初中数学-整式加减乘除运算
- 格式:doc
- 大小:1.24 MB
- 文档页数:12
初中数学疑难知识点解析整式的加减乘除法整式是代数式的一种形式,由字母和常数通过加、减、乘运算组成。
在初中数学中,掌握整式的加减乘除法是非常重要的,本文将对整式的加减乘除法进行详细解析。
一、整式的加法整式的加法是最基础的运算,通过将相同项合并,即将相同字母的幂相加,常数项相加得到结果。
下面以一个例子来说明整式的加法。
例题:将3x² - 5x +7与-4x² + 2x - 3相加。
解析:首先,我们将相同字母的幂相加。
3x² - 4x² = -x²,-5x + 2x =-3x,7 + (-3) = 4。
所以,将3x² - 5x +7与-4x² + 2x - 3相加的结果为:-x² - 3x + 4。
二、整式的减法整式的减法是整式加法的逆运算,通过将减数取其相反数,即将减数中的各项均取反,然后再按整式的加法规则进行运算,得到结果。
下面以一个例子来说明整式的减法。
例题:计算5x² - 3x +2 与2x² + x - 4的差。
解析:将减数2x² + x - 4中的各项均取反,得到-2x² - x + 4。
然后按整式的加法规则进行运算,即:5x² - 3x +2 + (-2x² - x + 4) = 3x² - 4x + 6。
三、整式的乘法整式的乘法是将两个整式相乘,需要运用分配律和合并同类项的规则。
下面以一个例子来说明整式的乘法。
例题:计算(3x - 2)(x + 4)。
解析:根据分配律,将每一项分别与另一个整式中的各项相乘,然后再合并同类项。
计算过程如下:(3x - 2)(x + 4) = 3x(x + 4) - 2(x + 4) = 3x² + 12x - 2x - 8 = 3x² + 10x - 8。
四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式。
初中数学整式的加减乘除整式在初中数学中是一个重要的概念,它是由字母、数字和运算符合理组合而成的式子。
整式的加减乘除是我们在解决代数运算问题时必须掌握的基本技巧。
在本文中,我们将介绍整式的加减乘除的方法和技巧。
一、整式的加法整式的加法可以简单地理解为将相同类型的项相加。
在进行整式的加法运算时,我们要先将同类项合并,再进行运算。
例如,给定两个整式:3x^2 + 5x - 2 和 2x^2 + 4x + 1,我们可以按照如下的步骤进行加法运算:Step 1:合并同类项3x^2 + 5x - 22x^2 + 4x + 1-----------------(3x^2 + 2x^2) + (5x + 4x) + (-2 + 1)Step 2:简化合并5x^2 + 9x - 1所以,经过计算,两个整式的和为5x^2 + 9x - 1。
二、整式的减法整式的减法与加法相似,仍然需要先将同类项合并,再进行运算。
例如,给定两个整式:4x^3 + 7x^2 - 3 和 2x^3 + 3x^2 + 1,我们可以按照如下的步骤进行减法运算:Step 1:合并同类项4x^3 + 7x^2 - 3-(2x^3 + 3x^2 + 1)-------------------(4x^3 - 2x^3) + (7x^2 - 3x^2) + (-3 - 1)Step 2:简化合并2x^3 + 4x^2 - 4所以,经过计算,两个整式的差为2x^3 + 4x^2 - 4。
三、整式的乘法整式的乘法可以利用分配律和合并同类项的原则进行运算。
例如,给定两个整式:(3x^2 + 4x - 2) 和 (2x^3 - 5x),我们可以按照如下的步骤进行乘法运算:Step 1:使用分配律,将每一项逐一与另一个整式的每一项相乘3x^2 * 2x^3 + 3x^2 * (-5x) + 4x * 2x^3 + 4x * (-5x) - 2 * 2x^3 - 2 * (-5x)Step 2:合并同类项,简化合并6x^5 - 15x^3 + 8x^4 - 20x^2 - 4x^3 + 10x6x^5 + 8x^4 - 19x^3 - 20x^2 + 10x所以,经过计算,两个整式的积为6x^5 + 8x^4 - 19x^3 - 20x^2 + 10x。
整式的加减乘除运算整式是由数和字母的乘方、乘积以及算术运算符号组成的代数表达式。
整式的加减乘除运算是初中数学中的基本知识点,它们在代数运算中起着重要的作用。
本文将介绍整式的加减乘除运算,并给出一些例子来帮助读者更好地理解。
一、整式的加法运算整式的加法运算是指将相同字母的项进行合并,得到一个新的整式。
在进行加法运算时,我们需要注意以下几个步骤:1. 合并同类项:将相同字母的项进行合并,系数相加。
例如,将3x + 2x合并为5x;将2y^2 + 3y^2合并为5y^2。
2. 不同字母的项不能合并。
例如,2x + 3y不能合并为5xy。
