(完整版)简谐振动练习题(含详解)
- 格式:doc
- 大小:113.71 KB
- 文档页数:8
机械波试题(含答案)一、机械波选择题1.由波源S形成的简谐横波在均匀介质中向左、右传播.波源振动的频率为20Hz,波速为16m/s.已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为15. 8 m,14.6m.P、Q开始振动后,下列判断正确的是( )A.P、Q两质点运动的方向始终相同B.P 、Q两质点运动的方向始终相反C.当S恰好通过平衡位置时,P、Q两点也正好通过平衡位置D.当S恰好通过平衡位置向上运动时,P在波峰E.当S恰好通过平衡位置向下运动时,Q在波峰2.如图所示分别为一列横波在某一时刻的图像和在x=6m 处的质点从该时刻开始计时的振动图像,则这列波()A.沿x 轴的正方向传播,波速为2.5m/sB.沿x 轴的负方向传播,波速为2.5m/sC.沿x 轴的正方向传播,波速为100m/sD.沿x轴的负方向传播,波速为100m/s3.一列简谐横波沿x轴正方向传播,频率为5Hz,某时刻的波形如图所示,介质中质点A 在距原点8cm处,质点B在距原点16cm处,从图象对应时刻算起,质点A的运动状态与图示时刻质点B的运动状态相同需要的最短时间为()A.0.08s B.0.12s C.0.14s D.0.16s4.如图所示,实线是沿x轴传播的一列简谐横波在t="=" 0时刻的波形图,虚线是这列波在t="=" 0.2 s时刻的波形图.已知该波的波速是0.8 m/s ,则下列说法正确的是A.这列波的波长是14 ㎝B.这列波的周期是0.125 sC.这列波可能是沿x轴正方向传播的D .t =0时,x = 4 ㎝处的质点速度沿y 轴负方向 5.利用发波水槽得到的水面波形如图所示,则( )A .图a 、b 均显示了波的干涉现象B .图a 、b 均显示了波的衍射现象C .图a 显示了波的干涉现象,图b 显示了波的衍射现象D .图a 显示了波的衍射现象,图b 显示了波的干涉现象6.如图所示,某一均匀介质中有两列简谐横波A 和B 同时沿x 轴正方向传播了足够长的时间,在t =0时刻两列波的波峰正好在12m x =处重合,平衡位置正好在216m x =处重合,则下列说法中正确的是( )A .横波A 的波速比横波B 的波速小 B .两列波的频率之比为A B :11:7f f =C .在0x >的区间,t =0时刻两列波另一波峰重合处的最近坐标为(586),D .2m x =处质点的振动始终加强7.一根长20m 的软绳拉直后放置在光滑水平地板上,以绳中点为坐标原点,以绳上各质点的平衡位置为x 轴建立图示坐标系。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
质 点 运 动 学一.选择题:1、质点作匀速圆周运动,其半径为R ,从A 点出发,经过半圆周到达B 点,则在下列各 表达式中,不正确的是 (A )(A )速度增量 0=∆v ,速率增量 0=∆v ; (B )速度增量 j v v 2-=∆,速率增量 0=∆v ; (C )位移大小 R r 2||=∆ ,路程 R s π=; (D )位移 i R r 2-=∆,路程 R s π=。
2、质点在平面上运动,已知质点位置矢量的表达式为j bt i at r 22+=(其中a 、b 为常量)则该质点作 ( D )(A )匀速直线运动; (B )一般曲线运动; (C )抛物线运动; (D )变速直线运动。
3、质点作曲线运动,r 表示位置矢量,s 表示路程,v 表示速度, a 表示加速度。
下列表达式中, 正确的表达式为 ( B )(A )r r ∆=∆|| ; (B) υ==dt s d dt r d ; (C ) a dtd =υ; (D )υυd d =|| 。
4、一个质点在做圆周运动时,则有 ( B )(A )切向加速度一定改变,法向加速度也改变;(B )切向加速度可能不变,法向加速度一定改变;(C )切向加速度可能不变,法向加速度不变;(D )切向加速度一定改变,法向加速度不变。
5、质点作匀变速圆周运动,则:( C )(A )角速度不变; (B )线速度不变; (C )角加速度不变; (D )总加速度大小不变。
二.填空题:1、已知质点的运动方程为x = 2 t -4 t 2(SI ),则质点在第一秒内的平均速度 =v -2 m/s ; 第一秒末的加速度大小 a = -8 m/s 2 ;第一秒内走过的路程 S = 2.5 m 。
2、xoy 平面内有一运动的质点,其运动方程为 j t i t r 5sin 105cos 10+=(SI ),则t 时刻其速度=v j t i t 5cos 505sin 50+- ;其切向加速度的大小a t = 0 ;该质点运动的轨迹是 圆 。
