调节阀的选型经验
- 格式:docx
- 大小:14.20 KB
- 文档页数:4
调节阀的选型0 引言调节阀是调节系统中非常重要的一个环节,在生产实践中控制系统的正常与否,常常涉及到调节阀的问题。
调节阀所反应出来的问题又多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径、阀芯引程及流量特性等。
在这些参数中,流通能力更重要,它的大小直接反映调节阀的容量,它是设计选型中的主要参数。
因此,调节阀的选择主要从以下几个因素进行考虑。
1 选择原则(1)满足自控系统的要求;(2)满足经济性的要求。
2 调节阀流量系数Cv及口径的计算(1) 流量系数C v(流通能力)的定义为:调节阀前后的压差为1Kg/cm2,重度为1g/cm2流体,每小时通过阀门的体积流量(m3/h)。
调节阀流量系数C v的计算方法很多,也比较繁琐,以下列出几种主要流通介质的C v值的计算方法。
表1 液体阻塞流:当阀前压力P1保持一定而阀后压力P2逐渐降低时,流经调节阀的流体流量会增加到一个极限值,这时即使P2再继续降低,流量也不会再增加,此极限流量即为阻塞流。
显然,形成阻塞流之后,相当于流量已达到饱和状态(临界状态),这时流经调节阀的流量不再随调节阀前后的压差△P的增加而增加。
因此,流体在阀内是否形成阻塞流,调节阀C值的计算公式将不一样。
判断是否是属于阻塞流的情况,就可以决定取用相应的C值计算公式。
(表2)情况相同。
表2 气体和蒸汽上表2中:C v—调节阀流量系数C f—临界流量系数G f—流体流动温度下的比重(水G f=1,15℃;空气G f=288G/T)G—气体比重(空气G=1.0)P1—调节阀进口压力,0.1MPa(绝对)P2—调节阀出口压力,0.1MPa(绝对)P v—液体流动温度下的饱和蒸汽压力,0.1MPa(绝对)P c—热力学临界压力,0.1MPa(绝对)Δp—压降,100kPa(ΔP=P1- P2)Δp s—口径计算用最大压降,0.1MPaΔp s=P1-(0.96- 0.28P v/P c)P v若P v<0.5P1,ΔP s=P1- P vq—液体流量,m3/hQ—气体流量,标准m3/h(15℃,绝对压力为101.3kPa时)T—绝对温度,K(K=273+℃)T sh—蒸汽过热温度,℃(饱和蒸汽T sh=0)W—流量,t/h(2) 阀口径的计算,根据生产能力、设备负荷、以被控介质的工况决定流通能力计算所需的数据,求得最大、最小流量时的C v max和C v min。
调节阀的选型依据
调节阀是工业现场不可或缺的流量调节设备之一,那么如何选择
一款适合自己需要的调节阀呢?下面就为大家介绍调节阀的选型依据:首先,根据流体介质的特性选型。
流体包括气体、液体和蒸汽,
在选型前需要了解流体的温度、粘度、密度、压力变化等参数,以便
进行匹配选择。
其次,根据流量变化情况选型。
通常,流量调节阀的调节范围是10:1或20:1,而超调范围在±5%~±10%之间,因此在选型前,需要
清楚了解实际工况下的流量范围,以便选择合适的调节阀。
第三,考虑阀门的执行机构。
阀门的执行机构根据不同的使用环
境可以分为手动、气动、电动等多种,需要根据现场实际情况进行选择。
如果环境复杂,需要远程控制,那么选择气动或电动阀门会更为
便捷。
第四,考虑安装环境。
调节阀的安装环境通常需要考虑阀门的防
爆等级、密封性、承压能力、安装方式等因素。
例如,在液化气体工
况下,需选用防爆等级较高的调节阀,比如说防爆设计的角行程式控
制阀。
第五,考虑配套件的选择。
配套的附件包括阀门定位器、阀门位