通过以下例子,我们可以更好地理解整式的加法运算:例1:计算2x^2 + 3xy + 4x^2 - 2xy + 5y的值。
解:首先将相同字母的项进行合并:(2x^2 + 4x^2) + (3xy - 2xy) + 5y = 6x^2 + xy + 5y。
二、整式的减法运算整式的减法运算与加法运算类似,只是在合并同类项时,需要将减号变为加号,然后将减数取负。
具体的步骤如下:1. 合并同类项:将相同字母的项进行合并,系数相加。
例如,将3x - 2x合并为x;将2y^2 - 3y^2合并为-y^2。
2. 不同字母的项不能合并。
例如,2x - 3y不能合并。
通过以下例子,我们可以更好地理解整式的减法运算:例2:计算2x^2 + 3xy - 4x^2 + 2xy - 5y的值。
解:首先将减数取负,并将相同字母的项进行合并:(2x^2 - 4x^2) + (3xy + 2xy) - 5y = -2x^2 + 5xy - 5y。
三、整式的乘法运算整式的乘法运算是指将两个整式相乘,得到一个新的整式。
在进行乘法运算时,我们需要注意以下几个步骤:1. 使用分配律展开乘法:将一个整式中的每一项与另一个整式中的每一项相乘,并将结果进行合并。
例如,(2x + 3y)(4x - 5y) = 8x^2 -10xy + 12xy - 15y^2 = 8x^2 + 2xy - 15y^2。
中考重点整式的加减乘除整式是代数中常见的一种形式,由一些代数式通过加减乘除运算符连接而成。
整式的加减乘除是中考数学中的重点内容之一,本文将重点探讨整式的加减乘除运算。
一、整式的加法整式的加法指的是同类项的加法。
所谓同类项,是指指数相同的项。
例如,3x和2x就是同类项,而3x和2y就不是同类项。
整式的加法运算步骤如下:1. 将相同类型的项按照相同变量的幂次从高到低排列。
2. 对相同类型的项,将它们的系数相加,并保持变量的幂次不变。
例如,将3x² + 5x + 2 和 6x² + 3x - 1相加,步骤如下:排列:6x² + 3x - 1 + 3x² + 5x + 2合并同类项:(6x² + 3x²) + (3x + 5x) + (-1 + 2)计算:9x² + 8x + 1二、整式的减法整式的减法也是同类项的减法。
整式的减法可以通过将减数中的每一项取相反数,然后与被减数相加的方式实现。
例如,将3x² + 5x + 2 减去 6x² + 3x - 1,步骤如下:将减数的每一项取相反数:-6x² - 3x + 1相加:(3x² + 5x + 2) + (-6x² - 3x + 1)合并同类项:(3x² - 6x²) + (5x - 3x) + (2 + 1)计算:-3x² + 2x + 3三、整式的乘法整式的乘法指的是多项式之间的乘法,乘法的结果是一个新的整式。
整式的乘法可以通过分配律和同类项相加的方式实现。
例如,将(2x + 3)乘以(4x - 5),步骤如下:分配律:2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)计算:8x² - 10x + 12x - 15合并同类项:8x² + 2x - 15四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式的过程。
初中数学知识归纳整式的加减乘除整式是由字母与数通过加减乘除得到的代数式,是数与字母的运算结果。
在初中数学中,我们学习了整式的加减乘除运算规则,下面将对这些知识进行归纳整理。
一、整式的加法1. 同类项的加法:同类项是具有相同字母部分且相同指数的项。
在进行同类项的加法时,只需要将同类项的系数相加,字母部分保持不变。
例如:2a + 3a = 5a-4xy + 2xy = -2xy2ab² + 3ab² = 5ab²2. 不同类项之间的加法:不同类项之间是无法直接相加的,只能通过化简、合并同类项的方式进行。
例如:2a + 3b 无法合并,保持不变。
ab + 4a 无法合并,保持不变。
二、整式的减法整式的减法可以转化为加法运算。
即,a - b = a + (-b)。
因此,整式的减法就转化为了整式的加法运算。
例如:2a - 3a = 2a + (-3a) = -a3xy² - xy² = 3xy² + (-xy²) = 2xy²三、整式的乘法整式的乘法遵循分配律的规则。
即,a × (b + c) = a × b + a × c。
具体来说,将一个整式的每一项与另一个整式的每一项进行相乘,并将结果进行合并。
例如:(2x + 3)(4x - 5) = 2x × 4x + 2x × (-5) + 3 × 4x + 3 × (-5)= 8x² - 10x + 12x - 15= 8x² + 2x - 15四、整式的除法整式的除法是将一个整式除以另一个整式的运算。