精选受力分析练习题35道(含答案及详解)1.如右图1所示,物体M 在竖直向上的拉力F 作用下静止在斜面上,关于M 受力的个数,下列说法中正确的是(D )A .M 一定是受两个力作用B .M 一定是受四个力作用C .M 可能受三个力作用D .M 不是受两个力作用就是受四个力作用2.(多选)如图6所示,两个相似的斜面体A 、B 在竖直向上的力F 的作用下静止靠在竖直粗糙墙壁上。
关于斜面体A 和B 的受力情况,下列说法正确的是(AD)图6A .A 一定受到四个力B .B 可能受到四个力C .B 与墙壁之间一定有弹力和摩擦力D .A 与B 之间一定有摩擦力3、如图3所示,物体A 、B 、C 叠放在水平桌面上,水平力F 作用于C 物体,使A 、B 、C 以共同速度向右匀速运动,那么关于物体受几个力的说法正确的是 ( A )A .A 受6个,B 受2个,C 受4个 B .A 受5个,B 受3个,C 受3个 C .A 受5个,B 受2个,C 受4个D .A 受6个,B 受3个,C 受4个4。
(多选)如图5所示,固定的斜面上叠放着A 、B 两木块,木块A 与B 的接触面是水平的,水平力F 作用于木块A ,使木块A 、B 保持静止,且F ≠0。
则下列描述正确的是(ABD)图5A .B 可能受到5个或4个力作用B .斜面对木块B 的摩擦力方向可能沿斜面向下C .A 对B 的摩擦力可能为0图 1图3D .A 、B 整体可能受三个力作用5、如右图5所示,斜面小车M 静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m ,且M 、m 相对静止,小车后来受力个数为( B ) A .3 B .4C .5 D .6解读: 对M 和m 整体,它们必受到重力和地面支持力.对小车因小车静止,由平衡条件知墙面对小车必无作用力,以小车为研究对象.如右图所示,它受四个力;重力M g ,地面的支持力F N1,m 对它的压力F N2和静摩擦力Ff ,由于m 静止,可知F f 和F N2的合力必竖直向下,故B 项正确.6、如图6所示,固定斜面上有一光滑小球,有一竖直轻弹簧P 与一平行斜面的轻弹簧Q 连接着,小球处于静止状态,则关于小球所受力的个数不可能的是( A ) A .1 B .2 C .3D .47、如图7所示,在竖直向上的恒力F 作用下,物体A 、B 一起向上做匀加速运动。
简谐运动练习题一、基础题1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时Oy/mQx/mPNA.质元Q和质元N均处于加速运动过程中B.质元Q和质元N均处于减速运动过程中C.质元Q处于加速运动过程中,质元N处于减速运动过程中D.质元Q处于减速运动过程中,质元N处于加速运动过程中2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则A.当平台振动到最高点时,物体对平台的正压力最大B.当平台振动到最低点时,物体对平台的正压力最大C.当平台振动经过平衡位置时,物体对平台的正压力为零D.物体在上下振动的过程中,物体的机械能保持守恒4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知A.这列波的周期是0.2 sB.质点P、Q此时刻的运动方向都沿y轴正方向C.质点P、R在任意时刻的位移都相同D.质点P、S在任意时刻的速度都相同5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中A.振子所受回复力逐渐减小 B.振子位移逐渐减小C.振子速度逐渐减小 D.振子加速度逐渐减小6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是F F F F和B 一起在光滑水平面上做简谐运动,如图所示.振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为A C D .././().kxB mkx M mkx m M 08.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻A .振子所受的弹力大小为5N,方向指向x 轴的正方向B .振子的速度方向指向x 轴的正方向C .在0~4s 内振子作了1.75次全振动D .