八年级数学(下)期末复习测试题七
- 格式:doc
- 大小:326.00 KB
- 文档页数:7
2022-2023学年江西省南昌市八年级(下)期末数学复习试卷一、选择题(本大题共6小题,共18.0分)1. ― 2的倒数是( )A. ― 2B. 2C. ― 22 D. 222. 以下列各组数为边,能构成直角三角形的是( )A. 1,1,2B. 2, 7, 3C. 4,6,8D. 5,12,113. 下列命题中,属于真命题的是( )A. 内错角相等B. 相等的角是对顶角C. 同位角互补,两直线平行D. 在同一平面内,过一点有且只有一条直线与已知直线垂直4. 在一次函数y =2x +1的图象上的一个点的坐标是( )A. (2,1)B. (―2,1)C. (2,12)D. (12,2)5. 小明在计算一组数据的方差时,列出的公式如下s 2=1n [(7――x )2+(8――x )2+(8――x )2+(8――x )2+(9――x )2],根据公式信息,下列说法中,错误的是( )A. 数据个数是5B. 数据平均数是8C. 数据众数是8D. 数据方差是156. 如图,将一圆柱形铁块固定在圆柱形大烧杯的杯底中央,现沿着大烧杯内壁匀速注水,注满后停止注水.则大烧杯水面的高度y(cm)与注水时间x(s)之间的函数图象大致是( )A. B.C. D.二、填空题(本大题共6小题,共18.0分)7. 若2a―8有意义,则实数a的取值范围为______ .8. 若一组数据2,2,3,3,4、4、x的平均数是3,则这组数据的众数是______ .9. 如果直线y=(2m+1)x―2+m经过第一、三、四象限,那么则m的取值范围是______ .10. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.11. 如图,E是矩形ABCD的边CD上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.若AD=10,CF=4,则DE的长为______ .12. 把a,b两个数中较小的数记为min{a,b},直线y=kx+2k与函数y=min{―x+2,2x+1}的图象只有一个公共点,则k的取值范围是_________.三、计算题(本大题共1小题,共6.0分)13. 计算:2×10+45+5.4四、解答题(本大题共9小题,共78.0分)14. (6.0分)已知y―2是x的正比例函数,且当x=1时,y=―6.(1)求y与x之间的函数关系式;(2)若点(m,10)在这个函数图象上,求m的值.15. (8.0分)如图,四边形ABCD中,∠ABC=90°,AB=BC=2,CD=4,AD=26,(1)求四边形ABCD的面积;(2)求∠BCD的大小.16. (8.0分)已知直线y=kx+4经过点P(1,m),且平行于直线y=―2x+1,它与x轴相交于点A,求△OPA的面积.17. (8.0分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,DE=OC.(1)求证:四边形AODE是矩形;(2)若AB=8,∠ABC=60°,求四边形ACDE的面积.18. (8.0分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.(1)E站应建在A站多少km处?(2)求两村与土特产品收购站围成的三角形的面积.19. (9.0分)某校为了解学生对共青团的认识,组织七、八年级全体学生进行了“团史知识”竞赛,为了解竞赛成绩,现从该校七、八年级中各随机抽取10名学生的竞赛成绩(满分100分,90分及90分以上为优秀)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100,下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级抽取的10名学生的竞赛成绩在C组中的数据是:94,90,91;七,八年级抽取的学生竞赛成绩统计表:年级平均数中位数众数方差七年级9293c52八年级92b10050.4根据以上信息,解答下列问题:(1)图表中a=______ ,b=______ ,c=______ ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握团史知识较好?请说明理由(一条理由即可);(3)该校七年级有450人,八年级有500人参加了此次“团史知识”竞赛,估计参加竞赛活动成绩优秀的学生人数是多少?20. (9.0分)如图,在四边形ABCD中,AD//BC,AD=9cm,BC=12cm,动点P、Q分别从A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t 秒.(1)AP=______ ,CQ=______ (分别用含有t的式子表示);(2)当四边形ABQP的面积与四边形PQCD面积相等时,求出t的值;(3)当点P、Q与四边形ABCD的任意两个顶点所组成的四边形是平行四边形时,请直接写出t的值.21. (10.0分)某同学在解决问题:已知a=12+3,求2a2―8a+1的值.她是这样分析与解的:a=12+3=2―3(2+3)(2―3)=2―3,∴a=2―3,∴(a―2)2=3,a2―4a+4=3,∴a2―4a=―1,∴2a2―8a+1=2(a2―4a)+1=2×(―1)+1=―1.请你根据小芳的分析过程,解决如下问题:(1)计算:12+1+13+2+14+3+…+12022+2021(2)若a=12―1.①求4a2―8a―1的值;②求3a3―12a2+9a―12的值.22. (12.0分)如图,直线l1:y=k1x+m1经过A(0,a),B(b,0)两点,直线l2:y= k2x+m2经过C(0,c),D(d,0)两点,l1,l2相交于点P.(1)求直线l1的解析式(用含a,b的式子表示),直接写出l2的解析式(用含c,d的式子表示);(2)若△OAB≌△ODC,求证:k1⋅k2=1;(3)若P(1,1),S△OAB=S△OCD,求证:AB=CD.答案1.C2.B3.D4.D5.D6.D7.a ≥48.39.―12<m <210.4.811.512.k =57或k >2或k ≤―113.解:原式=2 5+3 5+ 52=5 5+ 52=11 52.14.解:(1)设y ―2=kx ,把x =1,y =―6代入得―6―2=k ,∴k =―8,∴y ―2=―8x ,∴函数解析式是y =―8x +2;(2)∵点(m,10)在这个函数图象上,∴―8m +2=10,解得m =―1,∴m 的值为―1.15.解:(1)连接AC ,∵∠ABC =90°,AB =BC =2,∴AC 2=AB 2+AC 2=8,∵CD 2=42=16,AD 2=(2 6)2=24,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∴∠ACD =90°,∵△ABC 的面积=12AB ⋅BC =12×2×2=2,△ACD 的面积=12CD ⋅AC =12×4×2 2=4 2,∴四边形ABCD的面积=△ABC的面积+△ACD的面积=2+42.(2)∵△ABC是等腰直角三角形,∴∠ACB=45°,∵∠ACD=90°,∴∠BCD=∠ACB+∠ACD=135°.16.解:∵直线y=kx+4经过点P(1,m),且平行于直线y=―2x+1,∴k=―2,∴一次函数解析式为y=―2x+4,把x=1,y=m代入上式得m=2,∴P(1,2),A(2,0),×2×2=2.∴S△OPA=1217.(1)证明:∵DE//AC,∴∠EDA=∠DAC,∵菱形ABCD,∴DE=OC,AC⊥BD,∴∠AOD=90°,在△EAD和△AOD中,ED=OC∠EDA=∠DAC,AO=ED∴△EAD≌△AOD(ASA),∴AE=OD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵四边形ABCD是菱形,∴AD=AB=BC=8,OA=OC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=8,∴OA=12AC=4,在Rt△AOD中,由勾股定理得:OD=AD2―OA2=82―42=43,由(1)得:四边形AODE是矩形,∴四边形ACDE的面积=(DE+AC)×AE×12=(4+8)×43×12=243.18.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB―AE=(25―x),∵DA=15km,CB=10km,∴x2+152=(25―x)2+102,解得:x=10,∴AE=10km,(2)∵△DAE≌△EBC,∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,∵DE=152+102=513,∴两村与土特产品收购站围成的三角形的面积为:12×DE×EC=3252平方千米.19.解:(1)C所占的百分比是:×100%=30%,a%=1-30%-20%-10%=40%,即a=40;∵共有10个数,中位数是第5、第6个数的平均数,∴中位数b==92.5;∵99出现了3次,出现的次数最多,∴众数c=99.故答案为:40;92.5;99;(2)八年级学生掌握团史知识较好,理由如下:因为两个年级的平均数相同,而八年级的成绩的众数大于七年级,方差小于七年级.(3)根据题意得:450×+500×(30%+40%)=270+350=620(人),答:估计参加竞赛活动成绩优秀的学生人数是620人.20.解:(1)∵点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,∴AP=t cm,CQ=3t cm,故答案为:t cm,3t cm;(2)设点A到BC的距离为h cm,∵四边形PQCD的面积是四边形ABQP面积的2倍,∴×(9-t+3t)×h=×(t+12-3t)×h,∴t=;(3)分情况讨论:①若四边形APQB是平行四边形,则AP=BQ,∴t=12-3t,∴t=3;②若四边形PDCQ是平行四边形,则PD=CQ,∴9-t=3t,∴t=;③若四边形APCQ是平行四边形,则AP=CQ,∴t=3t,∴t=0(不合题意舍去);④若四边形PDQB是平行四边形,则PD=BQ,∴9-t=12-3t,∴t=;综上所述:当t的值为或3或时,点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形.21.解:(1)12+1+13+2+14+3+…+12022+2021=2―1+3―2+4―3+...+2022―2021=2022―1;(2)①∵a=12―1=2+1,∴4a2―8a―1=4a2―8a+4―4―1=4(a2―2a+1)―5=4(a―1)2―5 =4×(2+1―1)2―5=4×2―5=3.∴4a2―8a―1的值为3.②a=12―1=2+1,a―1=2,3a3―12a2+9a―12=(3a3―3a2)―(9a2―9a)―12=3a2(a―1)―9a(a ―1)―12=32a2―92a―12=32a(a―1)―62a―12=6a―62a―12=6a(1―2)―12=6(1+2)(1―2)―12=―6―12=―18,∴3a3―12a2+9a―12的值为―18.22.解:(1)∵直线l1:y=k1x+m1经过A(0,a),B(b,0)两点,∴k1b+m1=0m1=a.解得k1=―ab m1=a,∴l1:y=―abx+a.同理可得:l2:y=―cdx+c;(2)∵△OAB≌△ODC,∴a=d,b=c.∴k1⋅k2=―ab ⋅(―cd)=ab⋅ba=1;(3)将点P(1,1)代入l1,l2中可得:1=―ab +a,1=―cd+c.∴ab=a+b,cd=c+d.∴(ab)2=(a+b)2=a2+b2+2ab.∴(2S△OAB)2=AB2+4S△OAB,同理可得(2S△OCD)2=CD2+4S△OCD.∵S△OAB=S△OCD,∴AB=CD.。
