变量与函数(李新卫)
- 格式:ppt
- 大小:1.96 MB
- 文档页数:12
华师大版八下数学17.1变量与函数17.1.1变量与函数说课稿一. 教材分析华师大版八下数学17.1变量与函数是本册书的重要内容,它为学生提供了研究现实世界数量关系的基本工具。
本节课通过引入变量与函数的概念,让学生体会数学与实际生活的紧密联系,培养学生的数学应用意识。
教材从生活实例出发,引导学生认识变量、常量、函数的概念,并通过丰富的例题和练习题,帮助学生理解和掌握函数的性质。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于代数知识有一定的了解。
他们在日常生活中也接触过一些变量和函数的实际应用,如天气预报中的温度变化、手机话费套餐等。
但学生对于抽象的函数概念和函数的性质的理解还有待提高。
因此,在教学过程中,教师需要关注学生的认知水平,通过生活实例和具体操作,引导学生理解和掌握函数的概念和性质。
三. 说教学目标1.知识与技能:让学生理解变量、常量、函数的概念,掌握函数的性质,能够运用函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体会数学与实际生活的联系,培养学生的数学应用意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探讨的良好学习习惯。
四. 说教学重难点1.教学重点:变量、常量、函数的概念,函数的性质。
2.教学难点:函数概念的理解,函数性质的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组合作等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过生活实例引入变量和常量的概念,引导学生感知数学与生活的联系。
2.新课导入:介绍函数的概念,引导学生理解函数的定义和性质。
3.案例分析:分析具体实例,让学生理解函数的实际应用。
4.小组讨论:让学生分组讨论,探索函数的性质,培养学生合作学习的能力。
5.总结提升:教师引导学生总结本节课所学内容,加深对函数概念和性质的理解。
《变量与函数》教学设计方案(第一课时)一、教学目标1. 理解变量与函数的概念,能够识别两个变量之间的对应关系。
2. 能够理解常量与变量的区别,理解函数是两个变量之间对应关系的描述。
3. 培养观察、分析和抽象概括的能力。
二、教学重难点1. 教学重点:理解变量与函数的概念,掌握识别变量之间对应关系的方法。
2. 教学难点:将实际问题转化为数学问题,抽象出变量和常量,以及正确理解函数的概念。
三、教学准备1. 准备教学用具:黑板、白板、笔、几何图形模型等。
2. 准备教材和相关案例,以便在课堂上进行演示和讲解。
3. 安排实验室或户外实践活动,以便学生实际操作和观察变量之间的关系。
4. 提前布置预习任务,让学生了解变量和函数的基本概念,以便在课堂上更好地理解和掌握。
四、教学过程:本节课是《变量与函数》教学设计方案(第一课时)的教学过程设计如下:1. 导入新课:通过一些生活中的实例,让学生感受变量之间的关系,初步了解函数的概念。
设计:教师准备一些生活中的例子,例如,汽车的行驶速度和行驶时间之间的关系,股票价格和时间之间的关系等。
让学生们思考这些关系,并尝试用自己的语言描述它们。
2. 探索新知:通过小组讨论和探究,让学生们深入理解函数的概念。
设计:教师提出一些问题,例如,什么是函数?函数有哪些性质?如何表示函数?让学生们分组讨论,并尝试回答这些问题。
教师可以在过程中给予指导和提示,帮助学生理解函数的本质。
3. 讲解知识:教师详细讲解函数的概念、定义域、值域、增减性等知识,让学生们理解这些概念的含义和应用。
设计:教师通过生动的语言和形象的例子,详细解释函数的概念、定义域、值域、增减性等知识。
同时,教师可以引导学生们进行思考和提问,促进学生对知识的理解和掌握。
4. 实践操作:通过练习题和实践操作,让学生们应用所学知识解决实际问题。
设计:教师准备一些练习题,让学生们进行解答,加深对函数知识的理解和掌握。
同时,教师可以准备一些实践活动,例如,制作函数图像等,让学生们通过实践操作,进一步巩固所学知识。
2019-2020学年八年级数学下册《17.1 变量与函数》教案1 (新版)华东师大版教学目标使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。
教学过程一、由下列问题导入新课问题l、右图(一)是某日的气温的变化图看图回答:1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?2.这一天中,最高气温是多少?最低气温是多少?3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。
问题2 一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t 小时,那么,s与t具有什么关系呢?问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系.问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数:二、讲解新课1.常量和变量在上述两个问题中有几个量?分别指出两个问题中的各个量?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量.路程随着时间的变化而变化。
第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化.第4个问题中的l与频率f是变量.而它们的积等于300000,是常量.常量:在某一变化过程中始终保持不变的量,称为常量.变量:在某一变化过程中可以取不同数值的量叫做变量.2.函数的概念上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数).在上述的2个问题中,s=30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。
20.1函数教学设计
一、教材分析
本节是学生学习函数的起始内容,通过实例让学生理解函数的意义,初步了解学习函数的实际意义.