与乘法类似,我们将整式展开,然后进行除法运算。
例如:(8x² + 2x - 15) ÷ 2x = 4x - 7需要注意的是,除法运算有时会产生不能整除的情况,此时可以用余数表示。
整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。
在代数运算中,我们常常需要对整式进行加减乘除的运算。
下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。
一、加法运算在整式的加法运算中,我们对同类项进行合并。
所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。
例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。
二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。
例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。
三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。
例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。
四、除法运算整式的除法运算需要使用长除法的方法进行。
例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。
再将除式按照指数从高到低的顺序排列:3x。
将被除式的第一项与除式的第一项相除,得到4x²。
将4x²与除式相乘,得到12x³ + 8x²。
将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。
重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。
初中数学教案:整式与整式的加减乘除整式是初中数学的重要内容之一,也是高中数学的基础。
它涉及到整数、有理数、未知数和运算符号等概念,是用来表示加、减、乘、除等运算过程的代数表达式。
本文将围绕整式与整式的加减乘除展开讲解,并给出了相应的教案。
一、什么是整式1. 整式的定义在代数中,如果一个代数表达式只包含有理系数与未知数,并且只进行加减乘除运算,那么这个代数表达式就称为整式。
2. 整式的组成一个整式通常由有理系数与多项式(由未知数及其幂次按照加减乘除规则连接而成)组成。
例如:4x + 3y - 2z^2 + 53. 整式的分类根据项数和各项次数组合不同,整式可以分为单项式、多项式和零多项式三种形态。
- 单项式: 只有一个项构成的整式,如2xy;- 多项式: 由两个或两个以上非零单项组成的整式,如3x^2 + 4xy - 5;- 零多项: 没有任何一项构成时得到的整式,记作0。
二、整式的加减运算1. 整式相加减的基本法则整式相加减的基本法则是首先对应排列各项按同类合并,然后进行有理系数的加减运算。
2. 示例教学案例:整式求和及差教学目标:通过示例讲解,使学生熟练掌握整式相加减的基本方法。
教学内容:- 例题1:已知a + b = 3,c - d = 5,求a + b + c - d。
解析:根据整式相加减的基本法则,将对应项进行合并得到(a + b) + (c - d),然后根据已知条件代入计算即可。
最终结果为8。
- 例题2:已知3x^2 + 4xy - 5z = 0,2xy - z = 7,求3x^2 + xy - z。
解析:同样按照整式相加减的基本法则进行操作,最终化简得到3x^2 + xy - z = -(7)。
三、整式的乘法运算1. 整式相乘的基本规律两个单项式或多项式相乘时,可以按照分配律将一个多项式中每一项与另一个多项式中每一项分别进行乘法运算,并将结果进行合并。
2. 示例教学案例:整式的乘法教学目标:通过示例讲解,使学生掌握整式相乘的基本方法。
整式的加减乘除整式是代数表达式的一种形式,由数和字母通过加法、减法、乘法、除法等基本运算符号连接而成。
在数学中,整式的加减乘除是重要的基础知识,本文将从加法、减法、乘法和除法四个方面对整式的运算进行详细介绍。
一、整式的加法整式的加法是指将两个或多个整式相加的运算。
在进行整式的加法时,需要注意以下两点:1. 同类项相加:同类项是指具有相同字母的指数项,如4x²和3x²就是同类项,可以直接相加。
例如,将3x²+2x²相加,结果为5x²。
2. 系数相加:对于同类项,可以直接将系数相加。
例如,将3x²+2x²相加,结果为5x²。
二、整式的减法整式的减法是指将一个整式减去另一个整式的运算。
在进行整式的减法时,需要注意以下两点:1. 减去一个整式可以转化为加上这个整式的相反数。