一、选择题1.(0分)[ID :10232]若2(5)x -=x ﹣5,则x 的取值范围是( ) A .x <5B .x ≤5C .x ≥5D .x >52.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( ) A .4 B .5C .6D .73.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h += 4.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.(0分)[ID :10202]如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .727.(0分)[ID :10198]如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个B .3个C .2个D .1个8.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-69.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数 C .中位数 D .方差 10.(0分)[ID :10181]若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或√313 11.(0分)[ID :10169]直角三角形中,有两条边长分别为3和4,则第三条边长是( ) A .1B .5C .7D .5或712.(0分)[ID :10167]如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .613.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10158]下列运算正确的是( ) A 235+=B .22=3C .236⨯=D .632÷=二、填空题16.(0分)[ID :10330]如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.17.(0分)[ID :2+1的倒数是____.18.(0分)[ID :10296]20n n 的最小值为___19.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).20.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。
专题07 八年级下册期末模拟试卷一(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为()A.10B.20C.24D.12【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=4,∴▱ABCD的周长为:2×(AB+AD)=2×(6+4)=20,故选:B.2.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.3.(3分)若甲、乙、丙、丁四人参加跳远比赛,经过几轮初赛,他们的平均成绩相同,方差分别是:=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45.你认为最应该派去的是()A.甲B.乙C.丙D.丁【解答】解:∵=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45,∴S乙2<<S丙2<S丁2,∴乙的成绩更加稳定,故选:B.4.(3分)下列计算正确的是()A.÷=B.﹣=C.+=D.×=【解答】解:A、原式==,所以A选项错误;B、与不能合并,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.5.(3分)下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,【解答】解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.6.(3分)下列各曲线中不能表示y是x的函数的是()A.B.C.D.【解答】解:当x取一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项A中的曲线,当x取一个值时,y的值可能有2个,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对.故A中曲线不能表示y是x的函数,故选:A.7.(3分)数学老师为了判断小颖的数学成绩是否稳定,对小颖在中考前的6次模拟考试中的成绩进行了统计,老师应最关注小颖这6次数学成绩的()A.方差B.中位数C.平均数D.众数【解答】解:由于方差反映数据的波动大小,故老师最关注小颖这6次数学成绩的稳定性,就是关注这6次数学成绩的方差.故选:A.8.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A.由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;B.由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不合题意;C.由AD∥BC,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D.由AB=AD,CD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;故选:C.9.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x<﹣2C.x<2D.x>2【解答】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),∴当x>2时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集是x>2.故选:D.10.(3分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.【解答】解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若二次根式有意义,则x的取值范围是x≥.【解答】解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.12.(3分)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞13米.【解答】解:如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC===13.答:小鸟至少要飞13米.故答案为:13.13.(3分)已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是5.【解答】解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.14.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是.【解答】解:设中间两个正方形的边长分别为x、y,正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13;即最大正方形E的面积为:z2=13.则正方形E的边长是.故答案为:.15.(3分)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第一象限.【解答】解:∵k+b+kb=0,且kb>0,∴k+b=﹣kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故答案为:一.16.(3分)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知P A=PC=3,若PD=1,则AC的取值范围为﹣1≤AC<2.【解答】解:如图,连接BD交AC于O,连接PO,∵四边形ABCD是矩形,∴AC=BD,AO=CO=BO=DO,∵PO是△ACP的中线,也是△PBD的中线,∴P A2+PC2=2(AO2+PO2),PB2+PD2=2(PO2+OD2),∴P A2+PC2=PB2+PD2,∴9+9=1+PB2,∴PB=,在△PBD中,﹣1≤BD≤+1,∴﹣1≤AC≤+1,当点P在AD上时,CD===2,∴AC===2,故答案为:﹣1≤AC<2.三.解答题(共8小题,满分72分)17.(6分)计算:(1)﹣+;(2)(+1)(﹣1)+÷.【解答】解:(1)原式=3﹣4+=0;(2)原式=()2﹣1+=2﹣1+=1+.18.(8分)如图,在△ABC中,点D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE是△CAB的中位线,EF是△ABC的中位线,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形;(2)解:BE与DF的位置关系为:BE⊥DF,如图所示,理由如下:由(1)得:DE是△CAB的中位线,EF是△ABC的中位线,∴DE=AB,EF=BC,∵AB=BC,∴DE=EF,∵四边形BDEF是平行四边形,∴四边形BDEF是菱形,∴BE⊥DF.19.(8分)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.【解答】解:(1)把x=1,y=2代入一次函数解析式,得(m﹣3)+m+1=2.解得m=2.所以一次函数解析式为:y=﹣x+3.函数图象见右图.(2)当x=0时,y=3;当y=0时,x=﹣3.所以直线和x、y轴围成的三角形的面积为:×3×3=.20.(8分)某校九年级的一次数学小测试由20道选择题构成,每题5分.共100分.为了了解本次测试中同学们的成绩情况,某调查小组从中随机调查了部分同学,并根据调查结果绘制了如下尚不完整的统计图:请根据以上信息解答下列问题:(1)本次调查的学生人数为50人;(2)调查的学生中,该次测试成绩的中位数是90分;(3)调查的学生中,该次测试成绩的众数为95分;(4)补全条形统计图;(5)若测试成绩80分或80分以上为“优秀”,则估计该校九年级800名学生中,本次测试成绩达到“优秀”的人数是多少?