目前国内超临界机组运行情况介绍
- 格式:doc
- 大小:143.00 KB
- 文档页数:5
1000MW超超临界机组建设和运行情况及当前存在的主要问题周志明 戴天将 谷双魁 顾正皓 茅建波建设大容量、高参数的1000MW超超临界机组是转变电力发展方式、调整电力结构、优化电力布局的重要举措,符合国家能源产业政策,但由于单机容量较大,一旦故障跳闸可能会对电网安全运行、电力可靠供应、发电设备安全带来不利影响。
为全面掌握我省1000MW超超临界机组建设期和投产后的安全生产情况,认真总结经验和教训,日前,我办对浙江省1000MW超超临界机组安全生产情况进行了专题调研,形成了本报告。
一、浙江省1000MW超超临界机组基本情况(一)机组建设情况截止2011年底,浙江统调装机容量达到3967.9万千瓦。
其中:火电装机容量3771万千瓦,占总装机容量的95.04%;核电装机容量32万千瓦,占总装机容量的0.8%;水电装机容量164.9万千瓦,占总装机容量的4.16%。
截止2011年底,浙江省统调最高负荷5061万千瓦。
截止2011年底,浙江省共有10台1000MW超超临界机组投产并转入商业运行,占省统调装机容量的25.20%。
1、工程建设工期和总投资额浙江省已建成并投入运行的10台1000MW超超临界机组建设工期最短为22月6天,最长为40个月28天,平均为30个月2天;已竣工结算的8台1000MW超超临界机组平均每千瓦投资为0.3649万元。
详见附表1。
宁海电厂#5、#6机组受线路送出因素影响,其建设工期延长了半年左右,相对较长;嘉华电厂#7、#8机组受全省用电负荷紧张因素影响,建设工期控制的非常紧,较其它1000MW超超临界机组建设工期减少了3~4个月;宁海电厂#5、#6机组由于采用塔式锅炉、建造冷却水塔等设计,使得总投资额较其它工程增加。
2、工程项目采取的优化设计浙江省1000MW超超临界机组建设工程不断优化设计,详见附表2。
各工程均在总平面与主厂房布置、厂房内桩(地)基、给水泵系统、四大管道以及循环水系统等方面,结合工程本身特点,吸取已投产机组在建设、调试、运行中的经验教训,通过有针对性的优化设计,减小了用地面积,节省钢材及建材,降低了投资。
600MW超临界机组总体介绍
首先,600MW超临界机组是一种燃煤发电机组,采用超临界锅炉及超
临界蒸汽参数运行。
其设计能力达到了600兆瓦,是一种大型的发电机组。
它采用了先进的燃煤发电技术,具有较高的发电效率,可以最大限度地利
用煤炭资源。
600MW超临界机组的核心设备是超临界锅炉。
它采用了高温高压的工质,将锅炉内的水蒸汽压力提高到临界值以上,使得蒸汽温度大幅度提高。
这种工艺使得机组的热效率得到提高,能耗减少。
同时,超临界锅炉还具
有较小的包容性和快速启停的特点,适合应对电网负荷波动和需求峰谷的
变化。
此外,600MW超临界机组还采用了先进的自动化控制系统。
通过实时
监测和分析各项参数,调整机组的工作状态,使其保持在最佳的工作状态。
这种自动化控制系统能够有效地提高机组的稳定性和可靠性,减少人工干
预的需求。
总的来说,600MW超临界机组是一种现代化、高效能的发电设备。
它
不仅具有高热效率和低耗能的特点,还具有较低的排放量和高度自动化的
控制系统。
这使得600MW超临界机组成为了目前燃煤发电的首选,为能源
供应提供了可靠支持,同时也对环境保护做出了贡献。
1000MW超超临界火电机组电气设备及运行摘要:超超临界技术是国际上成熟、先进的发电技术,在机组的可靠性、可用率、热机动性、机组寿命等方面已经可以和亚临界机组媲美,并有了较多的商业运行经验。
目前,国际上超超临界机组的参数能够达到主蒸汽压力25~31MPa,主蒸汽温度566~611℃,热效率42%~45%。
我国将超超临界机组的研究设定在蒸汽压力大于25MPa,蒸汽温度高于580℃的范围。
基于此,本文主要对1000MW超超临界火电机组电气设备及运行进行分析探讨。