在0~4s 内振子通过的路程为0.35cm,位移为0二、提高题14、15、19题提高题10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动.O 点为原点,取向左为正,振子的位移x 随时间t 的变化如图乙所示,则由图可知A. t =0.2s 时,振子在O 点右侧6cm 处B. t =1.4s 时,振子的速度方向向右C. t =0.4s 和t =1.2s 时,振子的加速度相同D. t =0.4s 到t =0.8s 的时间内,振子的速度逐渐增大11.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m 、带电量为+q 的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E 后如图所示,小球开始作简谐运动,关于小球运动有如下说法中正确的是A、球的速度为零时,弹簧伸长qE/kB、球做简谐运动的振幅为qE/kC、运动过程中,小球的机械能守恒D、运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零12.一列沿x轴传播的简谐横波在某时刻波的图象如图所示,已知波速为20 m/s,图示时刻x=2.0m处的质点振动速度方向沿y轴负方向,可以判断A.质点振动的周期为0.20s B.质点振动的振幅为1.6cmC.波沿x轴的正方向传播 D.图示时刻,x=1.5m处的质点加速度沿y 轴正方向13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O,在A、B间振动,如图所示,下列结论正确的是.A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从A经O到B的过程中,回复力一直做负功14.如图所示,物体 A置于物体 B上,一轻质弹簧一端固定,另一端与 B相连,在弹性限度范围内,A和 B一起在光滑水平面上作往复运动不计空气阻力,均保持相对静止. 则下列说法正确的是A.A和 B均作简谐运动B.作用在 A上的静摩擦力大小与弹簧的形变量成正比C.B对 A的静摩擦力对 A做功,而 A对 B的静摩擦力对 B不做功D.B对 A的静摩擦力始终对A做正功,而 A对 B的静摩擦力始终对 B做负功15.如图所示,一轻质弹簧一端固定在墙上的O点,另一端可自由伸长到B点.今使一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小物体能在水平面上运动到C 点静止,已知AC=L;若将小物体系在弹簧上,在A点由静止释放,则小物体将做阻尼振动直到最后静止,设小物体通过的总路程为s,则下列说法中可能的是A.s>LB.s=LC.s<LD.无法判断.16.如图所示,两木块A 和B 叠放在光滑水平面上,质量分别为m 和M ,A 与B 之间的最大静摩擦力为f ,B 与劲度系数为k 的轻质弹簧连接构成弹簧振子.为使A 和B 在振动过程中不发生相对滑动,则它们的振幅不能大于 ,它们的最大加速度不能大于17.弹簧振子从距离平衡位置5 cm 处由静止释放,4 s 内完成5次全振动,则这个弹簧振子的振幅为_____________cm,振动周期为_____________s,频率为_____________Hz,4 s 末振子的位移大小为_____________cm,4 s 内振子运动的路程为_____________cm,若其他条件都不变,只是使振子改为在距平衡位置 2.5 cm 处由静止释放,该振子的周期为_______s.18.如图所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s,过B 点后再经过1s,小球再一次通过B 点,小球在2s 内通过的路程为6cm,N 点为小球下落的最低点,则小球在做简谐运动的过程中:1周期为___;2振幅为__ ;3小球由M 点下落到N 点的过程中,动能EK 、重力势能EP 、弹性势能EP ’的变化为__;4小球在最低点N 点的加速度大小__重力加速度g 填>、=、<.19.如图所示,质量为m 的木块放在弹簧上,与弹簧一起在竖直方向上做简谐运动.当振幅为A 时,物体对弹簧的最大压力是物体重力的1.5倍,则: ①物体对弹簧的最小弹力是多大②要使物体在振动中不离开弹簧,振幅不能超过多大mAO BNB C O参考答案1.D解析试题分析:因为质元P 处于加速过程,所以质元P 向平衡位置运动,由此可知波沿x 轴负方向运动,所以质元Q 沿y 轴正方向运动,远离平衡位置,速度减小,质元N 沿y 轴正方向运动,靠近平衡位置,速度增大,故选项ABC 错误D 正确.