【解答】解:(1)本次调查的学生有:5÷10%=50(人),故答案为:50;(2)∵3+18=21,21+12=33,∴这组数据的中位数是(90+90)÷2=90(分),故答案为:90;(3)85分的学生有50﹣(2+5+12+18+3)=10(人),故这组数据的众数是95分,故答案为:95;(4)由(3)知,85分的学生有10人,补全的条形统计图如右图所示;(5)800×=768(人),即该校九年级800名学生中,本次测试成绩达到“优秀”的人数是768人.21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,将△DCE沿DE翻折,使点C落在点A处.(1)设BD=x,在Rt△ABC中,根据勾股定理,可得关于x的方程62+x2=(8﹣x)2;(2)分别求DC、DE的长.【解答】解:(1)∵将△DCE沿DE翻折,使点C落在点A处.∴AD=CD,AE=EC,设BD=x,则DC=AD=8﹣x,∵AB2+BD2=AD2,∴62+x2=(8﹣x)2,故答案为:62+x2=(8﹣x)2;(2)由(1)得62+x2=(8﹣x)2,解得x=,∴BD=,∴DC=BC﹣BD=8﹣=.∵AB=6,BC=8,∴AC===,∴CE=AC=5,∴DE===.22.(10分)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?【解答】解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S甲=k1t,S=k2t乙由题意,得2=4k1,2=6k2∴k1=,k2=,∴解析式分别为S甲=t,S乙=t;(2)①当y=4﹣0.75时,,解得t=,∴点F(,),甲到山顶所用时间为:4=8(小时)由题意可知,点D坐标为(9,4),设甲同学下山过程中S与t的函数解析式为s=kt+b,则:,解答,∴甲同学下山过程中S与t的函数解析式为s=﹣t+13;②乙到山顶所用时间为:(小时),当x=12时,s=﹣12+13=1,当乙到山顶时,甲离乙的距离是:4﹣1=3(千米).23.(12分)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=2,∠ABC=∠ADC=60°,AC⊥BD,∴△ABC,△ACD都是等边三角形,∵∠AOB=90°,∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∴AC=2AO=2,BD=2OB=2,∴S菱形ABCD=•BD•AC=×2×2=2.(2)如图1中,过点A作AT⊥CD于T.∵△ABC,△ACD都是等边三角形,∴∠ACN=∠ABM=60°,AB=AC,∵∠MAN=∠BAC=60°,∴∠BAM=∠CAN,∴△BAM≌△ACN(ASA),∴BM=CN=4﹣2,∵AC=AD,AT⊥CD,∴CT=DT=1,AT=,∴TN=CT﹣CN=1﹣(4﹣2)=2﹣3,∴AN===3﹣,∵S△ADN=•AN•DG=•DN•AT,∴DG==,∴GN===2﹣.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.∵∠BAC=∠P AE=60°,∴∠BAP=∠CAE,∵AB=AC,AP=AE,∴△BAP≌△CAE(SAS),∴∠ABP=∠ACE=30°,∵∠ACD=60°,∴∠OCE=∠GCE,∵∠COD=90°,∠ODC=∠ADC=30°,∴CD=2OC,∵CG=GD,∴OC=CG,∵CE=CE,∴△OCE≌△GCE(SAS),∴OE=EG,∴BE+OE=BE+EG≥BG,在Rt△BGH中,∵∠GHB=90°,GH=DG=,BH=,∴BG===,∴BE+OE≥,∴BE+OE的最小值为.24.(12分)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.【解答】(1)证明:对于直线y=3x+6,当x=1﹣t时,y=3(1﹣t)+6=﹣3t+9,∴P(1﹣t,9﹣3t)在直线y=3x+6上.(2)解:∵直线y=3x+6分别与x轴、y轴交于B、C两点,∴B(﹣2,0),C(0,6),∵线段MN是由线段BC平移得到,∴可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),∵N(t+2,t+4)在直线y=2x﹣4上,∴t+4=2(t+2)﹣4,解得t=4,∴M(4,2),N(6,8),∴BM==2,BC==2,∴BM=BC,∵BC=MN,BC∥MN,∴四边形BMNC是平行四边形,∵BC=BM,∴四边形BMNC是菱形.(3)∵直线y=mx﹣6m+8,∴x=6时,y=8,∴直线y=mx﹣6m+8经过定点(6,8),∴直线y=mx﹣6m+8经过点N(6,8),∵直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,∴直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,∵G是BC的中点,H是BM的中点,∴G(﹣1,3),H(1,1),把G(﹣1,3)代入y=mx﹣6m+8得到m=,把H(1,1)代入y=mx﹣6m+8得到m=,综上所述,满足条件的m的值为或.。
017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
第十六章二次根式教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2 C.a≠2 D.a<2A.x+2 B.-x-2 C.-x+2 D.x-2A.2x B.2a C.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:八年级下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
八年级(下)期末数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠12.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=33.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm28.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是分.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.21.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B 两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)2022-2022学年河南省周口市周口港区八年级(下)期末数学试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的.将正确答案的代号字母填在括号内. 1.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.下列各式计算正确的是()A. +=B.4﹣3=1 C.2×3=6 D.÷=3【考点】二次根式的混合运算.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵ +不能合并,故选项A错误;∵4﹣3=4﹣6,故选项B错误;∵2×3=18,故选项C错误;∵÷=3,故选项D正确;故选D.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B. C.D.【考点】一次函数的图象.【分析】根据y=kx+b,k<0时,y随x的增大而减小,可得答案.【解答】解:由y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故B正确.故选:B.【点评】本题考查了一次函数图象,利用一次函数的性质是解题关键.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知AD=2,则图中长为2的线段有()A.1条B.2条C.3条D.4条【考点】线段垂直平分线的性质;正弦定理与余弦定理;角平分线的性质.【分析】由角平分线的性质可得AD=DE,∠ABD=∠DBE,由垂直平分线性质可得BD=DC,∠DBE=∠DCE,已知AD,则结合这些信息可以求得AB,BE,CE的长.【解答】解:∵DE是BC的垂直平分线,∴BD=DC,BE=EC,∠DBE=∠DCE,DE⊥BC,∵∠ABC的平分线BD交AC于点D,∴∠ABD=∠DBE,∵AD⊥AB,DE⊥BE,∴DE=AD=2,∵∠BAC=90°,∴∠DBE=∠DCE=∠ABD=30°,∴AB=AD•tan30°=2.在Rt△ABD和Rt△EBD中,∴△ABD≌△EBD(AAS),即AB=BE,∴AB=BE=EC=2.即图中长为2的线段有3条.故选:C.【点评】此题主要考查了角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.下列结论正确的是()A.3a2b﹣a2b=2B.单项式﹣x2的系数是﹣1C.使式子有意义的x的取值范围是x>﹣1D.若分式的值等于0,则a=±1【考点】分式的值为零的条件;合并同类项;单项式;分式有意义的条件.【分析】根据合并同类项的法则、单项式的定义、分式有意义的条件和分式的值为零的条件进行计算.【解答】解:A、原式=2a2b,故本选项错误;B、﹣x2是单项式,且系数是﹣1,故本选项正确;C、使式子有意义的x的取值范围是a≠﹣1,故本选项错误;D、若分式的值等于0,则a=±1且a+1≠0,即a=1,故本选项错误;故选:B.【点评】本题考查了分式有意义的条件,分式的值是零的条件,合并同类项以及单项式的定义.属于基础题,难度不大.6.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60° B.45° C.30° D.75°【考点】直角三角形斜边上的中线;轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E 恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CE D=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.7.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是()cm2.A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质.【分析】由图形的特点可知,每个阴影部分的面积都等于正方形面积的,据此解题.【解答】解:由正方形的性质可知,每个阴影部分的面积都等于正方形面积的,故图中四块阴影部分的面积和为一个正方形的面积,即22=4cm2.故选:B.【点评】本题主要考查了正方形的特性及面积公式,解答本题的关键是发现每个阴影部分的面积都等于正方形面积的.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.