24.2.2圆的切线判定定理
- 格式:ppt
- 大小:578.00 KB
- 文档页数:18
第3课时切线长定理教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
教学重点:理解切线长定理。
教学难点:灵活应用切线长定理解决问题。
教学过程:一、复习引入:1.切线的判定定理和性质定理.2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?二、合作探究1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理(1)操作:纸上一个⊙O,PA是⊙O的切线,•连结PO,•沿着直线PO将纸对折,设与点A重合的点为B。
OB是⊙O 的半径吗?PB是⊙O的切线吗?猜一猜PA与PB的关系?∠APO与∠BPO呢?从上面的操作及圆的对称性可得:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.(2)几何证明.如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠APO=∠BPO.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.3、三角形的内切圆思考:如图是一张三角形的铁皮,如何在它上面截下一块圆形的铁片,并且使圆的面积尽可能大呢?三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆三角形的内心:三角形内切圆的圆心即三角形三条角平分线的交点叫做——(1)图中共有几对相等的线段(2)若AF=4、BD=5、CE=9,则△ABC周长为____例如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F, 且AB=9cm=1810,求⊙O的半径。
BC=14cm,CA=13cm,求AF,BD,CE的长。
若S△ABC三、巩固练习1、如图1,PA、PB是⊙O的两条切线、A、B为切点。
PO交⊙O于E点(1)若PB=12,PO=13,则AO=____(2)若PO=10,AO=6,则PB=____(3)若PA=4,AO=3,则PO=____;PE=_____.(4)若PA=4,PE=2,则AO=____.2、如图2,PA、PB是⊙O的两条切线、 A、B为切点,CD切⊙O于E交PA、PB 于C、D两点。
A Ol圆的切线的性质及判定综合运用知识点:切线的性质定理:圆的切线垂直于经过切点的 . 几何符号语言表达:∵ l 是⊙O 的 ,OA 是 , ∴ l ⊥OA切线的判定:经过半径的 并且 的直线是圆的切线。
几何符号语言表达: ∵ OA 是 ,OA ⊥l 于A , ∴ l 是⊙O 的 。
归纳:证明切线添加辅助线的方法:1)直线与圆的公共点已知时,连半径,证 (应用判定方法3)2)直线与圆公共点不确定时,过圆心作直线的垂线段,再证明 (方法2)一、典型例题例1.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1)直线经过半径的 ;(2)直线与这半径 。
▲判断一条直线是圆的切线的方法:1.利用切线的定义:与圆有 公共点的直线是圆的切线。
2.利用d 与r 的关系作判断:圆心到直线的距离等于 (即d r)的直线是圆的切线。
3.利用切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线。
例2.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.例3.如图,在△ABC中,AB=AC=10,BC=12,试求△ABC的内切圆的半径.例4.如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.(1)求该抛物线的解析式;(2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;(3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.二、综合训练1.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A .2B .4C .6D .82.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A .25cmB .45cmC .25cm 或45cm D. 23cm 或43cm3.已知⊙O 的面积为2π,则其内接正三角形的面积为( )A .33B .36C .323D .6234.如图,在平面直角坐标系中,⊙O 的半径为1,则直线2-=x y 与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能5.若⊙O 的半径等于5cm ,P 是直线l 上的一点,OP=5cm ,则直线l 与圆的位置关系是( )A .相离B .相切C .相交D .相切或相交6.已知⊙O 的面积为9πcm 2,若点O 到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定7.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°8.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.49.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.,10.如下左图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=21则∠ACD= °.11.如上右图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.12.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;13.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;14. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过,垂足为D.C作CD PA(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.