考点:波的传播;简谐运动中质点的振动.2. B解析试题分析: 简谐运动的质点,先后以同样大小的速度通过A 、B 两点,则可判定这两点关于平衡位置O 点对称,所以质点由A 到O 时间与由O 到B 的时间相等,那么平衡位置O 到B 点的时间t 1=0.5s,因过B 点后再经过t=1s 质点以方向相反、大小相同的速度再次通过B 点,则有从B 点到最大位置的时间t 2=0.5s,故从平衡位置O 到最大位置的时间是1s,故周期是T=4s ;质点通过路程12cm 所用时间为2s,是周期的一半,所以路程是振幅的2倍,故振幅A=12/2cm=6cm,故选B.考点: 简谐运动的周期和振幅3.B解析本题考查的是简谐振动的相关问题,当平台振动到最低点时,物体对平台的正压力最大,B 正确;当平台振动经过平衡位置时,物体对平台的正压力为物体的重力,C 错误;物体在上下振动的过程中,物体的机械能不守恒,除了重力做功还有平台对物体做功;D 错误;4.ABD解析这列波的波长为4m,所以波的周期为==0.2s v T λ,A 正确.因为波沿x 轴正方向传播,所以P 点此时向上运动, Q 点此时向上振动,所以B 正确.只有相隔nT 周期的两个质点的位移,速度在任意时刻都相等,,所以C 错误,D 正确.5.AD解析在振子向平衡位置运动的过程中,弹簧的形变量变小,所以所受回复力逐渐减小,加速度逐渐减小,AD 对;振子相对平衡位置的位移逐渐减小,B 错;振子速度逐渐增大,C 错.6.B解析物体做简谐运动时kx F -=,所以选B.答案C解析木块A 作简谐运动时,由题意和牛顿第二定律可得:F ma =<>1将木块A 和振子B 一起为研究对象,它们作简谐运动的回复力为弹簧的弹力所提供,应有 ()kx m M a=+<>2 由<1>式和<2>式可得:F kxm m M =+/()8.C解析机械能增大,C 正确;简谐振动的周期与振幅无关,D 错误.故选C.考点:简谐振动9.B解析试题分析:由图可知A 在t 轴上方,位移x=0.25cm,所以弹力5F kx N =-=-,即弹力大小为5N,方向指向x 轴负方向,故A 错误;由图可知过A 点作图线的切线,该切线与x 轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x 轴的正方向,故B 正确;由图可看出,0t =、4t s =时刻振子的位移都是最大,且都在t 轴的上方,在0~4s 内经过两个周期,振子完成两次全振动,故C 错误;由于0t =时刻和4t s =时刻振子都在最大位移处,所以在0~4s 内振子的位移为零,又由于振幅为0.5cm,在0~4s 内振子完成了2次全振动,所以在这段时间内振子通过的路程为240.504cm cm ⨯⨯=,故D 错误.考点:简谐运动的振动图象.10.D解析试题分析:0.2t s =时,振子在O 点左侧;故A 错误;1.4s 时,振子在O 点右方正向平衡位置移动,故速度方向向左;故B 错误;0.4s 和1.2s 时振子分别到达正向和反向最大位置处,加速度大小相等,但方向相反;故C 错误;0.4s 到0.8s 内振子在向平衡位置移动,故振子的速度在增大;故D 正确;考点:考查了简谐运动的振幅、周期和频率;11.BD解析试题分析:球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B 正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确.考点:动能定理及简谐振动.12.A解析试题分析:由图可知,该波的波长为 4.0m,又因为波速为20 m/s,故质点的振动周期为T=sm m v /200.4=λ=0.2s,故A 是正确的;观察图可知质点振动的振幅为0.8cm,即振幅是指质点偏离平衡位置的最大距离,故B 不对;由于x =2.0m 处的质点振动速度方向沿y 轴负方向,故波沿x 轴的负方向传播,C 也不对;图示时刻,x =1.5m 处的质点在x 轴上方,故它受到指向x 轴的力,即加速度的方向也是指向x 轴方向的,也就是沿y 轴的负方向,故D 是不对的. 考点:波与振动.13.A解析小球在平衡位置时动能最大,加速度为零,因此A 选项正确.小球靠近平衡位置时,回复力做正功;远离平衡位置时,回复力做负功.振动过程中总能量不变,因此B 、C 、D 选项不正确.14. AB解析试题分析: A 和B-起在光滑水平面上做往复运动,回复力F=-kx,故都做简谐运动.故A 正确;设弹簧的形变量为x,弹簧的劲度系数为k,A 、B 的质量分别为M 和m,根据牛顿第二定律得到整体的加速度为m M kx a +=,对A :可见,作用在A 上的静摩擦力大小F f 与弹簧的形变量x 成正比.