置传感器、防爆限位器、加热器等,也需要根据实际情况选择。
综上所述,对于调节阀的选型,需要综合考虑流体介质的特性、流量变化情况、阀门执行机构、安装环境、配套附件等多重因素,以达到最佳匹配。
电动调节阀如何选型
1、电动调节阀选用主要控制参数为:公称直径、设计公称压力、介质允许温度范围、流量系数等。
2、对于要求流量和开启高度成正比例关系的严格场合,应选用合适的调节阀。
球阀和蝶阀一般粗调时可以选用。
3、阀门的密封性能是考核阀门质量优劣的主要指标之一。
阀门的密封性能主要包括两个方面,即内漏和外漏。
内漏是指阀座与关闭件之间对介质达到的密封程度。
外漏是指阀杆填料部位的泄露,中口垫片部位的泄露以及阀体因铸造缺陷造成的泄露。
外漏是不允许发生。
4、调节阀理想流量特性有快开、抛物线、线性、等百分比四种,需根据实际工作流量特性选择具有合适流量特性的调节阀。
5、调节阀公称直径的选取应根据所需阀门流通能力确定。
调节阀公称直径不应过大或过小。
过大,增加工程成本,并且阀门处于低百分比范围内,调节精度降低,使控制性能变差。
过小,增加系统阻力,甚至会出现阀门全开启时,系统仍无法达到设定的容量要求。
6、调节阀的调节压差和关断压差对于调节阀,其允许的调节压差和关断压差是其选型的重要指标。
实际压差如高于调节阀允许的调节压差,阀门会出现不能准确调节的问题,严重的会损伤阀门执行器。
调节阀的选型依据引言调节阀是一种用来调节流体介质流量、压力和温度的重要设备,在工业生产中具有广泛的应用。
正确选型的调节阀能够确保系统的稳定运行,提高生产效率和产品质量。
本文将从工作介质、工艺参数、工作条件和设备特性等方面,对调节阀的选型依据进行全面探讨。
工作介质1.确定工作介质的性质和特点,包括流体性质、温度、压力、浓度等。
2.根据介质的物理和化学特性,选择适用的材料,如不锈钢、碳钢、铸铜等。
3.考虑介质的腐蚀性、粘度、黏度等因素,选择合适的阀内件材料和密封材料。
工艺参数1.确定工艺参数,如流量、压力降、温度变化范围等。
2.根据实际需求,选择合适的流量调节方式,如直接调节、比例调节或开关调节。
3.考虑工艺参数的变化范围和变化速率,选择合适的调节阀动作方式和响应速度。
工作条件1.考虑工作环境的温度、湿度、震动等因素,选择合适的阀体结构和密封方式,确保阀门的稳定性和密封性。
2.根据工作条件确定阀门的安装方式,如立式安装、卧式安装或倾斜安装。
3.考虑工作条件的特殊要求,如防爆、防火、防静电等,选择符合要求的调节阀型号和认证标准。
设备特性1.考虑调节阀的调节范围和流通特性,选择适合工艺要求的调节阀型号,如直线特性、等百分比特性等。
2.根据设备的用途和工艺流程,选择合适的流道形式和结构,如直通式、角式或蝶式。
3.考虑设备的可靠性和维护性,选择通用型或特殊型调节阀。
选型方法1.根据前述的工作介质、工艺参数、工作条件和设备特性,列出各项要求。
2.确定各项要求的重要性和优先级,进行权衡和取舍。
3.根据要求和现有的调节阀资料,进行筛选和比较。
4.选择满足要求且性价比最高的调节阀型号。
结论调节阀的选型依据包括工作介质、工艺参数、工作条件和设备特性等方面。
在选型过程中,需要综合考虑各种因素,并进行合理的权衡和取舍。
正确选型的调节阀能够确保系统的稳定运行,提高生产效率和产品质量。
因此,在实际应用中,需要根据具体情况和要求,选择合适的调节阀型号。
电动调节阀的选型与应用电动调节阀是一种通过电动执行器来控制阀门开度,实现流体调节的装置。
在选择和应用电动调节阀时,需要考虑多个因素,以确保其能够满足特定的工艺要求和应用条件。
以下是一些选型和应用的考虑因素:1.流体性质:考虑流体的种类、温度、压力以及含有的固体颗粒或腐蚀性成分。