三、课外作业: 1.如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A 、C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE=190,则∠AFB 的度数为( )A.97°B.104°C.116°D.142°第1题图 第2题图2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A.(-4,5)B.(-5,4)C.(5,-4)D.(4,-5)3.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A.2B.3C.3D.32第3题图4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC.若∠A=400,则∠C= .5.如图,∠ABC=900,O 为射线BC 上一点,以点O 为圆心,OB 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 时与⊙O 相切.第4题图 第5题图6.已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)如图①,若2AB =,30P ∠=︒,求AP 的长(结果保留根号);(2)如图②,若D 为AP 的中点,求证直线CD 是⊙O 的切线.7.如图,已知直线ABC 与⊙O 相交于B,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA=∠AMD . 求证:AD 是⊙O 的切线.。
24.2.2(4)---切线的性质定理一.【知识要点】1.切线的性质定理:连切点得垂直;2.知切线连切点,过圆心作弦的垂线得矩形.二.【经典例题】1.如图,△ABC内接于圆☉O,CT切☉O于点C,∠ABC=100°,∠BCT=40°,则∠AOB=_______.2.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M、N 两点.若点M的坐标是(2,-1),则点N的坐标是( )A.(2,-4) B.(2,-4.5)C.(2,-5) D.(2,-5.5)3.如图,△ABC为⊙O的内接于三角形,过A作⊙O的切线PA,若∠C=35°,求∠PAB的度数.4.如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC、BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连结DF并延长交CB的延长线于点G,则CG=________.5.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 于点F ,连接BE 。
(1)求证:AC 平分∠DAB ;(2)求证:△PCF 是等腰三角形;(3)若∠BEC=30°,求证:以BC 、BE 、AC 为边的三角形是直角三角形。
的O 外一点,切O 于点A ,是O 的弦,AB 连接PB ,则PB=______________.7.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是_________.8.如图,AB 为⊙O 的直径,PQ 与⊙O 相切于点T ,过A 点作AC ⊥PQ 于C 点,交⊙O 于D 点. (1) 求证:AT 平分∠BAC;(2) 若2,AD TC ==求⊙O 的半径.9.已知AB 是⊙O 的直径,CD 为⊙O 切线,BE ⊥CD 于C. (1)如图1,若CD=4,BE=6,求⊙O 的半径; (2)如图2,若CE=2,BE=6,求CD 的长; (3)如图3,若CE=1,CD=2,求BD 的长.10.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD交⊙O 于E ,若10,AB BC ==求AE 的长.11.如图,点O 是△ABC 的边AB 上的一点,以OB 为半径的⊙O 交BC 于D ,过点D 的切线交AC 于E,且DE ⊥AC.(1)求证:AB=AC.(2)若EC=1,AB=10,DC=OB ,求⊙O 的半径。
中小学信息技术应用课堂教学展示活动教学设计课题:24.2.2 直线和圆的位置关系(2)切线的判定与性质定理*******初级中学 ****24.2.2直线和圆的位置关系【核心素养】重点培养学生数学抽象和几何直观核心素养。
【知识与技能】1、能判定一条直线是否为圆的切线。
2、会过圆上一点画圆的切线。
3、能根据具体的问题作出合适的辅助线。
【过程与方法】1、通过判定一条直线是否为圆的切线,训练学生的推理判断能力.2、会过圆上一点画圆的切线,训练学生的作图能力.【情感态度与价值观】1、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力。
2、经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.3、在师生、生生的互动的学习氛围中,锻炼克服困难的勇气,提高数学学习兴趣。
【教学重点】1、探索圆的切线的判定方法,并能运用。
2、应用切线性质解决简单的几何问题。
【教学难点】探索圆的切线的判定方法。
【授课类型】新授课【课时安排】1课时【教具准备】多媒体课件、平板电脑、畅言教学系统、教具等。
教学活动教学步骤师生活动设计意图复习导入【知识回顾】上课!同学们好,请坐。
在新课开始之前,我们一起来回顾一下上节课所学的知识。
我们知道直线和圆有三种位置关系:相离、相切、相交,那么这三种位置关系对应的图形、交点、圆心与直线间的距离等有么样的关系,我们一起来看一下:PPT展示三种位置关系总结表格。
如何确定一条直线与圆相切呢?引导学生思考:(1)通过定义:(2)根据数量关系:进一步引导学生思考:还有别的判断圆的切线的方法吗?就让我们带着这个疑问,一起走进今天的课堂吧。
由此导入新课。
学生回忆并回答,为本课的学习提供迁移或类比方法.活动一:创设问题情境感受新知【探究一】圆的切线判定定理请看大屏幕,通过图片情境问题让学生猜想如下问题:问题1:下雨天,当你快速转动雨伞时飞出的水珠,以及在砂轮上打磨工件时飞出的火星,都是沿着圆的什么方向飞出?问题2:如何准确的判定刚才猜测的直线就是圆的切线呢?引导学生思考,并进行进一步的探究:探究:作⊙O,在⊙O上任取一点A,连接OA,过点A作直线l⊥OA于点A。