故B 正确;在简谐运动过程中,B 对A 的静摩擦力与位移方向相同或相反,B 对A 的静摩擦力对A 做功,同理,A 对B 的静摩擦力对B 也做功.故C 错误;当AB 离开平衡位置时,B 对A 的静摩擦力做负功,A 对B 的静摩擦力做正功,当AB 靠近平衡位置时,B 对A 的静摩擦力做正功,A 对B 的静摩擦力做负功.故D 错误.考点: 简谐运动15.BC解析分析:根据功能关系分析:第一次:物体运动到B 处时弹簧的弹性势能全部转化为物体的动能,物体的动能又全部转化为内能.第二次:若弹簧的自由端可能恰好停在B 处,也可能不停在B 处,根据功能关系分析物体运动的总路程L 与s 的关系.解答:解:设弹簧释放前具有 的弹性势能为E P ,物体所受的摩擦力大小为f .第一次:弹簧自由端最终停在B 处,弹簧的弹性势能全部转化为内能,即E P =fs ;第二次:若最终物体恰好停在B 处时,弹簧的弹性势能恰好全部转化为内能,即有fL=E P ,得到L=s ;若物体最终没有停在B 处,弹簧还有弹性势能,则fL <E P ,得到L <s .故选BC点评:本题根据功能关系分析物体运动的路程,此题中涉及三种形式的能:弹性势能、动能和内能,分析最终弹簧是否具有弹性势能是关键.16.kmf m M )(+ m f 解析试题分析:A 和B 在振动过程中恰好不发生相对滑动时,AB 间静摩擦力达到最大,此时振幅最大.先以A 为研究对象,根据牛顿第二定律求出加速度,再对整体研究,根据牛顿第二定律和胡克定律求出振幅.当A 和B 在振动过程中恰好不发生相对滑动时,AB 间静摩擦力达到最大.根据牛顿第二定律得:以A 为研究对象:a=m f 以整体为研究对象:kA=M+ma,联立两式得,A=kmf m M )(+ 点评:本题运用牛顿第二定律研究简谐运动,既要能灵活选择研究对象,又要掌握简谐运动的特点.基础题.17.5 0.8 1.25 5 100 0.8解析根据题意,振子从距平衡位置5 cm 处由静止开始释放,说明弹簧振子在振动过程中离开平衡位置的最大距离是5 cm,即振幅为5 cm,由题设条件可知,振子在4 s 内完成5次全振动,则完成一次全振动的时间为0.8 s,即T=0.8 s,又因为f=T1,可得频率为1.25 Hz.4 s 内完成5次全振动,也就是说振子又回原来的初始点,因而振子的位移大小为 5 cm,振子一次全振动的路程为20 cm,所以5次全振动的路程为100 cm,由于弹簧振子的周期是由弹簧的劲度系数和振子质量决定,其固有周期与振幅大小无关,所以从距平衡位置2.5 cm 处由静止释放,不会改变周期的大小,周期仍为0.8 s.18.4s ;3cm ;EK 先增大后减小,EP 减少,EP’ 增加;=.解析1小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,tAO=tBO=0.5s, tBN = tNB =0.5s,所以tON =tOB +tBN =1s,因此小球做简谐运动的周期T =4tON=4s.2小球从A经B到N再返回B所经过的路程,与小球从B经A到M再返回A所经过的路程相等.因此小球在一个周期内所通过的路程是12cm,振幅为3cm.3小球由M点下落到N点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小.4M点为小球的振幅位置,在该点小球只受重力的作用,加速度为g,方向竖直向下,由空间对称性可知,在另一个振幅位置N点小球的加速度大小为g,方向竖直向上.19.0.5mg, 2A解析试题分析:1当振幅为A时,物体对弹簧的最大压力是物体重力的1.5倍,此刻应该是在最低处,根据受力分析知道,此刻受力为弹力、重力,方向向上.此刻合外力谐振动的特点,在最高点的加速度应为0.5g,方向向下.所以所以F=0.5mg,且为支持力.2要使物体不能离开弹簧,则在最高点弹力为零,加速度为g,方向向下,根据对称性,在最低处的加速度也为g,方向向上,此刻弹力为kx=2mg,此刻合外力为F=mg,因此此刻的振幅为2A.考点:简谐振动点评:本题通过简谐振动的对称性,求出最低处、最高处的加速度,通过对称性分析出最大或最小弹力位置.通过对称性解决问题.。