不同流体对阀门材料和密封要求可能有不同的影响。
2.流量要求:确定所需的流体流量范围和调节精度。
这将影响电动调节阀的尺寸、流通能力和调节性能的选择。
3.阀门类型:根据具体应用需求选择适当类型的电动调节阀,例如截止阀、调节阀、蝶阀等。
不同类型的阀门适用于不同的流体控制场景。
4.电动执行器类型:考虑使用的电动执行器类型,如电动脚踏阀、电动直行阀、电动旋塞阀等。
选择电动执行器时需要考虑执行器的扭矩、速度、精度以及控制信号等特性。
5.阀体和密封材料:根据流体性质和温度要求选择适当的阀体材料和密封材料。
不同材料对于腐蚀、耐高温或耐低温的性能有所差异。
6.环境条件:考虑安装位置的环境条件,如温度、湿度、震动和腐蚀性环境。
选择符合环境条件的电动调节阀。
7.控制信号:确定控制系统的类型,例如模拟信号(4-20mA、0-10V)或数字信号(MODBUS、Profibus等)。
选择与控制系统兼容的电动调节阀。
8.安全和可靠性:考虑阀门的安全性能和可靠性,特别是在关键工艺中需要确保阀门的可靠运行和紧急切断的能力。
9.维护和服务:选择易于维护和维修的电动调节阀,确保系统能够快速响应和恢复正常运行。
在选择和应用电动调节阀时,通常需要进行详细的系统分析,与制造商或供应商沟通,以确保选型符合具体应用的要求,并满足工艺控制的需要。
建议收藏——调节阀选型方法总结自动控制系统是通过执行器对被控对象进行作用的。
调节阀是生产过程自动化控制系统中最常见的一种执行器。
调节阀直接与流体接触控制流体的压力或流量。
正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。
如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。
因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。
1调节阀结构形式的选择常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。
对调节阀进行结构的选择时,要根据相应的管路及介质条件,按照如下优选顺序进行选择①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀,只有当前一优选级别的阀门再某一方面不合适时,才考虑选择下一级类型的阀门。
注:关于调节阀的调节特性的评定调节阀的流量调节性能一般通过流量特性、可调比、小开度工作性能、Kv值和动作速度进行综合评价。
调节性能以其流量特性曲线进行衡定,一般认为等百分比特性为最优,其调节稳定,调节性能好,最利于流量压力调节。
而抛物线特性又比线性特性的调节性能好,快开特性为最不利于流量调节的流量特性。
因此在选用调节阀时,一般希望调节阀流量特性曲线为等百分比型。
可调比反映了调节阀的可调节流量范围,调节阀的可调比就是调节阀所能控制的最大流量与最小流量之比。
可调比也称可调范围,以R来表示,即R=Qmax/Qmin,Qmax为调节阀的最大可控流量,Qmin为调节阀的最小可控流量。
一般认为R的值越大,则调节阀的可调节范围越。
教你九招准确选择调节阀1、阀型的选择:(1)确定公称压力,不是用PMAX去套PN,而是由温度、压力、材质三个条件从表中找出相应的PN并满足于所选阀之PN值。
(2)确定的阀型,其泄漏量满足工艺要求。
(3)确定的阀型,其工作压差应小于阀的允许压差,如不行,则须从特殊角度考虑或另选它阀。
(4)介质的温度在阀的工作温度范围内,环境温度符合要求。