二、填空题(毎小題3分,共21分,把答案写在题中撗线上)9.2﹣6+的结果是3﹣2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=﹣2+2=3﹣2.故答案为:3﹣2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为 4.8cm .【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.11.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.12.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF 的周长为 5 .【考点】三角形中位线定理.【分析】由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.【点评】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.13.某大学自主招生考试只考数学和物理.计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是90 分.【考点】加权平均数.【分析】先计算孔明数学得分的折算后的分值,然后用综合得分﹣数学得分的折算后的得分,计算出的结果除以40%即可.【解答】解:(93﹣95×60%)÷40%=(93﹣57)÷40%=36÷40%=90.故答案为:90.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.如图一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,AC=5,CD的长.【考点】勾股定理;矩形的判定与性质.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=5,∴∠ABC=30°,BC=AC×tan60°=5,∵AB∥CF,∴BM=BC×sin30°=5×=,CM=BC×cos30°=,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=﹣.故答案为:﹣.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.15.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .【考点】三角形中位线定理;勾股定理.【专题】压轴题;动点型.【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.三、解答题(本大题共8个小題,共75分.解答应写出文宇说明,证明过程或演算步骤)16.计算:(1)÷﹣×+;(2)(+1)(﹣1)+﹣()0.【考点】二次根式的混合运算;零指数幂.【分析】(1)根据二次根式的除法、乘法以及合并同类项可以解答本题;(2)根据平方差公式和零指数幂可以解答本题.【解答】解:(1)÷﹣×+=﹣+2=4+;(2)(+1)(﹣1)+﹣()0=3﹣1+2﹣1=1+2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【考点】矩形的判定与性质.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【解答】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点评】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.18.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【考点】中位数;条形统计图;算术平均数;众数;方差.【专题】图表型.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【解答】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),.【点评】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.19.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.【考点】勾股定理的应用.【分析】(1)作AD⊥ON于D,求出AD的长即可解决问题.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,求出BC的长,利用时间=计算即可.【解答】解:(1)作AD⊥ON于D,∵∠MON=30°,AO=80m,∴AD=OA=40m,即对学校A的噪声影响最大时卡车P与学校A的距离40m.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.【点评】本题考查勾股定理的应用、圆的有关知识,解题的关键是理解题意,学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.20.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.21.(10分)(2022•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:A村(元/辆)B村(元/辆)目的地车型大货车 800 900小货车 400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【考点】一次函数的应用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】一次函数的应用.【专题】压轴题;推理填空题.【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t 的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60﹣1﹣1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①(480﹣60﹣120)÷(120+60)+1 =300÷180+1==(小时)②当甲车停留在C地时,(480﹣360+120)÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.【点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= 2 ;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【考点】三角形综合题.【分析】(1)①在Rt△ABC中,可求得AB,由PB=AB﹣PA可求得PB,过C作CD⊥AB于点D,则可求得CD=AD=DB,可求得PD的长,在Rt△PCD中可求得PC的长;②把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PQ2三者之间的数量关系;(2)过C作CD⊥AB于点D,由(1)中②的方法,可证得结论;(3)分点P在线段AB上和线段BA的延长线上,分别利用=可找到PA和CD的关系,从而可找到PD和CD的关系,在Rt△CPD和Rt△ACD中,利用勾股定理可分别找到PC、AC和CD的关系,从而可求得的值.【解答】解:(1)①∵△ABC是等腰直角三角形,AC=1+,∴AB===+,∵PA=,∴PB=AB﹣PA=,如图1,过C作CD⊥AB于点D,则AD=CD=AB=,∴PD=AD﹣PA=,在Rt△PCD中,PC==2,故答案为:;2;②PA2+PB2=PQ2,证明如下:如图1,∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB,∵PA2=(AD﹣PD)2=(CD﹣PD)2=CD2﹣2CD•PD+PD2,PB2=(BD+PD)2=(CD+PD)2=CD2﹣2CD•PD+PD2,∴PA2+PB2=2CD2+2PD2=2(CD2+PD2),在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,∴PA2+PB2=2PC2,∵△CPQ为等腰直角三角形,且∠PCQ=90°,∴2PC2=PQ2,∴PA2+PB2=PQ2,故答案为:PA2+PB2=PQ2;(2)证明:如图2,过C作CD⊥AB于点D,。
浙教版初中数学试卷八年级数学下册期末复习试卷学校:__________一、选择题1.(2分)下列四个命题中,属于真命题的是( ) A .底边相等的两个等腰三角形全等B .同旁内角互补¥C .两个锐角的和一定是钝角D .对顶角相等2.(2分)用反证法证明“a b <”时,一般应先假设( ) A .a b >B .a b <C .a b =D .a b ≥3.(2分)已知1x =-是一元二次方程20x px q ++=的一个根,则代数式p q -的值是( ) A .1B .-1C .2D .-24.(2分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( ) A .%10B .%15C .%20D .%255.(2分)若方程01)2(222=+-++-x m mx m m是关于x 的一元二次方程,则m 的值是( )\A .0或2B .-1或3C .2D .无实数解6.(2分)某电视机厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( ) A .16%B .18%C .20%D .22%7.(2分)如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( ) A .34 cm 2B .36 cm 2C .38 cm 2D .40 cm 28.(2分)用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=9.(2分)依次连接菱形各边中点所得到的四边形是( )~A .梯形B .菱形C .矩形D .正方形10.(2分)一组数据共40个,分为6组,第一组到第四组的频数分别为l0,5,7,6,第五组的频 率为0.1,则第六组的频数为( ) A .4B .5C .8D .1011.(2分)已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在~这一组的频率是( ) A . B .0.5C .D .12.(2分)如图,以□ABCD 对角线的交点为坐标原点,以平行于AD 边的直线为x 轴,建立直角坐标系.若点 D 的坐标为(3,2),则点B 的坐标为( ) A . (3,2)B . (2,3)C . (-3,-2)D . (-2,-3)¥13.(2分)3a -中字母a 的取值范围( ) A . 3a < B .3a ≤C .3a >D .3a ≥评卷人 得分二、填空题;14.(3分)命题“角平分线上的点到角两边的距离相等”的题设是 , 结论是 . 15.(3分)已知a 是方程210x x --=的一个根,则代数式3222a a --的值为 . 