关键词:1000MW超超临界;火电机组;电气设备;运行1、前言1000MW级超超临界燃煤发电是一种先进、高效的发电技术,代表了当前火力发电的最高水平,1000MW级超超临界燃煤发电技术的研发和应用对实现我国火电结构调整、节能降耗,建设资源节约型、环境友好型社会,促进电力工业可持续发展具有重要意义。
2、超超临界火电厂全厂控制网络方案超超临界机组较超临界机组的工艺参数要求相对高一些,对材料的选择和使用要求更为重要。
而对热控方案设计而言,1000MW超超临界机组和600MW超/超超临界机组两者在基本控制方案上没有太大的差别。
分散控制系统(DCS)和可编程控制器(PLC)在火电厂自动化控制中已得到大量应用,随着大型火电机组炉、机、电的运行和管理水平不断提高,DCS和PLC系统极高的可靠性、丰富的控制功能和对运行操作的简化,为减员增效提供了诸多的方便,并取得了良好的效果。
因此1000MW机组的控制方式都采用分层分级的网络结构。
全厂控制网络由厂级监控信息系统(SIS)以及机组级的控制网络(DCS)、辅助系统控制网络三层构成,实现全厂监控系统的网络化管理和信息共享。
通过对控制系统的选择和控制点的设置,分别介绍几个典型的1000MW机组全厂网络控制方案如下:(1)方案一:设置厂级管理信息系统(MIS)、厂级监控信息系统(SIS)。
单元机组和机组公用部分采用DCS系统控制。
超临界机组详细介绍
超临界机组是一种高效能的发电设备。
这种机组利用了先进技术,实现了高效、低耗、低排放的发电。
下面将详细介绍超临界机组的相关信息。
超临界机组是指机组的蒸汽参数在临界点以上,压力一般为230Bar左右,温度为600-650度左右。
相比于传统的火力发电机组,超临界机组在同等功率下,装机容量更小、效率更高、耗煤更少。
此外,超临界机组还具有排放低、安全性高等优点,是目前国内外火力发电主流机型之一。
超临界机组采用的是高耐压材料和高效低噪音的低速大型风扇,在保证机组稳定运行的同时,最大限度地减少了噪音和压力损耗。
机组配备了智能化控制系统,能够实现全面监控和实时反馈,保证了机组的稳定工作和安全运行。
此外,超临界机组还具有高度的自适应性和排放标准符合国际水平。
超临界机组的优点在于高效、低耗、低排放、安全可靠。
可持续发展是当今社会的前沿课题,在未来,超临界机组将更好地适应现代化中国的快速发展,成为推进经济可持续发展的重要力量。
660MW超临界空冷汽轮机及运行随着社会对能源需求的日益增长,汽轮机作为重要的能源转换设备,其效率和可靠性对于满足人们的能源需求至关重要。
本文将重点介绍660MW超临界空冷汽轮机及其运行。
一、超临界空冷汽轮机简介超临界空冷汽轮机是一种高效、清洁的能源转换设备,它采用了超临界蒸汽技术,可以在高温高压下提高蒸汽的效率,从而实现能源的高效利用。
这种汽轮机主要应用于大型火力发电厂、石油化工等领域,为工业生产和人们的生活提供稳定的电力供应。
二、660MW超临界空冷汽轮机结构及特点1、结构:660MW超临界空冷汽轮机主要由进汽系统、主轴、叶片、发电机、控制系统等组成。
其中,进汽系统负责将锅炉产生的蒸汽引入汽轮机,主轴是支撑整个机组的核心部件,叶片则用于将蒸汽的动能转化为机械能,发电机将机械能转化为电能,控制系统则对整个机组进行监控和调节。
2、特点:660MW超临界空冷汽轮机具有效率高、容量大、可靠性强的特点。
其采用超临界蒸汽技术,可以在高温高压下运行,提高蒸汽的效率。
该汽轮机还采用了先进的密封技术和控制系统,保证了设备的可靠性和稳定性。
三、660MW超临界空冷汽轮机的运行1、启动:在启动660MW超临界空冷汽轮机之前,需要进行全面的检查和准备工作,包括确认设备状态良好、控制系统正常等。
启动后,汽轮机需要经过暖机、加速等阶段,直至达到额定转速。
2、运行:在正常运行过程中,660MW超临界空冷汽轮机需要保持稳定的转速和负荷,以实现高效的能源转换。
同时,需要对设备进行定期检查和维护,确保设备的正常运行。
3、停机:在停机时,需要进行逐步减速、停机等操作,同时进行设备的检查和维护。
还需要对设备进行定期的保养和维护,以延长设备的使用寿命。
四、结论660MW超临界空冷汽轮机作为一种高效、清洁的能源转换设备,对于满足人们的能源需求至关重要。