2020-2021学年度人教版(2019)选择性必修第一册2.2简谐运动的描述同步训练4(含解析)1.弹簧振子做简谐运动,振幅为0.4cm ,周期为0.5s ,计时开始时具有正向最大加速度,则它的位移公式是( ) A .3810sin 4m 2x t ππ-⎛⎫=⨯+⎪⎝⎭ B .3410sin 4m 2x t ππ-⎛⎫=⨯-⎪⎝⎭C .3810sin 2m 2x t ππ-⎛⎫=⨯+⎪⎝⎭ D .3410sin 2m 2x t ππ-⎛⎫=⨯-⎪⎝⎭2.一质点做简谐运动,其位移x 与时间t 的关系图象如图所示,由图可知A .质点振动的频率是4Hz ,振幅是2cmB .0~3s 内,质点通过的路程为6cmC .1s 末质点运动速度为0D .t =3s 时,质点的振幅为零3.一弹簧振子做简谐运动,周期为T ( )A .若t 和(t +△t )时刻振子运动速度的大小相等、方向相同,则△t 一定是2T的整数倍B .若t 和(t +△t )时刻振子运动位移的大小相等、方向相反,则△t 一定是2T的整数倍C .若△t =T ,则t 和(t +△t )时刻振子运动的加速度一定相等D .若△t =2T,则t 和(t +△t )时刻弹簧的长度一定相等 4.某质点做简谐运动,其位移随时间变化的关系式为π8sin2x t =(cm),则A.质点的振幅为16cmB.质点的振动周期为2sC.在0~1s内,质点的速度逐渐减小D.在1~2s内,质点的动能逐渐减小5.下列说法正确的是()A.物体完成一次全振动,通过的位移是4个振幅B.物体在14个周期内,通过的路程是1个振幅C.物体在1个周期内,通过的路程是4个振幅D.物体在34个周期内,通过的路程是3个振幅6.如图甲所示,一水平弹簧振子在A、B两点之间做简谐运动,O点为平衡位置,取水平向右为正方向,其振动图象如图乙所示.由振动图象可知()A.1t时刻振子位于O点B.3t时刻振子的速度为零C.2t时刻振子的运动方向与4t时刻振子的运动方向相反D.从1t时刻到3t时刻,振子运动的加速度逐渐减小7.如图所示,弹簧振子在M、N之间做简谐运动。
振荡运动习题及答案问题一一个质点以角频率为2 rad/s做简谐振动,振幅为3 cm。
求该质点在2秒时的位移。
解答:振幅A = 3 cm,角频率ω = 2 rad/s,时间t = 2 s质点的位移可由以下公式计算:位移y = A * sin(ωt)代入已知值,计算位移:y = 3 cm * sin(2 rad/s * 2 s)y = 3 cm * sin(4 rad)y ≈ 3 cm * 0.7568y ≈ 2.2704 cm所以,在2秒时,该质点的位移约为2.2704 cm。
问题二一根弹簧的弹性系数为30 N/m,质量为0.5 kg的物体通过弹簧连接上墙面。
当物体处于平衡位置时,弹簧的长度为20 cm。
现在将该物体拉到离开平衡位置10 cm处,然后释放,求该物体的振动周期。
解答:弹性系数k = 30 N/m,质量m = 0.5 kg,平衡位置长度l = 20 cm,偏离平衡位置长度Δx = 10 cm振动周期T可以由以下公式计算:振动周期T = 2π * √(m/k)代入已知值,计算振动周期:T = 2π * √(0.5 kg / 30 N/m)T = 2π * √(0.0167 kg/m)T ≈ 2π * 0.1292 sT ≈ 0.8117 s所以,该物体的振动周期约为0.8117秒。
问题三一个质点做简谐振动,其振幅为5 cm,频率为5 Hz。
求该质点的最大速度。
解答:振幅A = 5 cm,频率f = 5 Hz最大速度v可以由以下公式计算:最大速度v = 2π * A * f代入已知值,计算最大速度:v = 2π * 5 cm * 5 Hzv = 2π * 5 cm/s * 5v = 50π cm/sv ≈ 157.08 cm/s所以,该质点的最大速度约为157.08 cm/s。
简谐运动练习题一、基础题1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( )Oy/mQx/mPNA.质元Q和质元N均处于加速运动过程中B.质元Q和质元N均处于减速运动过程中C.质元Q处于加速运动过程中,质元N处于减速运动过程中D.质元Q处于减速运动过程中,质元N处于加速运动过程中2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则A.当平台振动到最高点时,物体对平台的正压力最大B.当平台振动到最低点时,物体对平台的正压力最大C.当平台振动经过平衡位置时,物体对平台的正压力为零D.物体在上下振动的过程中,物体的机械能保持守恒4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( )A.这列波的周期是0.2 sB.质点P、Q此时刻的运动方向都沿y轴正方向C.质点P、R在任意时刻的位移都相同D.质点P、S在任意时刻的速度都相同5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小C.振子速度逐渐减小 D.振子加速度逐渐减小6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是F F F F使A 和B 一起在光滑水平面上做简谐运动,如图所示。