16.(3分)如图3,长方形AOCD 中,顶点C 、D 的坐标为C (6,0),D (6,4),已知P (0,7),则过P 点且把矩形AOCD 面积二等分的直线解析式为 .17.(3分)数形结合是重要的数学思想.一次数学活动中,小明为了求12 +122 +123 +......+12n 的值,设计了如图2所示的几何图形.请你利用这个几何图形求12 +122 +123 + (12)的值为 (结果用n 表示).18.(3分).观察下列各式:31142-=,52193-=,731164-=,941255-=,…,请你将猜想的规律用含自然数(1)n n ≥的代数式表示出来 .19.(3分)统计八年级部分同学的跳高测试成绩,得到如下频数分布直方图(图1): 则跳高成绩在1.29m 以上的同学估计占八年级总人数的百分之 .(精确到1%)!20.(3分)选一个你喜欢的合理的实数x ,求二次根式1-2x 的值,则1-2x = . 21.(3分)“平行四边形的对角线互相平分”的逆命题是 .22.(3分)将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______.23.(3分)某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时. 24.(3分)已知a ,b 是方程2(2)10x m x +++=的两根,且a b =,则m = .25.(3分)将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5 张纸片(其中4张是全 等的直角三角形纸片)拼成一个正方形(如图②). 则所剪得的直角三角形较短的与较长的直角边的比是 .)26.(3分)如图,一张矩形纸片沿BC 折叠;顶点A 落在A ′处,第二次过A ′再折叠,使折痕 DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为 .评卷人得分^三、解答题27.(6分) 如图,已知 BE⊥AD,CF⊥AD,且BE=CF. 请你判断 AD是△ABC的中线还是角平分线并说明理由.28.(6分)如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.》(1)求证:CFAB ;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.~29.(6分)某青少年研究所随机调查了某市某校100名学生寒假中花零花钱的数量(钱取整数元),以便引导学生树立正确的消费观.根据调查制成了频率分布表(未完成).某校100名学生零花钱的频数分布表FEDCBA(1)补全频数分布表;(2)画出频数分布直方图;|(3)该研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200名学生中约多少名学生提出这项建议30.(6分)如图,在直角梯形ABCD 中,AB∥CD,∠C=Rt∠,AB=AD=10cm,BC=8cm. 点P 从点A 出发,以每秒3cm的速度沿线段AB方向运动,点Q从点D 出发,每秒2cm的速度沿线段DC方向向点C运动. 已知动点P,Q同时出发,当点Q运动到点C时,P,Q运动停止,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P,点 Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为 20 cm2若存在,请求出所有满足条件的t的值;若不存在,请说明理由.~【参考答案】***试卷处理标记,请不要删除评卷人;一、选择题1.D 2.D】3.A 4.C5.C 6.C 7.B 8.A 9.C 10.D : 11.C 12.C 13.D、二、填空题14.一个点在角的平分线上,这个点到角两边的距离相等 15.-3 16.y =-53 x +7 17.1-12n181n n =+19.约61%}20.0(答案不惟一)21.对角线互相平分的四边形是平行四边形 22.50 23., 24.0或-4 25.1:2 26.9三、解答题27.中线,理由略28.(1)证明:∵四边形ABCD 是平行四边形,∴CD AB CD AB =,//,{∴FCE ABE CFE BAE ∠=∠∠=∠,.∵E 为BC 的中点,∴EC EB =,∴FCE ABE ∆≅∆ ∴CF AB =.(2)解:当AF BC =时,四边形ABFC 是矩形.理由如下: ∵CF AB CF AB =,//, ∴四边形ABFC 是平行四边形. ∵AF BC =,∴四边形ABFC 是矩形29.(1) 某校100名学生零花钱的频数分布表 (2)(3 30.s 或395s 某校100名学生零花钱的频数分布直方图。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
华师版八年级数学下册期末复习综合题含答案第16章三、解答题(本大题共8小题,共72分) 17.(10分)计算:(1)|-2|+⎪⎪⎪⎪⎪⎪13 -1×(π-2 )0-9 +(-1)-2;解:原式=2+3×1-3+1=3.(2)⎝ ⎛⎭⎪⎫a 2b -cd 3 3 ÷2ad 3 · ⎝⎛⎭⎪⎫c 2a 3 ; 解:原式=(a 2b )3(-cd 3)3 ·d 32a ·c 3(2a )3=-a 6b 3c 3d 9 ·d 32a ·c 38a 3 =-a 2b 316d 6.(3)⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1 . 解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2) ÷4-aa =a (a -1)-(a -2)(a +2)a (a -2)2 ·a4-a=a 2-a -a 2+4a (a -2)2·a4-a=1(a -2)2. 18.(6分)解方程:(1)(广安中考)23 +x 3x -1 =19x -3 ;解:方程两边同乘以3(3x -1)去分母, 得2(3x -1)+3x =1,解这个整式方程得x =13 ,经检验,x =13 是原方程的增根,所以原方程无解.(2)2x 2-4 +x x -2=1. 解:方程两边同时乘以(x +2)(x -2), 得2+x (x +2)=x 2-4. 2+x 2+2x =x 2-4.x =-3.经检验,x =-3是原分式方程的解. 19.(8分)先化简再求值:(1)aa -b ⎝ ⎛⎭⎪⎫1b -1a +a -1b ,其中a =2,b =13; 解:原式=aa -b·a -b ab +a -1b=1b +a -1b =a b. 当a =2,b =13 时,原式=213=6.(2)x 2x 2-1 ÷⎝⎛⎭⎪⎫1x -1+1 ,其中x 是5 的整数部分. 解:原式=x 2(x +1)(x -1) ·x -1x =xx +1.∵x 是5 的整数部分,∴x =2.当x =2时,原式=22+1 =23.20.(8分)已知分式(m -1)(m -3)m 2-3m +2 ,试问: (1)当m 为何值时,分式有意义? (2)当m 为何值时,分式值为0.解:(1)由题意得m 2-3m +2≠0,解得m ≠1且m ≠2. (2)由题意得(m -1)(m -3)=0,m 2-3m +2≠0,解得m =3, 当m =3时,分式值为0.21.(8分)已知|2a -b +1|+⎝ ⎛⎭⎪⎫3a +32b 2 =0,求代数式b 2a +b ÷⎝ ⎛⎭⎪⎫a a -b -1 ·⎝ ⎛⎭⎪⎫a -a 2a -b 的值. 解:化简代数式得原式=b 2a +b ÷a -(a -b )a -b ·a (a -b )-a 2a -b=b 2a +b ·a -b b ·-ab a -b =-ab 2a +b.由题意得a =-14 ,b =12 ,∴原式=--14×⎝ ⎛⎭⎪⎫122-14+12 =14 .22.(10分)按下列要求完成各题.(1)已知实数a ,b 满足关系1a +b +1a -b =b a 2-b 2 ,求2ab +b 2a 2的值;解:由1a +b +1a -b =2a a 2-b 2 =ba 2-b 2 可得b =2a ,将b =2a 代入2ab +b 2a 2 =2a ·2a +(2a )2a2=8. (2)如果3(x +1)(x -2) =A x +B x +1 +C x -2,求A ,B ,C 的值.解:Ax +B x +1 +C x -2 =(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B(x +1)(x -2)=3(x +1)(x -2), ∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3, ∴⎩⎪⎨⎪⎧A =0,B =-1,C =1.23.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍. (1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用; (2)若购买的两种球拍数一样,求x . 解:(1)(4 000+25x )元;(2)由题意得2 000x =2 000+25x x +20 ,解得x =±40,经检验,x =±40都是原方程的解,但x>0,∴x =40.24.(12分)(德阳中考)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B种板材40 m 2,请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400解:(1)设x 人生产A 种板材,根据题意得48 00060x =24 00040(210-x ) ,解得x =120.经检验,x =120是分式方程的解.210-120=90. 故安排120人生产A 种板材,90人生产B 种板材, 才能确保同时完成各自的生产任务;(2)设生产甲种板房y 间,乙种板房(400-y )间, 安置人数为12y +10(400-y )=2y +4 000, 根据题意得{108y +156(400-y )≤48 000,61y +51(400-y )≤24 000,解得300≤y ≤360,因为2大于零,所以当y =360时安置的人数最多.360×2+4 000=4 720.故最多能安置4 720人.第17章三、解答题(本大题共8小题,共72分) 17.(10分)已知一次函数y =(3+m )x +n -6.(1)当m ,n 为何值时,函数的图象过原点?(2)当m ,n 满足什么条件时,函数的图象经过第一、二、三象限? 解:(1)依题意得{3+m ≠0,n -6=0, 得m ≠-3且n =6.(2) ∵该函数图象经过第一、二、三象限, ∴{3+m>0,n -6>0, 解得m>-3且n>6.18.(6分)判断A (-2,-5),B (3,5),C (7,13)三点是否在一条直线上,并说明理由.解:A ,B ,C 三点在同一条直线上,设经过A ,B 两点的直线表达式是y =kx +b (k ≠0), ∴{-5=-2k +b ,5=3k +b , ∴{k =2,b =-1. ∴y =2x -1,当x =7时,y =2×7-1=13,∴点C 在直线AB 上,即A ,B ,C 三点在同一条直线上. 