221《整式的加减(合并同类项)
- 格式:doc
- 大小:72.50 KB
- 文档页数:3
2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。
2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。
6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。
七年级数学《整式的加减---合并同类项》说课稿(共5页)-本页仅作为预览文档封面,使用时请删除本页-七年级数学《整式的加减---合并同类项》说课稿七年级数学《整式的加减---合并同类项》说课稿范文一、教学目标:1、使学生理解多项式中同类项的概念,会识别同类项。
2、使学生掌握合并同类项法则,能进行同类项的合并。
3、通过观察、比较交流了解教学的分类思想,并能准确判断出同类项。
并熟练运用法则进行合并同类项的运算。
4、激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
二、教学重难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、教学方法:引导、探究式教学、合作、交流、观察、练习、四、教学过程:(一)情景导入:1、作为农村学生,我们都知道自己家的菜园里会把西红柿、黄瓜、茄子、葱分别栽培在一起,为何不把它们交叉种植呢?再如,在小学时,老师会让我们把水果和非水果进行分类,生活中处处有分类问题,在教学中我们也会遇到一种分类问题,今天我们就共同来学习。
根据下列单项式的特征试将其分类:8n、-7ab、3ab、2ab、6xy、5n、-3xy、-ab、2、形成概念:以上式子归为同类需要有什么共同的特征(引导学生看书,让学生理解同类项的定义)概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:(1)同类项与系数无关,与字母的排列顺序也无关(2)几个常数项也是同类项。
(二)强化练习:1、思考:下列各组中的两项是不是同类项为什么(1)ab与3ab;(2)2ab与2ab;(3)3xy与-xy;(4)2a与2ab(5)与;(6)5与b;2、请同学们思考下面的问题?3ab+5ab=_______理由是________-4xy2+2xy2=_______理由是_______-3a+2b=理由是_______3、不在一起的'同类项能否将同类项结合在一起为什么例如:试化简多项式3xy-4xy-3+5xy+2xy+5解:3xy-4xy-3+5xy+2xy+5--------------找出(用不同的标志把同类项标出来!)=3xy+5xy-4xy+2xy-3+5----------加法交换律=(3xy+5xy)+(-4xy+2xy)+(-3+5)--加法结合律=(3+5)xy+(-4+2)xy+2---------乘法分配律逆用=8xy-2xy+2----------合并探讨:合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?(三)例题讲解例:合并下列各式中的同类项:1).2ab-3ab+ab2).2ab+2ab+ab-ab3).6a-5b+2ab+b-6a解:1).2ab-3ab+ab=(2-3+)ab=-ab方法是:(1)系数:各项系数相加作为新的系数。
典型例题类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)与;(2)与;(3)与;(4)与答案与解析举一反三【答案与解析】本题应用同类项的概念与识别进行判断:(1)(4)是同类项;(2)不是同类项,因为与所含字母的指数不相等;(3)不是同类项,因为与所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同“.两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.【变式】下列每组数中,是同类项的是( ) .①2x2y3与x3y2②-x2yz与-x2y③10mn与④(-a)5与(-3)5⑤-3x2y与0.5yx2⑥-125与A.①②③ B.①③④⑥ C.③⑤⑥ D.只有⑥答案与解析【答案】C2.已知与是同类项,那么的值为__________,的值为_________.答案与解析举一反三【答案】1, 2【解析】根据同类项的定义可得:,解得:.【总结升华】概念的灵活运用.【变式】已知和是同类项,试求的值.答案与解析【答案】典型例题类型二、合并同类项3.