】7【知识点】轴对称的应用-最短距离问题【解析】【解答】解:∵EF 垂直平分BC ,∴B ,C 关于直线EF 对称.设AC 交EF 于点D ,∴当P 和D 重合时,AP BP 的值最小,最小值等于AC 的长,∴ABP 周长的最小值是437 .【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP 的最小值,求出AC长度即可得到结论.中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上10.如图,在ABC的任一点,则ABP周长的最小值是.【答案】10【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,连接PC,∵,4AB,AB PA PB PA PB的周长为4ABP要使ABP的周长最小,则需PA PB的值最小,∵垂直平分BC,EF,PC PBPA PB PA PC ,由两点之间线段最短可知,当点,,A P C 共线,即点P 在AC 边上时,PA PC 取得最小值,最小值为AC ,即PA PB 的最小值为6AC ,则ABP 周长的最小值是4610 .故答案为:10.【分析】如图,连接PC ,先把ABP 的周长表示出来为4+PA +PB ,接着根据垂直平分线性质得到PB =PC ,故只需PA +PC 最小△ABP 周长才最小,由两点之间线段最短得出P 点在AC 上时最小,此时PA +PC =AC =6,从而即可得出答案.11.如图,在△AB C 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.【答案】9.6【知识点】三角形的面积;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S△ABC12BC•AD12AC•BQ,∴BQ12810BC ADAC9.6.故答案为:9.6.【分析】根据等腰三角形的三线合一得出AD垂直平分BC,根据垂直平分线上的点到线段两个端点的距离相等得出BP=CP,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,然后根据三角形的面积法,得出BC•AD =AC•BQ,根据等积式即可求出BQ的长.三、作图题:12.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写做法)【答案】解:答图如图所示,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,P M N P.或P N M P【知识点】轴对称的应用-最短距离问题【解析】【分析】分别作P点关于AB,AC的对称点,连接这两个对称点交AB于点M,交AC于点N,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,或P N M P.P M N P13.如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M, 使△PQM的周长最小。
第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。