19.(8分)已知直线y =2x +3与直线y =-2x -1. (1)若两直线与y 轴分别交于点A ,B ,求点A ,B 的坐标; (2)求两直线的交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0, 则y =3.∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1.∴点B 的坐标为(0,-1). (2)解方程组{y =2x +3,y =-2x -1, 得{x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.20.(8分)如图,已知某电路的电压U (V)、电流I (A)、电阻R (Ω)三者之间有如下关系式:U =IR ,且该电路的电压U 恒为220 V . (1)求出电流I 关于电阻R 的函数表达式;(2)如果该电路的电阻为200 Ω,则通过他的电流是多少?解:(1)电流I 关于电阻R 的函数表达式是I =220R(R>0);(2)通过他的电流是220200=1.1 A .21.(8分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=m x(m ≠0)的图象交于点A (-1,6),B (a ,-2). (1)求一次函数与反比例函数的表达式; (2)根据图象直接写出y 1>y 2时,x 的取值范围.解:(1)把点A (-1,6)代入反比例函数y 2=mx(m ≠0),得m =-1×6=-6,∴y 2=-6x.将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).将A (-1,6),B (3,-2)代入一次函数y 1=kx +b , 得{-k +b =6,3k +b =-2, 解得{k =-2,b =4. ∴y 1=-2x +4.(2)由函数图象可得当y 1>y 2时,x<-1或0<x<3.22.(10分)(泸州中考)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A ,B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1 200元.设生产A,B两种产品的总利润为y元,其中A种产品生产的件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解:(1)y=700x+1200(50-x),即y=-500x+60000;(2)由题意得{9x+4(50-x)≤380,3x+10(50-x)≤290,解得30≤x≤36,y=-500x+60000,y随x的增大而减小,当x=30时,y最大=45000,生产B种产品20件,A种产品30件,总利润y有最大值,y最大=45000元.23.(10分)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车沿原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分),y甲,y乙与x之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分;(2)甲步行所用的时间为__45__分钟;(3)求乙返回到学校时,甲与学校相距多远.解:甲步行过程中,设y甲与x的函数关系式为y甲=kx+b,则{20k +b =18,65k +b =22.5, 解得{k =0.1,b =16, ∴y 甲=0.1x +16,当x =40时,y 甲=20. 即乙返回到学校时,甲与学校相距20千米.24.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?解:(1)y ={2x (0≤x ≤15),-6x +120(15<x ≤20). (2)设销售单价p (元/千克)与销售时间x (天)之间的函数关系式为p =kx +b (10≤x ≤20),把点(10,10),(20,8)代入,得{10k +b =10,20k +b =8, 解得⎩⎨⎧k =-15,b =12.∴p =-15 x +12(10≤x ≤20).当x =15时,p =-15 ×15+12=9.第10天的销售金额为2×10×10=200元, 第15天的销售金额为30×9=270元.(3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30.解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天. 对于函数p =-15 x +12(10≤x ≤20),y 随x 的值的增大而减小,故当x =12时,p 有最大值,最高单价为-15×12+12=9.6元/千克.第18章三、解答题(本大题共8小题,共72分)17.(6分)如图,在▱ABCD 的对角线AC 上取两点E 和F ,若AE =CF ,求证:∠AFD =∠CEB .证明:∵四边形ABCD 为平行四边形, ∴AD 綊BC ,∴∠DAF =∠BCE , ∵AE =CF ,∴AE +EF =CF +EF , 即AF =CE ,∴△DAF ≌△BCE , ∴∠AFD =∠CEB.18.(10分)(宿迁中考)如图,在▱ABCD 中,点E ,F 分别在边CB ,AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG =CH .证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD ∥BC ,AD =BC ,∴∠E =∠F. 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC.在△AGF 和△CHE 中,{∠A =∠C ,AF =CE ,∠F =∠E , ∴△AGF ≌△CHE (A.S.A.),∴AG =CH.19.(8分)如图,AB ,CD 相交于点O ,AC ∥DB ,AO =BO ,E ,F 分别是OC ,OD 的中点.求证: (1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D ,∠COA =∠DOB ,AO =BO , ∴△AOC ≌△BOD ;(2) ∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.20.(8分)如图,▱ABCD 中,∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,点M ,N 分别为AE ,CF 的中点,连接FM ,EN ,试判断FM 和EN 的数量关系和位置关系,并加以证明.解:FM =EN ,FM ∥EN.证明如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∠BAD =∠DCB ,∠B =∠D , ∴∠DAE =∠AEB ,∠DFC =∠BCF.∵∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,∴∠BAE =∠DAE=12 ∠BAD ,∠BCF =∠DCF =12∠DCB ,∴∠BAE=∠DCF.在△BAE和△DCF中,{∠B=∠D,AB=CD,∠BAE=∠DCF,∴△BAE≌△DCF(ASA),∴AE=CF,∠AEB=∠DFC,∴∠AEB=∠BCF,∴AE∥CF.∵点M,N分别为AE,CF的中点,∴ME∥FN,ME=FN,∴四边形MENF是平行四边形,∴FM=EN,FM∥EN.21.(8分)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连结DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.证明:(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得∠1=∠FEC.∴∠1=∠2.(2)∵∠1=∠2,∴EG=GF.∵AB∥DC,∴∠DEG=∠EGF.由折叠得EC′∥B′F,B′F=BF,∴∠B′FG=∠EGF,∴∠DEG=∠B′FG.∵DE=BF,∴DE=B′F,∴△DEG≌△B′FG,∴DG=B′G.22.(10分)如图所示,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,AN=2,MN=1,求四边形ADCN的面积.(1) 证明:∵CN ∥AB ,∴∠DAC =∠NCA , (2)在△ADM 和△CNM 中,∵{∠DAC =∠NCA ,∠AMD =∠CMN ,MA =CM , ∴△ADM ≌△CNM , ∴CN =AD , ∵CN ∥AD ,∴四边形ADCN 为平行四边形,∴CD =AN ; (2)解:∵AC ⊥DN ,MN =1,AN =2,∴AM =AN 2-MN 2 =3 ,∴S △AMN =12 AM ·MN =12 ×3 ×1=32.∵四边形ADCN 是平行四边形,∴S 四边形ADCN =4S △AMN =23 .23.(10分)如图,平行四边形ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连结EF 交BD 于点O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于点G ,当FG =1时,求AE 的长.(1) 证明:∵四边形ABCD 是平行四边形, (2)∴DC ∥AB ,∴∠OBE =∠ODF.在△OBE 与△ODF 中,{∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF , ∴△OBE ≌△ODF ,∴BO =DO.(2) 解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE.∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.24.(12分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与点B,C重合),△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图①,求证:△AFB≌△ADC;(2)请判断图①中四边形BCEF的形状,并说明理由;(3)若点D在BC的延长线上,如图②,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.(1)证明:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.).(2)解:四边形BCEF为平行四边形.理由如下:由(1)得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC.又∵BC∥EF,∴四边形BCEF是平行四边形.