二、学情分析
学生在以前已经学习了根据所给内容,分析等量关系,列出相应的一元一次方程和二元一次方程组的方法,所以在根据已知找到两个变量的关系方面,已经没有太大的问题.上节课学生又对变量有了初步的认识,本节课便是在这个基础上,探索两个变量间的依赖关系---函数.
三、教学目标
1.经历探索两个变量间的关系、建立函数模型的过程,发展抽象思维和符号感.
2.通过实例了解函数的概念,能举出现实中具有函数关系的实例.
3. 能确定简单的整式、分式以及实际问题中的函数自变量的取值范围,并会求函数的值.
四、重点、难点
重点:正确理解函数的定义;确定简单的函数关系式;求自变量的取值范围.
难点:理解函数的意义;求实际问题中自变量的取值范围.
五、教学设计。
19.1 函数19.1.1 变量与函数第1课时常量与变量1.了解常量、变量的概念;2.掌握在简单的过程中辨别常量和变量的方法,感受在一个过程中常量和变量是相对存在的.(重点)一、情境导入大千世界处在不停的运动变化之中,如何研究这些运动变化并寻找规律呢?数学上常用常量与变量刻画各种运动变化.二、合作探究探究点一:常量与变量【类型一】指出关系式中的常量与变量设路程为s km,速度为v km/h,时间为t h,指出下列各式中的常量与变量:(1)v=s8;(2)s=45t-2t2;(3)vt=100.解析:根据变量和常量的定义即可解答.解:(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.方法总结:常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.【类型二】几何图形中动点问题中的常量与变量如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.解析:根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA的长度可得出y与x的关系.再根据变量和常量的定义得出常量与变量.解:由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=x cm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积y cm2与MA的长度x cm.方法总结:通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.探究点二:确定两个变量之间的关系【类型一】区分实际问题中的常量与变量(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t-4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=12gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量x千克与所付款W元之间的关系式是W=1.8x.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:(1)S=4πR2,常量是4π,变量是S,R;(2)h=v0t-4.9t2,常量是v0,4.9,变量是h,t;(3)h=12gt2(其中g取9.8m/s2),常量是12g,变量是h,t;(4)W=1.8x,常量是1.8,变量是x,W.方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.【类型二】探索规律性问题中的常量与变量按如图方式摆放餐桌和椅子.用x表示餐桌的张数,用y表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系式吗?解析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x-1)=4x+2.解:(1)有2个变量;(2)能,关系式为y=4x+2.方法总结:解答本题关键是依据图形得出变量x的变化规律.三、板书设计1.常量与变量数值发生变化的量称为变量,数值始终不变的量为常量.2.常量与变量的区分整个教学过程中,作为教学主导的老师需特别注重对学生感受知识与处理问题的能力与结果的即兴评价.应引导学生在学习中多举例,多类比,多思考,多体味,以此激发和培养学生的学习兴趣,理解和接受常量与变量的概念,改变对概念下程式化的定义,切实提高学生的学习兴趣,降低函数学习入门的难度.。
第4章 一次函数 4.1 函数和它的表示法4.1.1 变量与函数1.了解常量、变量的概念;(重点) 2.了解函数的概念;(重点)3.确定简单问题的函数关系.(难点)一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗? 二、合作探究探究点一:常量与变量分析并指出下列关系中的变量与常量:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8m/s 2);(4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w .解析:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.解:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2,其中,常量是4π,变量是S ,R ;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t ;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8m/s 2),其中常量是12g ,变量是h ,t ;(4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w ,常量是1.8,变量是x ,w .