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5答案与解析【答案与解析】(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每步照抄;第二步:利用分配律,把同类项的系数加在一起(用括号括起),字母和字母的指数保持不变;第三步:写出合并后的结果.4.已知,求m+n-p的值.答案与解析举一反三【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着与是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴m+n-p=1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.【变式】若与的和是单项式,则______,______.答案与解析【答案】4,2.典型例题类型三、化简求值5. 当时,分别求出下列各式的值.(1);(2)答案与解析举一反三【答案与解析】(1)把当作一个整体,先化简再求值:又所以,原式=(2)先合并同类项,再代入求值.解:当p=2,q=1时,原式=.【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.【变式】先化简,再求值:(1),其中;(2),其中,.答案与解析【答案】解本题的关键是先合并同类项再将值代入(1)原式,当时,原式=.(2)原式,当,时,原式=.类型四、“无关”与“不含”型问题6. 李华老师给学生出了一道题:当x=0.16,y=-0.2时,求6x3-2x3y-4x3+2x3y-2x3+15的值.题目出完后,小明说:“老师给的条件x=0.16,y=-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么? 【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【答案与解析】解:=(6-4-2)x3+(-2+2)x3y+15=15通过合并可知,合并后的结果为常数,与x、y的值无关,所以小明说得有道理.【总结升华】本题初看似乎无从下手,可试着将整式化简,再观察结果,就会给人一种柳暗花明的快感.【答案与解析】一、选择题1.【答案】B【解析】(1)0.2x2y和0.2xy2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.(2)4abc和4ac所含字母不同.(3)-130和15都是常数,是同类项.(4)-5m3n2和4n2m3所含字母相同,且相同字母的指数也相同,是同类项.2.【答案】B【解析】.3.【答案】C【解析】根据同类项的定义来判断.4.【答案】C【解析】和中相同的字母的次数不相同.5.【答案】D【解析】与互为相反数,故.6.【答案】A7.【答案】B【解析】a2+3a2=4a2.故选B.二、填空题:1.【答案】(答案不唯一)【解析】只要字母部分为“”,系数可以是除0以外的任意有理数.2.【答案】【解析】均为的系数,要使合并后为0,则同类项的系数和应为0 .3.【答案】1,34.【答案】【解析】原式=.5.【答案】【解析】此多项式共有五项,分别是:,显然没有同类项的项为.6.【答案】7.【答案】【解析】.三、解答题1.【解析】先根据同类项的定义,判断出同类项,然后再依据合并同类项的法则进行合并.解:在四个代数式中.2x2y与3x2y是一对同类项,且有2x2y+3x2y=5x2y.2.【解析】(1)原式==(2)原式==(3)原式==(4)原式==3.【解析】因为不含项,所以此项的系数应为0,即有:,解得:∴。
整式的加减(合并同类项)(通用版)试卷简介:理解同类项的定义,能进行合并同类项计算.一、单选题(共15道,每道6分)1.下列各项中,合并同类项正确的是( )A. B.C. D.答案:A解题思路:选项A中:,所以A选项正确;选项B中:和不是同类项,无法合并,所以B选项错误;选项C中:,所以C选项错误;选项D中:,所以D选项错误.故选A.注意:在合并同类项时,只是把同类项的系数相加,字母和字母的指数保持不变.试题难度:三颗星知识点:合并同类项2.若多项式的值与无关,则满足的关系式为( )A. B.C. D.答案:D解题思路:.∵上式与无关,∴.故选D.试题难度:三颗星知识点:合并同类项3.下列算式:(1);(2);(3);(4).其中正确的有( )A.0个B.1个C.2个D.3个答案:A解题思路:(1)和不是同类项,无法合并,所以(1)错误;(2),所以(2)错误;(3),所以(3)错误;(4)和不是同类项,无法合并,所以(4)错误;所以正确的算式有0个.故选A.注意:在合并同类项时,只是把同类项的系数相加,字母和字母的指数保持不变.试题难度:三颗星知识点:合并同类项4.一个两位数,十位上的数字为,个位上的数字为,且,将这个两位数的十位上的数字与个位上的数字对调后,所得的两位数和原数的差必是( )A.5的倍数B.11的倍数C.9的倍数D.