振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为( )A C D .././().kxB mkx M mkx m M 08.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( )A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻A .振子所受的弹力大小为5N ,方向指向x 轴的正方向B .振子的速度方向指向x 轴的正方向C .在0~4s 内振子作了1.75次全振动D .在0~4s 内振子通过的路程为0.35cm ,位移为0二、提高题(14、15、19题提高题)10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动。
O 点为原点,取向左为正,振子的位移x 随时间t 的变化如图乙所示,则由图可知( )A. t =0.2s 时,振子在O 点右侧6cm 处B. t =1.4s 时,振子的速度方向向右C. t =0.4s 和t =1.2s 时,振子的加速度相同D. t =0.4s 到t =0.8s 的时间内,振子的速度逐渐增大11.一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电量为+q 的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E 后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A、球的速度为零时,弹簧伸长qE/kB、球做简谐运动的振幅为qE/kC、运动过程中,小球的机械能守恒D、运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零12.一列沿x轴传播的简谐横波在某时刻波的图象如图所示,已知波速为20 m/s,图示时刻x=2.0m处的质点振动速度方向沿y轴负方向,可以判断A.质点振动的周期为0.20s B.质点振动的振幅为1.6cmC.波沿x轴的正方向传播 D.图示时刻,x=1.5m处的质点加速度沿y 轴正方向13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O,在A、B间振动,如图所示,下列结论正确的是( ).A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从A经O到B的过程中,回复力一直做负功14.如图所示,物体 A置于物体 B上,一轻质弹簧一端固定,另一端与 B相连,在弹性限度范围内,A和 B一起在光滑水平面上作往复运动(不计空气阻力),均保持相对静止。
则下列说法正确的是A.A和 B均作简谐运动B.作用在 A上的静摩擦力大小与弹簧的形变量成正比C.B对 A的静摩擦力对 A做功,而 A对 B的静摩擦力对 B不做功D.B对 A的静摩擦力始终对A做正功,而 A对 B的静摩擦力始终对 B做负功15.如图所示,一轻质弹簧一端固定在墙上的O点,另一端可自由伸长到B点。
今使一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小物体能在水平面上运动到C点静止,已知AC=L;若将小物体系在弹簧上,在A点由静止释放,则小物体将做阻尼振动直到最后静止,设小物体通过的总路程为s,则下列说法中可能的是()A.s>L B.s=LC.s<LD.无法判断。
16.如图所示,两木块A 和B 叠放在光滑水平面上,质量分别为m 和M ,A 与B 之间的最大静摩擦力为f ,B 与劲度系数为k 的轻质弹簧连接构成弹簧振子。
为使A 和B 在振动过程中不发生相对滑动,则它们的振幅不能大于,它们的最大加速度不能大于17.弹簧振子从距离平衡位置5 cm 处由静止释放,4 s 内完成5次全振动,则这个弹簧振子的振幅为_____________cm ,振动周期为_____________s ,频率为_____________Hz ,4 s 末振子的位移大小为_____________cm ,4 s 内振子运动的路程为_____________cm ,若其他条件都不变,只是使振子改为在距平衡位置2.5 cm 处由静止释放,该振子的周期为_______s.18.如图所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s ,过B 点后再经过1s ,小球再一次通过B 点,小球在2s 内通过的路程为6cm ,N 点为小球下落的最低点,则小球在做简谐运动的过程中:(1)周期为___;(2)振幅为__ ;(3)小球由M 点下落到N 点的过程中,动能EK 、重力势能EP 、弹性势能EP ’的变化为__;(4)小球在最低点N 点的加速度大小__重力加速度g (填>、=、<)。