(5)根据介质的不干净情况考虑阀的防堵问题。
(6)根据介质的化学性能考虑阀的耐腐蚀问题。
(7)根据压差和含硬物介质,考虑阀的冲蚀及耐磨损问题。
(8)综合经济效果考虑的性能、价格比。
需考虑三个问题:A、结构简单(越简单可靠性越高)、维护方便、备件有来源;B、使用寿命;C、价格。
(9)优选秩序。
蝶阀-单座阀-双座阀-套筒阀-角形阀-三通阀-球阀-偏心旋转阀-隔膜阀。
2、执行机构的选择:(1)最简单的是气动薄膜式,其次是活塞式,最后是电动式。
(2)电动执行机构主要优点是驱动源(电源)方便,但价格高,可靠性、防水防爆不如气动执行机构,所以应优先选用气动式。
(3)老电动执行机构笨重,我们已有电子式精小型高可靠性的电动执行机构提供(价格相应高)。
(4)老的ZMA、ZMB薄膜执行机构可以淘汰,由多弹簧轻型执行机构代之(性能提高,重量、高度下降约30%)。
(5)活塞执行机构品种规格较多,老的、又大又笨的建议不再选用,而选用轻的新的结构。
3、材料的选择:(1)阀体耐压等级、使用温度和耐腐蚀性能等方面应不低于工艺连接管道的要求,并应优先选用制造厂定型产品。
(2)水蒸汽或含水较多的湿气体和易燃易爆介质,不宜选用铸铁阀。
(3)环境温度低于-20℃时(尤其是北方),不宜选用铸铁阀。
(4)对汽蚀、冲蚀较为严重的介质温度与压差构成的直角坐标中,其温度为30 0℃,压差为1.5MPA两点连线以外的区域时,对节流密封面应选用耐磨材料,如钴基合金或表面堆焊司特莱合金等。
(5)对强腐蚀性介质,选用耐蚀合金必须根据介质的种类、浓度、温度、压力的不同,选择合适的耐腐蚀材料。
调节阀基本选型原则一、调节阀结构形式选择及选择时应注意的问题1、根据工艺要求、调节功能、泄露等级及切断压差、耐压及耐温、冲蚀、气蚀及腐蚀、流体介质、使用生命周期、维护及备件、性价比等,建议选择顺序是:单双座(Globe)、笼式单双座(Cage)、偏心旋转阀、蝶阀、角阀、球阀(V.O)、三通阀、特殊调节阀等。
2、调节阀结构形式选择时注意的问题a、严密关闭阀(TSO)选择顺序为:球阀、单座阀、偏心阀、蝶阀、角型阀等。
阀芯阀座密封型式:——阀芯硬密封/阀座应密封,用于不干净介质、高温、高压、高压差场合,泄露等级5级;——阀芯硬密封/阀座软密封,用于一般场合,泄露等级5级或6级;——必须提出最大切断压差,是选择阀的关键条件之一;——必要时提出紧急切断动作时间。
b、高温高压、高差压阀选择顺序为:角型阀、单座阀、套筒阀。
——特别注意“空化(cavitation,气蚀、空蚀)”、“阻塞流(闪点)”导致阀芯。
阀座损坏,带来噪音和振动的危害;锅炉主给水调节阀、给水旁路阀调节。
给水再循环调节阀。
减温水调节阀、凝结水再循环调节阀。
锅炉连续排污调节阀、减温水调节阀。
凝结水再循环调节阀、锅炉连续排污调节阀、高压蒸汽压力调节、合成氨高压差调节阀等;——高压、高压差调节阀阀体选用锻钢件;——高压、高压差调节阀应选用带多级套筒式、多级阀芯式、多级叠板式等防空化组件;二、调节阀的作用方式选择a、根据工艺生产安全确定气开阀(FC-气源故障时阀关),气关阀(FO-气源故障时阀开),由工艺专业确定并在PID表示。
b、执行机构作用方式的选择正作用:信号增加,推杆向下运动;反作用:信号增加,推杆向上运动;——建议单导向(FO)配正作用执行机构;单导向(FC)配反作用执行机构;双导向(FC/FO)配正作用执行机构。
三、调节阀执行机构选择根据可靠性、经济性、动作平稳、足够的输出力、结构简单、维护方便、重量轻等因素,建议选择顺序:气动薄膜执行机构(直行程用)、气缸执行机构(单气缸弹簧复位、双气缸)直行程、角行程均适用、电动执行机构(包括马达驱动阀MOV)、液动执行机构。