不能确定答案:C解题思路:由题意可列数位表如下:所以,原数为,对调后得到的两位数为,所得的两位数和原数的差为,是9的倍数.故选C.试题难度:三颗星知识点:数位表示5.若多项式合并同类项后是一个三次二项式,则满足条件( )A. B.C. D.答案:C解题思路:∵上式是一个三次二项式,∴,∴.故选C.试题难度:三颗星知识点:多项式的次数、项数6.多项式合并同类项后不含项,则的值是( )A. B.C.-1D.1答案:A解题思路:∵上式中不含项,∴,∴.故选A.试题难度:三颗星知识点:合并同类项7.如图为某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位m),房的主人计划把卧室以外的地面都铺上地板砖.若他选用的地板砖的价格是元/m2,则买地板砖需要( )元A. B.C. D.答案:B解题思路:由题意得,需要铺地板砖的是卫生间、厨房、客厅,这三部分的总面积为,所以买地板需要的总钱数为元.故选B.试题难度:三颗星知识点:合并同类项8.若把看成一项,合并得( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:合并同类项9.化简的结果为( )A. B.0C. D.答案:D解题思路:故选D.试题难度:三颗星知识点:整式的加减10.化简的结果为( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的加减11.化简的结果为( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的加减12.化简的结果为( )A.0B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的加减13.化简的结果为( )A.0B.C. D.-4答案:B解题思路:试题难度:三颗星知识点:整式的加减14.如果代数式合并后不含项,则值分别是( )A.0,0B.5,-4C.-5,4D.-5,-4答案:C解题思路:∵上式不含项,∴.∴.故选C.试题难度:三颗星知识点:合并同类项15.化简的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式的加减。
2.2整式的加减(第1课时)一、内容和内容解析1.内容同类项的概念,合并同类项的法则.2.内容解析整式的加减运算是“数与代数”领域中最基本的运算,它是今后学习整式的乘除、因式分解、分式和根式运算、方程及函数等知识的重要基础.同类项及合并同类项的法则是学习整式的加减运算和一元一次方程的直接基础.整式的运算与数的运算具有一致性,整式中的字母表示数,因此数的运算性质和运算律在式的运算中仍然成立,可以类比数的运算来学习式的运算,用关于数的运算法则和运算律对式子进行变形和化简.这充分体现了“数式通性”及由数到式、由特殊(具体)到一般(抽象)的数学思想.合并同类项是把多项式中同类项合并成一项,经过合并同类项,多项式的项数会减少,这样多项式就得到了简化.同类项的概念是判断同类项的依据,“所含字母相同,相同字母的指数也相同”是同类项的本质特征.合并同类项的依据是数的运算律中的“分配律”,“合并” 是指同类项的系数相加,把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.基于以上分析,可以确定本节课的教学重点:同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的思想.二、教材解析本节课是整式的加减的第一课时,从章前引言中的问题(2)“在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?”出发,通过分析这个问题中的数量关系,列出式子100t +252t,引出对式子化简的问题.由字母表示数,运用类比思想,类比有理数的运算化简这个式子,引出了合并同类项的方法,重点引出合并同类项的依据是分配律,为更一般的同类项的合并提供方法指导.在此基础上类比式子100t+252t 的化简,讨论更一般的同类项(例如多项式中的项的次数高于1,字母不只一个等)的合并,然后分析几个式子的结构特征,抽象出同类项的特点,得出同类项的概念和合并同类项的方法.通过例题理解和巩固同类项的概念和合并同类项的方法,为继续学习整式的加减打基础.本节课重点是同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的数学思想.学生在学习中对正确判断同类项,准确合并同类项会有困难.要使学生会辨别同类项,必须准确地掌握判断同类项的两条标准(字母和字母指数).要准确合并同类项,必须理解整式中的字母表示数,整式的运算与数的运算具有一致性,因此依据分配律可以把多项式中同类项合并成一项.