(3)解:成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC-∠FAE,∠DAC=∠FAD-∠FAE,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.),∴∠AFB=∠ADC,又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE.又∵BC∥EF,∴四边形BCEF是平行四边形.第19章三、解答题(本大题共8小题,共72分)17.(10分)如图,在矩形ABCD内部,以AB为边作等边△ABE,且DE=CE,∠DEC=90°,求∠AED的度数.解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AD=BC,AE=BE,∠AEB=60°,在△ADE和△BCE中,{AD=BC,AE=BE,DE=CE,∴△ADE≌△BCE(S.S.S.),∴∠AED=∠BEC,∵∠DEC=90°,∴∠AED=(360°-90°-60°)÷2=105°.18.(6分)如图,Rt△ABC中,∠C=90°,∠A,∠B的平分线交于点O,OE ⊥BC于点E,OF⊥AC于点F,求证:四边形CEOF为正方形.证明:过O点作OG⊥AB,∵AO,BO分别平分∠CAB,∠ABC,OE⊥BC,OF⊥AC,∴OF=OE=OG.又∵∠C=90°,∴四边形CEOF为正方形.19.(8分)如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.证明:(1)∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,{CD=CB,CF=CE,DF=BE,∴△CFD≌△CEB(S.S.S.).(2)∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°,∴∠FCE=∠DCB=60°.∵CF=CE,∴∠CFE=∠CEF=60°.20.(8分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连结CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,(2)∴AB=CB,∠ABC=90°.∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∠EBC+∠FBC=90°.又∵∠ABF+∠FBC=90°,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(S.A.S.).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°.又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF是直角三角形.21.(8分)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD 的中点,射线BE交AD的延长线于点F,连结CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.(1)证明:∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC.在△BCE与△FDE中,{∠FBC=∠BFD,∠DCB=∠CDF,DE=EC,∴△BCE≌△FDE,∴DF=BC.又∵DF∥BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)解:∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=BD2-AD2=3,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=AB2+AF2=12 .22.(10分)如图,在△ABC中,D是BC边的中点,E,F分别在线段AD及其延长线上,CE∥BF.(1)求证:△BDF≌△CDE;(2)若BD=DF,求证:四边形BFCE是矩形.证明:(1)∵D是BC边的中点,∴BD=DC.∵CE∥BF,∴∠ECD=∠FBD.在△BDF和△CDE中,{∠FBD=∠ECD,DB=DC,∠BDF=∠CDE,∴△BDF≌△CDE(A.S.A.).(2)∵△BDF≌△CDE,∴ED=DF.又BD=CD,∴四边形BFCE是平行四边形.∵BD=DF,∴BC=EF.∴四边形BFCE是矩形.23.(10分)如图,菱形ABCD中,对角线AC,BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连结OF,若AC=16,BD=12,求四边形OFCD的面积.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. 又∵四边形ABCD 是菱形,∴AC ⊥BD , ∴∠DOC =90°.∴四边形OCED 为矩形; (2)解:作OH ⊥BC 于点H.∵四边形ABCD 是菱形,∴AC ⊥BD ,OD =OB =12 BD =6,OA =OC =12 AC =8.∴S △DBC =12DB ·OC =48.在Rt △OBC 中,BC =OB 2+OC 2 =10,∵CF =CO =8, ∴BF =2.∵S △OBC =12 ·BO ·OC =12 ·BC ·OH ,∴6×8=10×OH.∴OH =48,∴S △OBF =12·BF ·OH =4.8,∴S 四边形OFCD =S △DBC -S △OBF =48-4.8=43.2.24.(12分)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连结BE ,EF . (1)如图①,当E 是线段AC 的中点时,求证:BE =EF ;(2)如图②,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:__成立__.(选填“成立”或“不成立”)(3)如图③,当点E 是线段AC 延长线上的任意一点,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD 是菱形,∴AB =BC , ∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BCA =60°, ∵E 是线段AC 的中点,∴∠CBE =∠ABE =30°,AE =CE , ∵CF =AE ,∴CE =CF ,∴∠F =∠CEF =12 ∠BCA =30°,∴∠CBE =∠F =30°,∴BE =EF ;(2)解:结论成立;理由如下:过点E 作EG ∥BC 交AB 于点G , ∵四边形ABCD 为菱形,∴AB =BC ,∠BCD =120°,AB ∥CD , ∴∠ACD =60°,∠DCF =∠ABC =60°, ∴∠ECF =120°, 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴AB =AC ,∠ACB =60°,又∵EG ∥BC ,∴∠AGE =∠ABC =60°, 又∵∠BAC =60°, ∴△AGE 是等边三角形,∴AG =AE =GE ,∠AGE =60°,∴BG =CE ,∠BGE =120°=∠ECF ,又∵CF =AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.(2)解:结论成立,证明如下:过点E作EG∥BC交AB的延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠AGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.第20章三、解答题(本大题共8小题,共72分)17.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若小方的三部分得分依次是92,80,84,求他这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%=88.8分,即小方的数学总评成绩为88.8分.18.(10分)2018年7月27日上午九点三十分在黑龙红省青少年发展基金会举行“2018年园梦大学捐款资助仪式”.八年级(1)班50名同学积极参加了这次捐款活动,下表是小明对全班捐款情况的统计结果:38元.(1)根据以上信息,请帮助小明计算出被污染的数据,并写出解答过程;(2)该班捐款金额的众数、中位数分别是多少?解:(1)被污染处的人数为50-(3+6+11+13+6)=11人.设被污染处的捐款数为x元,则11x+1460=50×38,解得x=40.即被污染处的捐款为40元;(2)捐款金额的中位数是40元,捐款金额的众数是50元.19.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选他们的各项成绩如下表所示:人的综合成绩(满分为100分).(1)(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为88+902 =89分;(2)由题意得x ×60%+90×40%=87.6, 解得x =86,答:表中x 的值为86;(3)甲候选人综合成绩为90×60%+88×40%=89.2分, 乙候选人的综合成绩为84×60%+92×40%=87.2分, 丁候选人的综合成绩为88×60%+86×40%=87.2分, ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.20.(8分)(东莞中考)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:(1) (2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).解:(1)∵x 甲=x 乙,s 2甲 <s 2乙 ,∴甲的成绩比较稳定,派甲参赛比较合适;(2)x 乙=(5+9+7+10+9+8)÷6=8,s 2乙=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2] ≈2.67.21.(8分)(威海中考)为积极响应“弘扬传统文化”的号召,某学校倡导全校1 200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表(1)活动启动之初学生“一周诗词诵背数量”的中位数为__4.5__首; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数; (3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果. 解:(1)本次调查的学生有20÷60°360°=120名, 背诵4首的有120-15-20-16-13-11=45人, ∵15+45=60人,∴这组数据的中位数是(4+5)÷2=4.5首, 故答案为4.5首; (3)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有1 200×40+25+20120=850人,答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人; (3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次活动举办后的效果比较理想.22.