方法总结:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.探究点二:函数的定义下列说法中正确的是( )A .变量x ,y 满足x +3y =1,则y 是x 的函数B .变量x ,y 满足y =-x 2-1,则y 可以是x 的函数C .变量x ,y 满足|y |=x ,则y 可以是x 的函数D .变量x ,y 满足y 2=x ,则y 可以是x 的函数解析:A 中x +3y =1,y 可以看作x 的函数,因为y =1-x3;B 中y =-x 2-1,因为-x 2-1<0,等式无意义,即对于变量x 的任何一个取值,变量y 都没有唯一确定的值,故y 不是x 的函数;C 、D 中的|y |=x 和y 2=x ,对于变量x 的任意一个正数值,变量y 都有两个(不唯一)值与其对应,故y 不是x 的函数.故选A.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定好哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应的关系.探究点三:确定自变量的取值范围 【类型一】 确定函数解析式中自变量的取值范围x 的取值范围.(1)y =2x -3; (2)y =31-x;(3)y =4-x ; (4)y =x -1-2. 解析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1; (3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎨⎧x -1≥0,x -2≠0,解得x ≥1且x≠2.方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.【类型二】实际问题中自变量的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经过t分钟后,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完? 解析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.探究点四:简单问题的函数关系一个弹簧秤最大能称不超过10kg的物体,它的原长为10cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(1)求弹簧的长度y (cm)与所挂重物质量x (kg)之间的函数表达式;(2)当挂5kg 重物时,求弹簧的长度. 解析:根据弹簧的长度等于原长加上伸长的长度,列式即可;解:(1)y =10+12x ,其中x 是自变量,y是自变量的函数;(2)将x =5代入y =10+12x ,得y =10+12×5=12.5(cm).答:当挂5kg 重物是,弹簧的长度为12.5厘米.方法总结:根据题意,找出等量关系,列出相应的函数表达式.求函数值时,将自变量代入函数表达式中,求出即可.探究点五:函数值根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值为( )A.32B.25C.425D.254解析:∵x =52时,在2≤x ≤4之间,∴将x =52代入函数y =1x ,得y =25.故选B.方法总结:根据所给的自变量的值,结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.三、板书设计1.常量和变量的概念 2.函数的概念 3.函数关系式4.自变量的取值范围 5.函数值通过本课时的教学,学生对于常量、变量以及函数关系式掌握较好,但是对于有些实际问题中自变量的取值范围还存在一些困难.在以后的教学中要通过实例让学生不断加以强化,达到整体进步.。
19.1.1 变量与函数(第2课时)教学反思1、数学概念的教学一般要经历:概念的引入、概念的形成、概念的定义、概念的应用和巩固.整个概念的生成过程都必须在知觉水平上进行分析、辨认,根据事物的外部特征进行概括.2、在学生对概念认识的起始阶段,给学生提供的问题情境应该以正例为主,数量要恰当,难度要适宜,不然就会影响概念的形成.在对概念的应用、巩固中,可以通过适当的反例让学生辨析概念,达到对概念内涵和外延的掌握.3、教学过程要以学生熟悉的生活实际问题为主线,引领学生通过问题,抽象、概括数学结论,要充分体现学生在学习过程中的主体性,增强学生学习数学的积极性、主动性,培养学生喜欢数学,爱学数学.4、在对问题情境的筛选、设计上,要紧扣课题,凸显课堂教学质量和教学效果,主要要考虑以下几点:(1)、有启发性,有助于创造生动愉悦的情境,产生学习的内驱力,形成理想的教学氛围,激发学生逐步进入思维的高潮,为后阶段的能力拓展创造条件;(2)、呈阶梯式,用已知为新知作辅垫,使学生的认知沿教师设置好的阶梯拾级而上,在符合学生的认知心理的前提下,能有效地引导学生的思维向纵深发展;(3)、要多角度,概念的引入和形成,要从“特殊”到“一般”,应用概念要从“一般”到“特殊”,强化概念又要从“特殊”到“一般”,通过多加反复,促使学生对概念的理解更加严密,强化教学效果;(4)、要立足生活,密切数学与生活的联系,增加数学概念教与学的实用性、生动性,使学生真切认识到数学来源于生活,又能服务于生活,感觉到数学的美无处不在. (5)、要重成效,在数学概念学习、运用的过程中,让学生觉得自己所学的数学知识学有所用,学有所值的同时,也要感觉到:要解决现实问题,运用已有的知识是远远不够的,激发学习潜能,提高课堂教学的成效.5、学生的课堂学习既包括学也包括练,课堂练习一方面能使学生将刚刚理解的知识加以应用,在应用中加深对所学知识的理解;另一方面能及时暴露学生对新知识理解和应用中的不足。