教学中充分运用类比的思想方法,探究合并同类项的法则,理解合并同类项的依据是分配律,理解数的运算性质和运算律在式的运算中仍然成立,体会“数式通性”.三、教学目标和目标解析1.教学目标(1) 理解同类项的概念;(2) 掌握合并同类项的方法;(3) 通过类比数的运算探究合并同类项的法则,从中体会数式通性和类比的思想.2.目标解析达成目标(1)的标志:会根据“所含字母相同,相同字母的指数也相同”的标准判断同类项,并说出判断的依据,会举例说明同类项,会在一个多项式中找到同类项;达成目标(2) 的标志:能准确合并同类项,并说出合并的方法,能通过合并同类项进行多项式的化简;目标(3)是“内容所蕴涵的思想方法”,学生需要体会的是在化简含有字母的式子时,由于整式中的字母表示数,字母可以像数一样参与运算,算式与含有字母的式子有相同的结构,可以对比数的运算,运用分配律合并同类项,体会“数式通性”和类比的数学思想.四、教学问题诊断分析在前面的学习中,学生已经掌握有理数的运算,了解字母表示数的意义,这些知识对本课的学习有着铺垫作用.七年级学生的认知水平、抽象概括能力和迁移能力都有待逐步提高,学生从熟悉的数的运算到理解含有字母的式子的运算,需要一个过程.在进行整式的加减运算时,对于如何判断同类项,为什么可以把同类项进行合并,如何合并同类项,学生理解和运用起来还是有困难的.还需要教师引导学生进行“数”与“式”的类比,正确分析含有字母的式子的结构,帮助学生理解由于字母表示数,字母可以像数一样参与运算,因此可以运用分配律合并同类项.教学中要多展示找同类项及合并同类项的过程,积累感性经验,丰富学习体验,逐步达到对“式”的运算的理解.本课的教学难点:正确判断同类项,准确合并同类项.人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计五、教学过程设计1.创设情境,引入课题问题1 青藏铁路西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的 2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?师生活动:学生尝试解答.如果学生得到100t+120×2.1t=100t+252t,教师可以追问:这个式子的结果是多少?你是怎样得到的?说明其中的道理.如果学生直接得到352t,教师可以追问:这个结果是怎样得到的?说明其中的道理.此环节教师应关注:(1)学生能否正确列式;(2)学生能否依据分配律化简100t+252t,并说明其中的道理;(3)学生能否体会在实际生活中,经常遇到含有字母的式子的运算问题.教师归纳:在实际生活中,经常遇到含有字母的式子的运算问题,学习含有字母的式子的运算是实际的需要,整式的运算是建立在数的运算基础之上的.【设计意图】引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要.理解化简100t +252t 的方法是运用分配律,初步体会“数式通性”,促使学生的学习形成正迁移.2.类比探究,学习新知问题2 整式的运算是建立在数的运算基础之上的,对于有理数的运算是怎样进行的呢?整式的运算与有理数的运算有什么联系?(1)运用运算律计算:100×2+252×2=;100 ×(-2)+252 ×(-2)=.师生活动:学生尝试回答,根据分配律可得100 ×2+252 ×2=(100+252)×2=352×2=704;100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)教师追问:式子100t+252t 与问题2中的两个算式有什么联系?你是如何理解化简式子100t+252t 的方法的?师生活动:学生尝试解释,教师根据学生回答情况进行引导.教师引导学生归纳:①算式100×2+252×2与100×(-2)+252×(-2)实际上是在式子100t +252t 中,当t取2和-2时的算式,由于字母t代表的是一个因(乘)数,它们有相同的结构,因此根据分配律应有100t+252t=(100+252)t=352t.②整式中的字母表示数,因此可以类比数的运算,运用数的运算法则和运算律进行整式的运算.整式的运算与数的运算具有一致性,数的运算性质和运算律在式的运算中仍然成立,这体现了“数式通性”.【设计意图】回顾用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t +252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解式子100t+252t 中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想.(2)类比式子100t+252t 的运算,化简下列式子:①100t-252t;②3x2+2x2;③3ab2-4ab2.