1、调节阀的选用概述下面具体地论述了所有的阀门类型,如球形阀、球阀、蝶阀、偏心旋转阀、隔膜阀及用于控制的其他类型的阀门。
这份资料使用户知道每种类型阀门的操作条件范围和口径大小,以及随着环境和使用场合的不同,一种类型阀门的性能与另一种阀门性能的差别。
一种类型阀门的性能实际上是与价格和质量有关系的。
控制质量与不同稳定度下的粗略的、适度的或精确的流量控制、可调范围(调节比)和阀内件寿命有关。
正确的阀门必须和合适的仪表一起使用,使其在控制系统的动态特性中起适当的作用。
考虑到选择调节阀包括许许多多的变量,这里只能给出一般性的指导原则。
下面给出的表格指了调节阀口径的典型颁布情况。
调节阀口径在加工工厂中的典型颁布情况口径累积的百分数等于或小于1?英寸调节阀总数的65%等于或小于2英寸调节阀总数的83%等于或小于3英寸调节阀总数的91%等于或小于4英寸调节阀总数的96%阀门的选用一般考虑采用下述的操作变量来选择阀门的类型,它能够用来处理已规定的操作条件:1)管线压力(阀门压力等级)。
2)流量(在流动状态下的Cv值,与阀门的口径有关)。
3)压差(在节流稳定、低噪音、防气蚀及较小磨损下的许用△P)。
4)操作温度范围(与结构及使用的材料有关)。
5)腐蚀率(与具体的阀门类型中经济地使用材料有关)。
评价的因素对于具体的应用场合,用哪种阀门最好、这取决于下述因素的相对重要性: 1)噪音级——小于90分贝(A)和(或)达到声带的阻塞流量。
(随着下游压力的降低,限制了流量的增加)。
2)气蚀——大于起始值(较小的)在气蚀状态下的阻塞流量。
3)闪蒸——阀门的口径是按阻塞流量计算的,阀体材料能够耐较大的磨蚀。
4)磨蚀——用结构和硬化的阀内件来减小或补偿。
5)节流稳定性——满足工艺流量和压力变化的需要。
6)价格总的价格包括:采购、安装、操作动力及维修。
7)口径大小——适合于可以使用的空间。
考虑配管强度、地震力、管道的大小头与管线尺寸的关系及阀体与缩小流通面积阀内件的关系。
调节阀的计算选型调节阀是工业自动化中需要使用的一种控制元件,用于调节流体介质的流量、压力和液位等参数。
在正确选型调节阀的过程中,需要考虑多个因素,包括流体介质的性质、工艺参数要求、使用条件、压力、温度范围、流量范围和控制要求等。
1.流体介质的性质:首先,需要了解流体介质的性质,包括流体的类型(液体、气体或气液两相流等)、物理性质(密度、粘度、比热、蒸发潜热等)、化学性质(酸碱性、腐蚀性等)、颗粒物质的含量等。
这些性质将影响阀门材质的选择、密封材料的选型以及其它相关参数。
2.工艺参数要求:根据工艺参数要求,选择合适的调节阀类型。
常见的调节阀类型有节流阀、电动调节阀、气动调节阀等。
不同类型的调节阀有不同的控制方式和性能特点,根据具体要求进行选择。
3.使用条件:考虑到使用条件的限制和要求,包括压力范围、温度范围、流量范围等。
阀门的选型需要满足工况条件下的安全性、可靠性和稳定性,同时还要考虑其在实际工作环境中的适用性。
4.控制要求:根据实际工艺流程的要求,确定调节阀的控制方式和控制性能。
控制方式可以是开关式(如自动调节)、比例式(根据输入信号进行调节)、自动调节式(通过传感器反馈信号进行自动调节)等。
根据控制要求,选择合适的阀门执行器和信号变送器等配套设备。
5.压力特性和流量特性:调节阀的压力特性指的是阀门开度与流体通过的压力损失之间的关系。
常见的压力特性有线性特性、等百分比特性、快速反应特性等。
根据具体的调节要求,选择适合的压力特性。
调节阀的流量特性指的是阀门开度与流量之间的关系。