例如,将5x²-3x²相减,可以转化为5x²+(-3x²)的运算。
2. 同类项相减:对于同类项,可以直接将系数相减。
例如,将5x²-3x²相减,结果为2x²。
三、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。
在进行整式的乘法时,需要按照分配律和乘法公式进行展开和合并。
例如,将(3x+2)(2x-1)展开乘法运算,结果为6x²+2x-3。
四、整式的除法整式的除法是指将一个整式除以另一个整式的运算。
在进行整式的除法时,需要使用长除法的方法进行计算。
例如,将6x³+3x²-2x-1除以2x+1,可以通过长除法得到商为3x²+2x-1,余数为0。
综上所述,整式的加减乘除是代数学中基本的运算,熟练掌握整式的加减乘除运算对于理解和解决复杂的代数问题至关重要。
通过不断练习和巩固,相信大家在整式的运算能力上会有所提升,为解决数学问题提供更加有效的方法和工具。
初一下册数学知识点整式的运算整式是由常数项、变量和它们的乘积以及乘方运算构成的,其中的常数项、变量和它们的乘积分别称为整式的常数项、单项式和多项式。
在整式的运算中,我们主要关注的是整式的加减乘除运算。
1.整式的加法运算:将两个整式的同类项相加即可。
同类项是具有相同的字母幂次的项。
例如:(2x²+3x+1)+(4x²-2x+5)=6x²+x+6注意,相加时应遵循交换律和结合律。
2.整式的减法运算:将两个整式的同类项相减即可。
例如:(5x³+2x²+3x+4)-(3x³+4x²-x-5)=2x³-2x²+4x+9减法运算可以转化为加法运算,即将减法转换为加法,然后将减数取负数。
3.整式的乘法运算:乘法运算需要用到分配律,即将一个整式的每一项与另一个整式的每一项相乘,然后将乘积相加。
例如:(2x+3)(4x-5)=8x²-10x+12x-15=8x²+2x-154.整式的除法运算:整式的除法运算涉及到整式的除法算法,需要注意除法运算时应遵循整除和长除法的步骤。
除此之外- 交换律:加法和乘法的运算可以交换,即 a + b = b + a, ab = ba。
- 结合律:加法和乘法的运算可以结合,即 (a + b) + c = a + (b + c), (ab)c = a(bc)。
- 分配律:乘法运算对加法运算具有分配律,即 a(b + c) = ab + ac。
此外,在整式的除法运算中,还有一个重要的知识点是多项式的因式分解。
因式分解可以将多项式表示为多个因子的乘积。
例如:4x²+12x=4x(x+3)以上就是初一下册数学整式的运算知识点的详细介绍。
整式的运算是初中数学的基础内容,掌握了这些知识,相信你能够顺利解决整式的加减乘除运算问题。
整式的加减、乘除及因式分解整式加减一、知识点回顾1、单项式:由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a ,5……单项式系数和次数:系数:次数:2、多项式:几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式4、整式的概念:单项式与多项式统称整式二、整式的加减1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类 项的系数相加,字母和字母的指数保持不变。
2、去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 .3、整式加减的运算法则(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
整式乘除及因式分解一、幂的运算:1、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
注n m n m a a a +=∙n m ,意底数可以是多项式或单项式。
2、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。
如: mn n m a a =)(n m ,10253)3(=-幂的乘方法则可以逆用:即 如:m n n m mn a a a )()(==23326)4()4(4==3、积的乘方法则:(是正整数)。
积的乘方,等于各因数乘方的积。
n n n b a ab =)(n 4、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不n m n m a a a -=÷n m a ,,0≠)n m 变,指数相减。
5、零指数; ,即任何不等于零的数的零次方等于1。
10=a 二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