师生活动:学生先尝试独立解答,学生代表发言.此环节教师应关注:①学生在计算100t-252t 时,注意分配律的使用,正确区分运算符号和性质符号,即100t-252t=[100+(-252)]t=-152t;②学生能否正确理解运用分配律化简式子时“系数相加,字母连同它的指数不变”的道理.【设计意图】进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不只一个)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想.通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则作铺垫.问题3 观察多项式100t+252t,100t-252t,3x2+2x2,3ab2-4ab2.(1)上述各多项式的项有什么共同特点?(2)上述多项式的运算有什么共同特点?你能从中得出什么规律?师生活动:学生先独立思考,然后小组合作讨论,小组代表发言.教师巡视,指导学生归纳和表达.在讨论交流的基础上,教师引导学生归纳各多项式的项的共同特点:(1) 每个式子的两项含有相同的字母;(2) 并且相同字母的指数也相同.上述运算的共同特点:(1)根据分配律把多项式各项的系数相加;(2)字母连同它的指数保持不变.教师给出定义和法则:(1) 所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.(2) 把多项式中的同类项合并成一项,叫做合并同类项.(3) 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.此环节教师应关注:(1)学生能否理解判断同类项的两条标准;(2)学生能否理解合并同类项的要点,一是“字母连同它的指数不变”,既包含字母不变,也包含字母的指数不变,二是“系数相加减”.【设计意图】在观察、比较中发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的概念及合并同类项的法则,培养观察、分析和抽象概括能力.问题4 你能举出一个同类项的例子吗?师生活动:学生代表举出同类项的例子,由其他学生合并所给出的同类项.教师在评价学生举例后,追问合并同类项的结果.【设计意图】通过举例,加深对同类项的概念和合并同类项法则的理解.问题5 化简多项式的一般步骤是什么呢?通过如下例题说明,找出多项式4x2+2x+7+3x-8x2-2 中的同类项并进行合并,思考下面的问题:每一步运算的依据是什么?应注意什么?学生尝试口述解题,教师适时追问,教师示范解答过程.解:4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2)+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5.(按字母x降幂排列)教师引导学生归纳步骤:(1) 找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4) 按同一个字母的降幂(或升幂)排列.此环节教师应强调:(1)运用交换律、结合律将多项式变形时,不要丢掉各项系数的符号;(2)不要漏项;(3)运算结果通常按某一个字母的指数由大到小(降幂)或者由小到大(升幂)的顺序排列.【设计意图】类比数的运算,利用交换律、结合律、分配律将多项式中的同类项进行合并,归纳运算步骤和注意的问题,进一步体会“数式通性”,发展类比的数学思想.3.学以致用,应用新知例1 合并下列各式的同类项:2- 1 2(1) xy2-xy ;5(2) -3x2y+2x2y+3xy2-2xy2;(3) 4a2+3b2+2ab― 4a2― 4b2.学生先独立完成,然后互相纠错、评价,学生代表板演,教师巡视指导.【设计意图】加深对同类项的概念和合并同类项法则的理解和运用,提高运算能力.4.基础训练,巩固新知练习1 判断下列说法是否正确,正确的在括号内打“√,”错误的打“×.”(1) 3x 与3mx 是同类项;( )(2) 2ab 与-5ab 是同类项;( )1(3) 3xy2与2y2x 是同类项;( )(4) 5a2b 与-2a2bc 是同类项;( )(5) 23与32是同类项.( )【设计意图】进一步巩固同类项的概念.练习2 填空:(1) 若单项式2x m y3与单项式-3x2y n是同类项,则m=,n=.(2) 单项式-6ab2c3的同类项可以是(写出一个即可).(3) 下列运算,正确的是(填序号).① 2a+3a=5a2;②5a2b-3ab2=2ab;③3x2-2x2=x2;④6m2-5m2=1.(4) 多项式3ab-6a2b2-8ab2+4a2b2-9ab+2ab2-5,其中与ab2是同类项的是;与a2b2是同类项的是;将多项式中的同类项合并后结果是.