常见的流量特性有线性、快开、平滑开孔等。
根据调节要求和流体介质的特性,选择合适的流量特性。
6.材料选择:根据流体介质的性质和使用条件,选择合适的阀门材料。
常见的阀门材料有铸铁、碳钢、不锈钢、塑料等。
材料的选择需要考虑耐腐蚀性、耐磨性、耐高温性等因素。
7.阀门尺寸和连接方式:根据流量要求和管路尺寸确定阀门的尺寸和连接方式。
通常需要确定阀门的额定通径、法兰标准、连接方式等。
调节阀的正确选型及注意事项调节阀是工业过程控制系统中的终端执行元件,工业过程连续生产自动控制系统中一般均需要用调节阀来控制过程生产中的各种工艺参数,来达到对流体的压力、温度、流量和液位等参数的调节,通常被人们称之为工业过程自动化生产中的“手和脚”。
它的应用质量直接反应在系统的调节品质上。
作为过程控制中的终端执行元件,人们对它的重要性较过去有了更深刻地认识。
调节阀应用的好坏,除产品质量和用户是否正确安装、使用与维护外,正确地计算选型十分重要。
由于计算选型的失误,造成系统运行不稳定,有的甚至无法投用的例子很多。
所以,用户及系统设计人员要充分认识到调节阀在现场的重要性,必须对调节阀的选型引起足够的重视。
??? 调节阀选型的一般原则是:在满足使用功能的前提下,所选的调节阀应结构简单、性能可靠、价格低廉、寿命长、维护方便等。
下面着重介绍调节阀阀型的选择和和附件的选择。
??? 1 调节阀阀型的选择??? 调节阀的分类方法很多,目前国内和国际上通常采用的一种分类方法是按结构、原理和作用划分,总共为9大类,即直通单座调节阀、直通双座调节阀、套筒调节阀、角形调节阀、三通调节阀、隔膜阀、蝶阀、球阀和偏心旋转阀,这九类产品是最基本、最普通的产品,通常也称为标准型产品,其它在此基础上结合实际应用改进而来的,称为特殊型产品。
??? 1.1 标准型调节阀的特点及正确选择??? 1.1.1 直通单座调节阀??? 直通单座调节阀只有一个阀芯和一个阀座,容易实现严格的密封,可采用金属与金属的硬密封,或金属与聚四氟乙烯或其它复合材料的软密封,标准泄漏量为0.01%C(C是额定流量系数),允许压差小,流通能力小,比如DN100单座调节阀的允许压差仅120kPa,流通能力仅为100。
流路复杂,结构简单,适用于泄漏要求严格、工作压差较小的干净介质的场合,但小规格的调节阀(DN1/2、3/4、20)亦可用于压差较大的场合,是应用最为广泛的调节阀之一,当进一步设计后,可作为切断阀使用。
阀芯形状决定了流量特性,受冲刷后失去原有特性,更换阀芯可改变流量特性。
但流体介质对阀芯的推力大,即不平衡力大,需配推力较大的执行机构,因此,在高压差、大口径的应用场合,不宜采用这类调节阀。
选用此阀应特别注意压差校核,防止被顶开。
??? 1.1.2 直通双座调节阀??? 直通双座调节阀有两个阀芯和两个阀座,由于上阀芯所受向上推力和下阀芯所受向下推力基本平衡,因此,整个阀芯所受不平衡力小,允许压差大,比如DN100双座调节阀允许压差280kPa,流通能力大,与相同口径的其它调节阀相比,双座调节阀可流过更多流体,同口径双座调节阀流通能力比单座调节阀流通能力约大20%~50%。
例如,DN100双座调节阀的流通能力达160。
因此,为获得相同的流通能力,双座调节阀可选用较小推力的执行机构。
双座调节阀采用顶底双导向,因此,正体阀和反体阀的改装方便,即只需将阀芯和阀座反过来安装就能将正体阀改为反体阀,或者将反体阀改为正体阀,而不需要改选执行机构的正作用或反作用类型。
双座调节阀的上、下阀芯不能同时保证关闭,泄漏量较大,标准泄漏量为0.1%C(C是额定流量系数);流路复杂,不适用于高压差的应用场合,因为在该种应用场合,阀受到高压流体的冲刷较为严重,并且容易形成闪蒸和空化,加重对阀体的冲刷,同样它也不适用于含纤维介质和高黏度流体的控制。
