3 1 36
状态数
7 5 3, 5
C6
2
65 2
15 只能有 15 个状态
不能只由量子数写光谱项, 必须考虑空间可能的状态, 必须合理, 即必须挑出满足 Pauli (由角动量直接耦合的状态中) 原理的空间状态
16
17
18
写光谱项:
M
L
2
M
S
0
L 2
1
D
组态
→ ①各电子量子数
②
LSJ
③ 状态数
① H 原子,
1 基态电子组态( 1 S )
S 电子
l 0
s
1 2
L 0
,
S
1 2
2
,
J
1 2
S,
2
S1
2
状态数 ( 2 0 1)( 2
1 2
1) 2
14
② He 原子
l1 0
( 1S )
2
, l2 0 ,
只考虑开壳层的光谱项
15
③
2 2 2 C 原子 (1 S ) ( 2 S ) ( 2 P )
l1 1 , l 2 1 ,
S1
3
L 2 .1 .0
1 2
,
S2
1 2
3
,
S 1 .0
3
D 3 , 2 ,1
1
P2 ,1 , 0
1
S1
1
D2
P1
5 3 1, 3
S0
原子角动量 原子多重态 (多重性)
2S 1,
电子组态相同 , 空间状态不同 , 因而原子量子数不同 , 能量也不同。