【设计意图】进一步巩固同类项的概念和合并同类项的法则.5.小结归纳,自我完善教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)你能举例说明同类项的概念吗?(3) 举例说明合并同类项的方法.(4) 本节课主要运用了什么思想方法研究问题?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——同类项的概念,合并同类项的概念和法则,感受“数式通性”和类比的数学思想.布置作业:教科书第65页练习第1题,习题2.2 第1题.六、目标检测设计1.下列各组中的两项,属于同类项的是( ) .1A.a2与a B.-0.5ab与ba C.a2b与ab2D.a与b2【设计意图】检测学生用同类项的概念判断同类项.2.下列运算,正确的是( ).A.3a+2b=5ab B.3a2b-3ba2=0C.2x3+3x2=5x5 D .5y2-4y2=1【设计意图】通过几个合并同类项问题的辨析,引起对合并同类项产生错误的原因的分析和思考,检测学生对合并同类项法则的理解和运用.3.若单项式-3a m b2与单项式1a3b n是同类项,则m=,n=.3【设计意图】检测学生对同类项概念的理解.4.合并下列各式的同类项:(1) -a +0.5a +2.5a ;(2)7a+3a-2a-a +3;(3) 3x2-2xy-x2+5xy;(4) 3x3-3x2-y2+5y+x2-5y+y2.【设计意图】检测学生掌握合并同类项化简多项式的情况.。
2.2整式的加减(合并同类项)
教学任务分析
教
学
目
标
知识与技能
过程与方法1、通过类比数的运算律得出合并同类项的法则,发展类比的
数学思想方法
2、通过化简列式问题引出同类项的概念,发展学生探究能力
情感态度与
价值观
激发学生的求知欲,培养独立思考和合作交流的能力,让他
们享受成功的喜悦。
教学重点同类项的概念、合并同类项的法则及应用。
教学难点正确判断同类项;准确合并同类项。
教学过程设计
教学过程备注[活动1]
创设情景,引入问题
[活动2]
讲授新课
1、问题1 (1) 运用有理数的运算律计算:
100×2+252×2=_
100×(-2)+252×(-2)=_
(2)根据(1)中的方法完成下面的运算,并说明其中的道理:
100t+252t = _
运用上面的结论探究并填空:
(1)3x2+2x2=( ) x2
(2)3ab2-4ab2=( )ab2
(3)100t-252t =( )t
上述运算有什么共同特点,你能从中得出什么规律?
总结:上面的三个多项式都可以合并为一个单项式,具备什么特点的多项式可以合并呢?你认为下面的单项式哪些可以合并在一起呢?
(1)3ab (2)2x 2y (3)-7ab (4)-8ab 2 (5)4a 2b (6)5x 2y
2、相关概念:
同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。
3、 例1、合并下来各式的同类项:
教师师范(2),学生独立完成(1)与(3),重点让学生能熟练判别哪
些是同类项,并能正确合并。
4、例2:
学生独立完成,教师巡视指导。
可以引导学生对以下两种方法进行比较:直接带入求值,先化简再求值,看哪种方法更简单。
例3:(1)水库中水位第一天连续下降了a 小时,每小时平均下降2㎝;第二天连续上升了a 小时,每小时平均上升0.5㎝,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x 千克。
上午卖出3袋,下午又购进同样包装的大米4袋。
进货后这个商店有大米多少千克?
教师引导学生回忆第一章用正负数代表具有相反意义的量,然后由学生独立完成。
解: (1)-2a+0.5a =(-2+0.5)a =-1.5a(㎝)
答:这两天水位总的变化情况为下降了 1.5a ㎝
(2)把进货的数量记为正,售出的数量记为负。
进货后这个商店共有大米 5x-3x+4x =(5-3+4)x =6x (千克)
[活动3]
练习:
1、 课本P66练习第1、
2、3题。
2、 下列各组是同类项的是( )
A 2x 3与3x 2
B 12a x 与8b x
C x 4与a 4
D π与-3
3、 –x m y 与45y n x 3是同类项 ,则 m=_______. n=______
.
44234)3(;2323)2(;5
1)1(2222222222b a ab b a xy x y y x y x xy xy --++-++--;21x 2-3x -45x -x 2)1(222=++其中的值,
求多项式x x .3,2,61a ,c 313a -c 31-3)2(22-==-=++c b abc a 其中的值求多项式
[活动4]。