??? 1.1.3 套筒调节阀??? 套筒调节阀又称笼式阀,它的阀内件采用阀芯和阀笼(套筒),套筒可以是直通单座调节阀,也可以是双座调节阀或角形调节阀等:有单密封、双密封两种结构,前者相当于单座调节阀,适应于单座调节阀场合;后者相当于双座调节阀,适应于双座调节阀场合。
除此之外,它还具有稳定性好、装卸方便、维护方便、有降低噪音和降低空化影响的特点,但价格比单、双座调节阀贵50%~200%,还需要专门的缠绕密封垫,它的应用也比较广泛,仅次于单、双座调节阀,但对于不干净介质和易结晶、结巴、结垢介质不应选用此阀。
??? 1.1.4 角形调节阀??? 角形调节阀是具有特殊阀体结构的单座调节阀,适用于特定的配管和流体场合,它是将直通的阀体改变为角形(相当于一个弯头)阀体,其节流、受力形式完全等同于单座调节阀。
保留了单座调节阀泄漏小、许用压差小的特点。
除此之外,由于其流路简单具有“自洁”性能,可适用于不干净介质,还可进一步改进为防堵角阀,适用于含有悬浮颗粒介质的工况场合,尤其在安装空间受限制的场合特别适用。
??? 1.1.5 三通调节阀??? 三通调节阀利用阀芯自身导向,更换气开、气关时必须更换执行机构,应注意的是它的气开、气关的含义与其它调节阀不一样,它的气开和气关必须要明确对哪一路而言,即水平位置还是垂直位置。
它有三个通道,可代替两个直通单座调节阀用于分流和合流两组流及温差≤150℃的场合,当DN≤80mm时,合流阀可用于分流场合。
??? 1.1.6 隔膜调节阀??? 隔膜调节阀由耐腐蚀的隔膜和内衬耐腐蚀材质的阀体组成,流路简单,适应于不干净介质及弱腐蚀性介质的两位切断场合。
它是最早的调节阀之一,由于具有近似快开的流量特性,调节品质较差,又受隔膜和衬里材质的影响,不能用于高温和高压等工况,一般工作压力≤1.6MPa,工作温度≤150℃,加之隔膜容易损坏、寿命短的缺点,现在使用的场合已不多。
??? 1.1.7 蝶阀??? 蝶阀相当于一段管道来做阀体,中央设阀板节流,是用于控制的最普通的旋转调节阀。
适用于低压、中压或者极少数情况下用于高静压、大流量的场合,但压差有限制。
其体积小、重量轻,比同口径的球形类调节阀轻4~10倍,口径与价格比小,特别适用于大口径的场合,且调节阀的口径越大,此特点越显着。
一般当DN>300mm 时,通常都由蝶阀来完成。
??? 1.1.8 球阀??? 球阀是一种成熟的老产品,有“O”形和“V”形球阀之分,流路最简单,流阻最小,损失最小,“自洁”性能最好。
“O”形球阀是一种无阻力调节阀,同规格相比,额定流量系数最大,常用于大流量及不干净介质的场合;“V”形球阀提供近似对数流量特性,且可调比大,“V”形球芯与阀座相对旋动时产生剪切作用,尤其适用于高黏度、悬浮流、纸浆等不干净、含纤维介质的调节和切断。
球阀的价格比较昂贵。
??? 1.1.9 偏心旋转阀??? 又称凸轮挠曲阀,它综合了球阀、蝶阀的长处,流路简单,“自洁”性能和调节性能好,适用于结晶、结巴及不干净介质的场合;阀体体积小、重量轻,可根据现场安装的位置不更换任何零件而灵活组装;额定流量系数大,比同口径的单座、双座调节阀大10%~30%,可调比大,可达100:1;阀座密封可靠,由于阀芯支撑臂的扰性作用以及阀芯球面偏心旋转运动减少了所要求的操作力矩,补偿了一些不对称性,在流开、流闭和高压差下都能稳定运行;比例调节时,需配定位器,可通过改变定位器中凸板位置,方便地得到直线或等百分比流量特性。