(10分)甲、乙两名同学进入九年级后,某科6次考试成绩如图:(1)请根据统计图填写下表:(2)析;①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?解:(2)①甲、乙两同学平均分相同,乙的方差小,说明乙的成绩较稳定;②甲的成绩越来越好,而乙的成绩起伏不定.23.(10分)某地发生地震后,某校学生会向全校1 900名学生发起了“心系灾区人民”的捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50人__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(2)平均数为16元,众数为10元,中位数为15元.(3)608名.24.(12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:(1)a=__8__,b=__8__,c=__9__;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__变小__.(选填“变大”“变小”或“不变”)解:(1)由题可得a=15(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如图.(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2]≈2.7<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为变小.。
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
八年级数学(下)期末复习测试题七一、填空题:(每题2分,共24分)1.在△ABC 中,如果a :b :c =,那么∠C = °.2.当分式392+-x x 的值为零时,x 的值为 .3.命题“平行四边形的对角线互相平分”的逆命题是 ,这是一个_____命题(填“真”或“假”).4.计算()=-+-∙+x y y yx x y x 2222 . 5.已知正比例函数3y x =-与反比例函数ky x=的图象都过A (a ,1)点,求此反比例函数解析式为________,另一个交点的坐标为________. 6.木工师傅在做门窗时,不仅要用直尺..测量两组对边的长度是否相等,还要测量它们的 是否也相等,以确保图形是矩形,其中包含的数学道理是 . 7.如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长50cm ,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为30cm ,当端点B 向右移动10cm 时,滑杆顶端A 下滑 cm .8.甲、乙两人比赛射击,两人所得的平均数环数相同,其中甲所得的环数的方差为5,乙所得的环数如下:5,6,9,10,5,那么这两人中成绩较稳定的是_______(填“甲”、或“乙”) 9.下列矩形中,标注双线部分表示相等的线段,按虚线剪开后,既能拼出平行四边形,又能拼出梯形的是图形_____________(请直接填图形下面的代号).10.如图,反比列函数图象的一个分支在第四象限,点A 、B 是图象上任意两点,AM ⊥x 轴于M ,BN ⊥x 轴于N ,O 是原点,若△AOM 的面积是6,那么这个反比例函数的解析式为 ,△BON 的面积是 .11.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,制作了如下频数分布表. 组别 次数x 频数(人数)第1组80100x <≤ 6 第2组 100120x <≤8 第3组 120140x <≤a 第4组 140160x <≤ 20 第5组 160180x <≤6 则表中的a = ,这个样本数据的中位数落在第 组.12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (20,0)、C (0,8),点D 是OA 上的一点,点P 在BC 边上运动,当△ODP 是腰长为10的等腰三角形时,点P 的坐标为________.EC第7题 第10题 第12题 二、选择题:(每题3分,共24分) 13.下列各式中,正确的有( ).①a b b a =⋅÷1,②1232123222++-=++---a a a a a a ,③c b c a b a =+-+-22,④111122++=++y x yy x x A .3个 B . 2个 C .1个 D .0个14.以下各组数为三角形的三边的长,则不能组成直角三角形的是( ). A .13、12、5 B .25、7、24 C .23、24、25 D . 23、2、2515.化简2222-+-+-x x x x 的结果是( ). A.482--x x B.482+-x x C.482-x x D.48222-+x x 16.如图,已知四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .则下列各角中和∠AFD 相等的角是( ).A .∠AEFB .∠CBEC .∠BEFD .∠DAF17.电视台某日发布的天气预报,我国内地31个直辖市和省会城市在次日的最高气温(℃)统计如下表: 气温(℃) 18 21 22 23 24 25 27 28 29 30 31 32 33 34频 数11131315431412那么这些城市次日最高气温的中位数和众数分别是( ).A .28和29B .28和28C .29和29D .28.5和2818.如图,一次函数与反比例函数的图象交于A 、B 两点,则图中使反比例函数小于一次函数的自变量x 的取值范围是( ).A .x <-1B .x >2C .-1<x <0或x >2D .x <-1或0<x <219.如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠ABC =70°,若P 、M 、N 分别是AB 、AC 、BD 的中点,BC =10cm ,那么△PMN 的周长等于( ). A .10cm B .12cm C .15cm D .16cm 20.若A 、B 两点关于y 轴对称,且点A 在双曲线2y x=-上,点B 在直线4y x =+上,若B 点的坐标为(a ,b ),则11a b+的值为( ). A .2 B .-2 C .-8 D .8AB C DEF第16题 第17题 第19题 三、解答题(共72分)21.(本题10分)用直尺和圆规在数轴上作出数值是(保留作图痕迹,不写作法).22.(本题10分)先化简,⎪⎭⎫⎝⎛+---÷--11211222x x x x x x ,再代入一个你喜欢的数求值.23.(本题12分) 气球充满了一定质量的气体,当温度不变时,气球内的气压P (k P a )是气球体积V 的反比例函数.当气球体积是0.83m 时,气球内的气压为125k P a . (1)写出这一函数表达式;(2)当气体体积为0.53m 时,气压是多少?(3)当气球内气压大于160 k P a 时,气球将爆炸.为安全起见,气球体积应不小于多少?24.(本题12分)为了从甲、乙、丙三名学生中选拔一人参加射击比赛,现对他们的射击水平进行测试,三人在相同条件下各射靶10次,命中环数如下:甲:78665910748乙:9578768 6 7 7丙:757766656 5(1)求x甲,x乙,x丙;(2)求2S甲,2S乙,2S丙;(3)你认为这三个同学中应该选拔哪一位同学参加射击比赛?这什么?25.(本题12分)如图,△BCE和△DAF是分别以□ABCD的边BC、AD为斜边的等腰直角三角形,(1)图中有哪些线段相等,请直接写出;(2)探索线段BD和EF之间有什么关系?并证明你的结论.26.(本题16分)如图,在平面直角坐标系中,已知直角梯形OABC 的顶点分别是O (0,0),点A (9,0),B (6,4),C (0,4).点P 从C 点向B 点运动,速度为每秒3个单位,点Q 从A 向O 点运动,速度为每秒2个单位,当其中一个点到达终点时,另一个点也停止运动.两点同时出发,设运动的时间是t 秒.(1)当t 取何值时,四边形ABPQ 是平行四边形?并写出此时点P的坐标; (2)是否存在符合题意的t 的值,使直角梯形OABC 被直线PQ 分成面积相等的两个部分?如果存在,求出t 的值;如果不存在,请说明理由. (3)探究:当t 取何值时,四边形ABPQ 是等腰梯形 ?图1 图2(备用) 图3(备用)八年级数学(下)期末复习测试题七参考答案一、填空题: 1.90 2.33.对角线互相平分的四边形是平行四边形、真 4.x y + 5.3y x=-、(3,-1) 6.对角线、对角线相等的平行四边形是矩形 7.10 8.乙9.①、②、⑤ 10.10、4 11.6y x=-、6 12.(4,8)、(6,8)、(16,8) 二、选择题:13.D 14.C 15.A 16.B 17.B 18.D 19.C 20.A 三、解答题 21.如图:22. ⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x=22(1)(1)(21)(1)(1)1x x x x x x x x --+--÷-++ =2221(1)(1)2x x x x x x x -+∙-+-=11x - 当x =4时,原式=13.(注意x 不能取±1和2) 23.(1)设k P V =,把P =125,V =0.8代入,k =100,∴100P V=; (2)当V =0.8时,1000.5P ==200,气压是200 k P a ;(3)气球体积应不小于0.6253m .24.(1)x 甲=7,x 乙=7,x 丙=6, (2)2S 甲=3,2S 乙=1.2,2S 丙=0.6,(3)从平均数看x 甲=x 乙>x 丙,把丙排除掉,再从方差上看,2S 甲>2S 乙,乙成绩较稳定,应选乙参加比赛.25.(1)AB =CD ,AD =CB ,AF =DF =EB =EC ; (1)BD 和EF 互相平分.∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵△BCE 和△DAF 是分别以BC 、AD 为斜边的等腰直角三角形, 易证△BCE ≌△DAF ,∴DF =BE , ∵AD ∥BC ,∴∠ADB =∠CBD ,又∵∠ADF =∠CBE =45°,∴∠BDF =∠DBE ,∴ DF ∥BE ,∴四边形BEDF 为平行四边形,∴BD 和EF 互相平分.26.(1)t 秒后,CP 长是2t ,AQ 长是3t ,当四边形ABPQ 是平行四边形时,PB =AQ , 根据题意,得362t t =-,解得t =1.2,当t =1.2时,四边形ABPQ 是平行四边形,此时点P的坐标是(2.4,4);(2)存在;设t 秒后,直角梯形OABC 被直线PQ 分成面积相等的两个部分,所以梯形ABPQ 面积是直角梯形OABC 的12,根据题意,得11(69)42[(62)3]422t t +⨯=⨯-+⨯,解得t =1.5,(3)t =2.4.。