湘教版数学八年级下册4.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是湘教版数学八年级下册4.1.1的内容,本节内容是在学生已经掌握了代数式的知识基础上进行讲述的,旨在让学生了解变量的概念,并引入函数的概念。
教材通过生活中的实例,引导学生理解变量和函数的关系,从而为后续的函数学习打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于代数式、方程等概念有一定的了解。
但是,对于变量和函数的概念,学生可能还比较陌生。
因此,在教学过程中,需要通过生动的实例和生活情境,帮助学生理解变量和函数的概念,并建立它们之间的关系。
三. 说教学目标1.知识与技能:让学生理解变量和函数的概念,并掌握它们之间的关系。
2.过程与方法:通过实例分析,让学生学会如何用变量和函数来描述实际问题。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 说教学重难点1.重点:变量和函数的概念及其关系。
2.难点:如何用变量和函数来描述实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等。
2.教学手段:多媒体课件、实例分析、小组讨论等。
六. 说教学过程1.导入:通过生活中的实例,如气温变化、物体运动等,引导学生思考变量和函数的关系。
2.新课导入:介绍变量的概念,让学生理解变量是如何表示事物的变化。
3.案例分析:分析生活中的实例,引导学生理解函数的概念。
4.知识讲解:讲解变量和函数之间的关系,让学生掌握它们的基本概念。
5.练习巩固:让学生通过练习题,巩固所学知识。
6.课堂小结:对本节课的内容进行总结,帮助学生形成知识体系。
7.课后作业:布置相关作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计如下:1.变量与函数2.变量的概念3.函数的概念4.变量与函数的关系八. 说教学评价教学评价主要从学生的学习效果、课堂表现、作业完成情况等方面进行。
教师应及时关注学生的学习进度,针对不同学生进行差异化指导,提高教学效果。
课题:19.1.1 变量与函数(第1课时)教学设计李新卫(湖北省武汉市经济技术开发区第四中学)一、内容和内容解析1. 内容人教版《义务教育课程标准实验教科书数学》八年级下册:“19.1.1变量与函数”第1课时.2. 内容解析本节内容为《一次函数》第一课时. 在学生学习了二元一次方程和找规律的基础上,学生对变量和常量已有一些模糊的认识. 通过生活实例的感悟,由具体到抽象,抽象出量的意义,并对量进行分类得出变化的量和不变的量,归纳出变量与常量的概念. 同时在讨论问题过程中,引出变量间的单值对应关系,体会建模思想,为学习函数的定义、函数的表达方式、函数的取值范围及函数的应用做出铺垫,为《一次函数》全章的学习打下基础.根据以上的分析,本节课的教学重点确定为:通过列举生活实例,理解量的意义,逐步形成常量与变量的概念,并能指出实际问题中的常量与变量.二、目标和目标解析1. 目标(1)理解量的意义、常量与变量的概念,并能指出实际问题中的常量与变量;(2)在实际问题的探究过程中,感受生活中变量间的对应关系,学会分辨不同表达方式中的变量与常量,经历从具体到抽象、从感性认识到理性分析的思维过程,体会函数与方程、数形结合和分类讨论的数学思想,提升数学抽象和数学建模的核心素养.2. 目标解析本节内容从学生熟悉的实际问题出发,让学生体会变量间的单值对应关系,感受一个变量随另一个变量的变化而变化,渗透自变量与函数的关系,从具体到抽象,通过表格、关系式及图象让学会生认识运动过程中的变量和常量概念,进而认识相关概念的联系和区别.达成目标(1)的标志:在探究过程中,正确找到变量与常量,并找出变化规律;达成目标(2)的标志:在练习和拓展中,找到图表中隐藏的变量与常量,能读取不同的数量关系和表达方式.三、教学问题诊断分析学生在字母表示数中,接触过当字母取值变化时,代数式的值随之变化,但学生对量的意义较为模糊.学生在生活中具有对两个量之间关联的体验,如气温随时间变化等,学生对变量与常量的定义理解困难不大,但是对变化中的单值对应关系及在变化过程中寻找变量与常量较难把握,特别是函数中的“唯一确定”仅局限于通过公式求出的唯一值,对不能用公式求出值的单值对应关系难以理解.因此教学难点确定为:理解变化过程中的变量与常量,以及变量与常量的相对性.四、教学支持条件分析从学生学过的小学课文《秋天来了》,引导学生观察现实世界和日常生活中的变化现象,让学生会用“变”的眼光观察现实世界,会用数学思维思考现实世界,会用数学语言表达现实世界.以李强的活动情境为主线引出生活中的变化事例,发现生活中变化的量和不变的量,引出变量与常量,在事例中感悟一个量随另一个量的变化现象,为刻画变量间的依赖关系,形成函数概念做出铺垫.以大量生活问题题材引导学生发现生活中变化的量和不变的量,以及变量间的单值对应关系,引导学生分析、分类、归纳出变量与常量的概念,结合式子、表格和图形给学生多种变量对应关系的呈现方式,帮助学生使用变量与常量准确地表述数学的研究对象,学会用数学的语言表达和交流数学问题,积累抽象思维的经验,提升数学抽象素养。