??? 1.2 特殊型调节阀的选择??? 为特殊应用,在上述调节阀的基础上,如果上阀盖加长、添加散热片可用于低温和高温场合;采用多个弹簧的执行机构可减小整个调节阀的体积和重量;为降低噪声采用一系列降噪措施设计可组成低噪声调节阀。
此外,还有为便于维护和清洗采用阀体分离结构的阀体分离调节阀;为连锁动作的快速要求采用的快速切断调节阀;为小流量控制要求设计的小流量调节阀;为防止泄漏采用的波纹管密封调节阀等。
??? 这些特殊类型的调节阀都是为了满足特殊工艺生产过程或某一特定使用场合使用的专用阀,属于非标准的。
它们具有工作条件复杂、使用要求高、生产批量小的特点,这些调节阀通常都是由标准类型产品针对使用要求演变、改进而来的。
因此,首先应按非特殊性来确定其基本型式,然后再针对特殊性来确定相应的变形型式及材料等。
??? 2 附件的选择??? 调节阀的附件主要有:阀门定位器、阀位开关、气动保位阀、气动继动器、电磁阀、空气过滤减压器、手轮机构、阀位传送器和转换器等。
其中阀门定位器有电气阀门定位器和气动阀门定位器,主要用于改善调节阀的工作特性,实现正确定位,提高调节阀位置的线性度,减少调节信号的传递滞后,改变调节阀的流量特性,改变调节阀对信号压力的响应范围,实现分程控制和正确定位。
它是调节阀最主要的附件之一,其好坏会直接影响到调节阀及调节系统的性能和品质。
下面着重介绍选择阀门定位器时需要考虑的几种主要因素:??? 1)阀门定位器能否实现“分程”功能,即阀门定位器只对输入信号的某个范围有响应。
若阀门定位器能实现该功能,就可根据实际需要用一个输入信号来控制两台或多台调节阀;??? 2)零点和量程的调校是否容易,标定是否独立,稳定性如何;??? 3)阀门定位器的精度如何。
在理想工作状态下,对应某一输入信号,调节阀的内件(包括调节阀的阀芯、阀杆、阀座等)每次都应准确地定位在所需要的位置,而不管行程的方向或者调节阀的内件承受多大的负载;??? 4)阀门定位器的作用速度如何以及频率特性如何。
因为阀门定位器可以不断比较输入信号和阀位,并根据它们之间的偏差调节其本身的输出。
如果阀门定位器对这种偏差响应速度快,那么单位时间里介质的流动量就大,调节系统对设定点和负载变化的响应就愈快,即系统的误差愈小,控制品质也就愈佳。
一般来说,频率特性愈高,即对频率响应的灵敏度愈高,控制性能就愈好。
需要注意的是频率特性的评估应采取实验和理论相结合的方法,而非一味凭借理论,并且在评估时,实验方法必须稳定、科学,同时应将阀门定位器和执行机构合并起来一块考虑;??? 5)阀门定位器与调节阀组合以后,其定位分辨力变化如何。
定位分辨力对调节系统的控制品质有非常明显的作用,因为分辨力越高,调节阀的定位就越接近理想值,因调节阀过调而造成的波动变化就可以得到有效抑制,从而最终达到限制被调节量周期性变化的目的。
??? 6)阀门定位器的最大额定供气压力是否和执行机构的额定操作压力相匹配,安装和连接是否方便,维护量和维护程度如何,等等。
??? 而除阀门定位器外,其它的几类附件相对来说比较简单,在此不需要重复。
所有附件都起补充功能和保证调节阀正确运行的作用,在选择时要把握的原则是必要的增加,不必要的舍弃,否则只会提高控制系统的运行成本并降低可靠性。
??? 3 结论??? 调节阀的正确选型是应用好调节阀的第一步,也是最关键的一步,选型的好坏直接影响到调节阀的使用效果,进而影响系统的调节品质。
当然选型工作比较复杂,同时更是一门学问,需要在实际运用当中不断探索和总结。
因此,我们有必要在调节阀的选型方面,在熟悉相关专业知识的前提下,掌握一定的方法和技巧,惟有如此,才能真正发挥其在工业过程自动化控制中“手和脚”的作用。