在实际运行中,需要采取科学合理的措施进行设备的监控和维护,以确保设备的稳定性和可靠性。
亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势的研究报告一、问题的提出通过书本上的学习我们初步了解了火电厂的工作流程和原理,在整个流程中机组选择的不同使得火电厂对发电用的蒸汽的各项参数、工件的选择、材料的要求等提出不同的标准。
本小组通过对亚临界、超临界、超超临界火电机组技术区别、发展现状与发展趋势进行研究,找出了他们的一些不同与相同之处,陈列如下不对之处还望指正。
二、调查方法1.从书籍中查找有关资料2.在英特网中查阅有关资料三、正文我国自1882年在上海建立第一座火力发电厂开始, 火力发电已走过100多年发展历程。
新中国成立以后, 特别是改革开放以来, 我国的火力发电事业取得了煌的成就。
全国电力装机到1987年跨上100GW的台阶后, 经过7年的努力, 在1995年3月份突破200GW至1995年底我国电力装机容达到217.224GW,其中水电52.184GW,火电162.94GW,核电2.1GW.1995年全国发电装机容量跃居世界第三位、发电量居世界第二位。
火力发电在电力结构中一直占有重要地位。
从全球范围看, 火电在电力工业中起着主导作用。
对中国而言, 火电在电力工业中所占比重更大, 其中煤电所占比例要比全世界平均水平更高。
国内外一些机构曾对我国能源结构进行过预测分析, 虽然数字有些差异, 但结论大致相同,火力发电特别是燃煤发电在未来几年及21世纪上半叶, 甚至更长时间内在我国电力工业中将起主导作用。
我国火电机组的研制从50年代中期6MW中压机组起步, 到70年代已具备设计制造200MW超高压机组和300MW亚临界压力机组的能力, 但我国最大单机容量同国外先进水平的差距一般为30-40年, 我国机组的技术性能和可靠性水平与国外先进水平相比有相当大的差距( 以当时的亚临界300MW汽轮机为例, 其热耗值比国外同类机组高出约209KJ/(KW·h), 按每台机组每年运行7000h 计算, 仅此一项每台机组每年就需多消耗近2000t标准煤。
目录目录一、国际上超临界机组的现状及发展方向二、国内500MW及以上超临界直流炉机组投运情况三、超临界直流炉的控制特点四、1000MW超(超)临界机组启动过程五、1000MW超(超)临界机组的控制方案一、国际上超临界机组的现状及发展方向我国一次能源以煤炭为主,火力发电占总发电量的75%全国平均煤耗为394g/(kWh),较发达国家高60~80g,年均多耗煤6000万吨,不仅浪费能源,而且造成了严重的环境污染,烟尘,SOx,NOx,CO2的排放量大大增加火电机组随着蒸汽参数的提高,效率相应地提高¾亚临界机组(17MPa,538/538℃),净效率约为37~38%,煤耗330~340g¾超临界机组(24MPa,538/538℃),净效率约为40~41%,煤耗310~320g¾超超临界机组(30MPa,566/566℃),净效率约为44~45%,煤耗290~300g(外三第一台机组2008.3.26投产,运行煤耗270g)由于效率提高,污染物排量也相应减少,经济效益十分明显。
一、国际上超临界机组的现状及发展方向1957年美国投运第一台超临界试验机组,截止1986年共166 台超临界机组投运,其中800MW以上的有107台,包括9台1300MW。
1963年原苏联投运第一台超临界300MW机组,截止1985年共187台超临界机组投运,包括500MW,800MW,1200MW。
1967年日本从美国引进第一台超临界600MW机组,截止1984年共73台超临界机组投运,其中31台600MW, 9台700MW,5台1000MW,在新增机组中超临界占80%。
一、国际上超临界机组的现状及发展方向¾目前超临界机组的发展方向90年代,日本投运的超临界机组蒸汽温度逐步由538/566℃提高到538/593℃,566/593℃及600/600℃,蒸汽压力保持在24~25MPa,容量以1000MW为多,参数为31MPa,566/566℃的两台700MW燃气机组于1989年和1990年在川越电厂投产。