初中数学 整式加减乘除运算1一、代数式与整式、分式;有理式与无理式(有理数与无理数) 二、整式分类:单项式与多项式 三、合并同类项(重点) 系数、次数、项数问题例1 代数式b a 231的系数是 次数是代数式-24mn 的系数 次数是代数式c b a ab 423-共有 项,它们的系数分别是 、 次数是12212++y y x 是____次_____项式 abc b a c ab -+2223 是____次_____项式 多项式23523m m m +--是 次 项式,其中二次项系数是 一次项是 ,常数项是变式训练1已知 –8x m y 2m+1+12x 4y 2+4是一个七次多项式,则m= 多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ( ) A 、等于6B 、不大于6C 、小于6D 、不小于6如果单项式3a 2b 43-m 的次数与单项式31x 3y 2z 2的次数相同,试求m 的值。
单项式与多项式例2 代数式:πabx x x abc ,213,0,52,17,52--+-中,单项式共有( )个. A.1个 B.2个 C.3个 D.4个下列语句正确的是( )(A )x 2+1是二次单项式 (B )-m 2的次数是2,系数是1 (C )21x是二次单项式 (D )32abc 是三次单项式 在代数式-231a ,52243b a -,ab,)(1y x a +,)(21b a +,712+x 中,其中单项式有________________ 它们各自的系数分别为___________多项式有______________________________变式训练2下列语句中错误的是( )A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式同类项和合并同类项同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
合并同类项:把同类项合并成一项叫做合并同类项。
合并同类项的步骤:合并同类项的步骤: 第一步:准确地找出同类项;第二步:利用法则,把同类项的系数相加,字母和字母的指数不变; 第三步:写出合并后的结果。
例3已知8x 3m-1y 3与-12x 5y 2n+1是同类项,则m= ,n=判断:下列各题合并同类项的结果对不对?不对的,请说明原因。
① 3a+2b=5ab ②5y 2-2y 2=3 ③4x 2y -5y 2x=-x 2y ④-3xy+3xy=xy 去括号后合并同类项:)47()25()3(b a b a b a +-++- 求代数式-3x 2+5x -0.5x 2+x -1的值,其中x=2。
变式训练3 .下列式子中,是同类项的是( )A.5ab 2与5a 2bB.9abc 与11acC.3x 2y 与-3yx 2D.b 2与x 2当k = 时,多项式8313322+---xy y kxy x 中不含xy 项.若yb a 25.0与b a x 34的和仍是单项式,则正确的是( )A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1整式的加减 例4 (-x 求下列整式的值:(-3a 2-ab +7)-(-3a 2-ab +9),其中a =21,b =3下列整式加减正确的是【 】(A )2x -(x 2+2x )=x 2 (B )2x -(x 2-2x )=x 2(C )2x +(y +2x )=y (D )2x -(x 2-2x )=x 2减去-2x 后,等于4x 2-3x -5的代数式是【 】(A )4x 2-5x -5 (B )-4x 2+5x +5 (C )4x 2-x -5 (D )4x 2-5一个多项式加上3x 2y -3xy 2得x 3-3x 2y ,这个多项式是【 】(A )x 3+3xy 2 (B )x 3-3xy 2 (C )x 3-6x 2y +3xy 2 (D )x 3-6x 2y -3xy 2计算: (1)(11x 3-2x 2)+2(x 3-x 2) (2)(3a 2+2a -6)-3(a 2-1) (3)x -(1-2x +x 2)+(-1-x 2) (4)(8xy -3x 2)-5xy -2(3xy -2x 2) 已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么 (1)第一个角是多少度? (2)其他两个角各是多少度?