19.如图所示,质量为m 的木块放在弹簧上,与弹簧一起在竖直方向上做简谐运动。
当振幅为A 时,物体对弹簧的最大压力是物体重力的1.5倍,则: ①物体对弹簧的最小弹力是多大?②要使物体在振动中不离开弹簧,振幅不能超过多大?mAO BNA参考答案1.D【解析】试题分析:因为质元P 处于加速过程,所以质元P 向平衡位置运动,由此可知波沿x 轴负方向运动,所以质元Q 沿y 轴正方向运动,远离平衡位置,速度减小,质元N 沿y 轴正方向运动,靠近平衡位置,速度增大,故选项ABC 错误D 正确.考点:波的传播;简谐运动中质点的振动.2. B【解析】试题分析: 简谐运动的质点,先后以同样大小的速度通过A 、B 两点,则可判定这两点关于平衡位置O 点对称,所以质点由A 到O 时间与由O 到B 的时间相等,那么平衡位置O 到B 点的时间t 1=0.5s ,因过B 点后再经过t=1s 质点以方向相反、大小相同的速度再次通过B 点,则有从B 点到最大位置的时间t 2=0.5s ,故从平衡位置O 到最大位置的时间是1s ,故周期是T=4s ;质点通过路程12cm 所用时间为2s ,是周期的一半,所以路程是振幅的2倍,故振幅A=12/2cm=6cm ,故选B 。
考点: 简谐运动的周期和振幅3.B【解析】本题考查的是简谐振动的相关问题,当平台振动到最低点时,物体对平台的正压力最大,B 正确;当平台振动经过平衡位置时,物体对平台的正压力为物体的重力,C 错误;物体在上下振动的过程中,物体的机械能不守恒,除了重力做功还有平台对物体做功;D 错误;4.ABD【解析】这列波的波长为4m ,所以波的周期为==0.2s v T λ,A 正确。
因为波沿x 轴正方向传播,所以P 点此时向上运动, Q 点此时向上振动,所以B 正确。
只有相隔nT 周期的两个质点的位移,速度在任意时刻都相等,,所以C 错误,D 正确。
5.AD【解析】在振子向平衡位置运动的过程中,弹簧的形变量变小,所以所受回复力逐渐减小,加速度逐渐减小,AD 对;振子相对平衡位置的位移逐渐减小,B 错;振子速度逐渐增大,C 错。
6.B【解析】物体做简谐运动时kx F -=,所以选B 。
【答案】C【解析】木块A 作简谐运动时,由题意和牛顿第二定律可得:F ma =<>1将木块A 和振子B 一起为研究对象,它们作简谐运动的回复力为弹簧的弹力所提供,应有()kx m M a=+<>2由<1>式和<2>式可得:F kxm m M =+/()8.C【解析】力做正功,机械能增大,C 正确;简谐振动的周期与振幅无关,D 错误。
故选C 。
考点:简谐振动9.B【解析】试题分析:由图可知A 在t 轴上方,位移x=0.25cm ,所以弹力5F kx N =-=-,即弹力大小为5N ,方向指向x 轴负方向,故A 错误;由图可知过A 点作图线的切线,该切线与x 轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x 轴的正方向,故B 正确;由图可看出,0t =、4t s =时刻振子的位移都是最大,且都在t 轴的上方,在0~4s 内经过两个周期,振子完成两次全振动,故C 错误;由于0t =时刻和4t s =时刻振子都在最大位移处,所以在0~4s 内振子的位移为零,又由于振幅为0.5cm ,在0~4s 内振子完成了2次全振动,所以在这段时间内振子通过的路程为240.504cm cm ⨯⨯=,故D 错误。
考点:简谐运动的振动图象.10.D【解析】试题分析:0.2t s =时,振子在O 点左侧;故A 错误;1.4s 时,振子在O 点右方正向平衡位置移动,故速度方向向左;故B 错误;0.4s 和1.2s 时振子分别到达正向和反向最大位置处,加速度大小相等,但方向相反;故C 错误;0.4s 到0.8s 内振子在向平衡位置移动,故振子的速度在增大;故D 正确;考点:考查了简谐运动的振幅、周期和频率;11.BD【解析】试题分析:球的平衡位置为Eq=kx ,解得x= qE/k ,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k ,选项B 正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。