变式训练41、已知A =a 2+b 2-c 2,B =-4a 2+2b 2+3c 2,并且A +B +C =0,问C 是什么样的多项式?2、已知有理数a 、b 、c 在数轴上(0为数轴原点)的对应点如图:试化简:│a │-│a +b │+│c -a │+│b +c │同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法例5 ①34722(222)(2222)2⨯=⨯⨯⨯⨯⨯⨯=②3555⨯=_____________=()5③a 3.a 4=_____________=a ( )421010⨯= 541010⨯= n m 1010⨯= m )101(×n )101(=当m,n为正整数时候,ma .na= a a a a a 个__________)(⨯⨯⨯⨯. aa a a a 个_____________)(⨯⨯⨯⨯= aa a a a 个___________⨯⨯⨯⨯=(____)a 即a m ·a n = (m 、n 都是正整数)同底数幂的乘法法则:同底数幂相乘 运算形式:(同底、乘法) 运算方法:(底不变、指加法当三个或三个以上同底数幂相乘时,也具有这一性质, 用公式表示为a m ·a n ·a p = a m+n+p (m 、n 、p 都是正整数) 下面的计算是否正确? 如果错,请在旁边订正(1).a 3·a 4=a 12 (2).m·m 4=m 4 ( 3).a 2·b 3=ab 5 (4).x 5+x 5=2x 10 (5).3c 4·2c 2=5c 6 (6).x 2·x n =x 2n (7).2m ·2n =2m·n (8).b 4·b 4·b 4=3b 4 填空:(1)x 5 ·( )= x 8 (2)a ·( )= a 6(3)x · x 3( )= x 7 (4)x m ·( )=x 3m (5)x 5·x ( )=x 3·x 7=x ( ) ·x 6=x·x ( ) (6)a n+1·a ( )=a 2n+1=a·a ( )例.计算(1)(x+y)3 · (x+y)4 (2)26()x x -⋅-(3)35()()a b b a -⋅- (4)123-⋅m m a a (m 是正整数)(a m )n =______________(其中m 、n 都是正整数) (ab )n =______________变式训练5(1)()3877⨯- (2)()3766⨯- (3)()()435555-⨯⨯-.(4)()()b a a b -⋅-2(5)(a-b )(b-a)4(6) x x x x nn n ⋅+⋅+21(n是正整数)例6类型一 幂的乘方的计算 例1 计算⑴ (54)3⑵-(a 2)3⑶[]36)(a - ⑷[(a +b )2]4练习(1)(a 4)3+m ; (2)[(-21)3]2; ⑶[-(a +b )4]3类型二 幂的乘方公式的逆用例1 已知a x =2,a y =3,求a 2x +y ; a x +3y(1)已知a x =2,a y =3,求ax +3y(2)如果339+=x x ,求x 的值已知:84×43=2x,求x类型三 幂的乘方与同底数幂的乘法的综合应用 例1 计算下列各题(1)522)(a a ⋅ ⑵(-a )2·a 7⑶ x 3·x ·x 4+(-x 2)4+(-x 4)2(4)(a -b )2(b -a )变式训练6:填空题: (1)(m 2)5=________;-[(-21)3]2=________;[-(a +b )2]3=________. (2)[-(-x )5]2·(-x 2)3=________;(x m )3·(-x 3)2=________.(3)(-a )3·(a n )5·(a 1-n )5=________; -(x -y )2·(y -x )3=________. (4) x 12=(x 3)(_______)=(x 6)(_______).(5)x 2m (m+1)=( )m +1. 若x 2m =3,则x 6m =________.(6)已知2x =m ,2y =n ,求8x +y 的值(用m 、n 表示).例7 类型一 积的乘方的计算 例1 计算(1)(2b 2)5; (2)(-4xy 2)2 (3)-(-21ab)2(4)[-2(a -b )3]5. 练习(1)63)3(x (2)23)(y x - (3)(-21xy 2)2 (4)[-3(n -m )2]3.类型二 幂的乘方、积的乘方、同底数幂相乘、整式的加减混合运算 例2 计算(1)[-(-x )5]2·(-x 2)3 (2)n n n d c d c )()(221-(3)(x +y )3(2x +2y )2(3x +3y )2 (4)(-3a 3)2·a 3+(-a )2·a 7-(5a 3)3练习(1)(a 2n -1)2·(a n +2)3(2) (-x 4)2-2(x 2)3·x ·x +(-3x )3·x 5 (3)[(a +b )2]3·[(a +b )3]4类型三 逆用积的乘方法则 例1 计算 (1)82004×0.1252004; (2)(-8)2005×0.1252004.练习0.2520×240 -32003·(31)2002+21类型四 积的乘方在生活中的应用例1 地球可以近似的看做是球体,如果用V 、r 分别代表球的体积和半径,那么V =34πr 3。