机械波多解问题的探究——波动的周期性导致多解
- 格式:pdf
- 大小:74.61 KB
- 文档页数:1
波动问题的多解一、知识点梳理机械波传播过程中在时间和空间上的周期性、传播方向上的双向性、质点振动方向的不确定性都是形成波动问题多解的主要原因.解题时常出现漏解,现归类分析1.波的空间周期性沿波的传播方向,在x 轴上任取一点)(x P ,如图所示.P 点的振动完全重复波源O 点的振动,只是时间上比O 点要落后t ∆时间,且T xv x t λ==∆.在同一列波上,凡坐标与P 点坐标x 之差为波长整数倍的质点,在同一时刻t 的振动位移都与坐标为x 的质点的振动位移相同,其振动速度、加速度也都与坐标为x 的质点相同,或者说它们的振动“相貌”完全相同.因此在同一列波上,某一振动“相貌”势必会不断地重复出现,这就是机械波的空间周期性.波的空间周期性说明,在同一列波上,相距为波长整数倍的多个质点的振动情况完全相同.2.波的时间周期性在x 轴上取一给定质点,在kT t +时刻的振动情况与它在t 时刻的振动情况(位移、速度、加速度等)相同.因此在t 时刻的波形,在kT t +时刻必然多次重复出现,这就是机械波的时间周期性,波的时间周期性表明,波在传播过程中,经过整数倍周期时,其波形图线相同.3.波的双向性双向性是指波沿正、负两方向传播时,若沿正、负两方向传播的时间之和等于周期的整数倍,则沿正、负两方向传播到那一时刻的波形图相同.4.波的对称性波源的振动,要带动它左、右相邻质点的振动,波要向左、右两方向传播.对称性是指波在向左、右同时传播时,关于波源对称的左、右两质点的振动情况完全相同.5.介质中两质点间的距离与波长关系未定在波的传播方向上,如果两个质点相距的距离不确定,就会形成多解,学生若不能联想到所有可能的情况,则易出现漏解.6.介质中质点的振动方向未定在波的传播过程中,质点振动方向与传播方向相联系,若某一质点振动方向未确定,则波的传播方向有两种,这样会形成多解.例1.一列简谐横波在0=t 时刻的波形如图中的实线所示,s 02.0=t 时刻的波形如图中虚线所示.若该波的周期T 大于s 02.0,则该波的传播速度可能是( ) A .2m/s B .3m/s C .4m/s D .5m/s例2.如图所示,一列简谐横波在x 轴上传播,图甲和图乙分别为x 轴上a 、b 两质点的振动图象,且m 6=ab x ,下列判断正确的是( )A .此波一定沿x 轴正方向传播B .波长一定是8mC .波速可能是2m/sD .波速一定是6m/s二、技巧总结1.波动问题的解题技巧(1)波动图象的周期性形成的多解分析方法求解波动图象多解问题,关键是分析时间和空间的周期性,注意以下两点:①写关系式时,先找出两个状态下的最小时间间隔或最小距离,再引入整数n 写出通式.x n x ∆+=λ,t T n t ∆+=',tT n xn t x v ∆+∆+=='λ,其中n 、 3,2,1,0'=n ②如果有限制条件再根据限制条件确定n 的取值(2)解决由周期性及双向性带来的多解问题的般思路是: ①首先考虑传播方向的双向性,如果题目未告知波的传播方向或没有其他条件暗示,应首先按波传播方向(x +和x -两个方向)的可能性进行讨论.②对设定的传播方向,确定t ∆和T 的关系,一般先确定最简单的情况,即一个周期内的情况,然后在此基础上加nT .③应注意题日是否有限制条件,如有的题目限制波的传播方向,或限制时间t ∆大于或小于一个周期等所以解题时应综合考虑,加强多解意识,认真分析题意.④空间的周期性和时间的周期性是一致的,实质上是波形平移规律的应用,所以解题时我们可以针对不同题目选择其中一种方法求解 (3)波形的不确定造成的多解问题在波动问题中,往往只给出完整波形的一部分,或给出几个特殊点,而其余信息均处于隐含状态,这样,波形就有多种情况,形成相关波动问题的多解. 实际上这类题型主要有两种命题形式:一是已知同一时刻波动中两质点所处的位置求解可能的波长.我们应先确定这两点间可能出现的小于一个波长的所有可能性,再利用波的空间的周期性,判断出所有可能的波形.二是告诉同一质点在不同时刻所处的位置.例如0t 时A 质点处于波峰,1t 时刻A 质点处于平衡位置,此时就应利用振动时间的周期性来确定周期.由于A 质点振动方向不明确,先确定A 质点在一个周期内发生这一运动的两种可能性即T t 41=∆或T 43. 再由时间的周期性可得到,T nT t t 4101+=-或T nT t t 4301+=-,即可求出所有可能的周期值,解决此类问题的关键是:①分析题目给定的关键状态. ②确定两状态点可能存在的波形,只需画出一个周期内的可能波形.③利用波的周期性,确定所有可能出现的波形.④结合题日的限制条件,选择正确的值.(4)两质点间关系不确定形成多解的分析方法 在波的传播方向上,如果两个质点间距离不确定或者两者相位之间关系不确定,就会形成多解,若不能联想到所有可能的情况,就会出现漏解.例3.一列简谐横波沿水平直线向右传播. M 、N 为介质中相距为s ∆的两质点,M 在左,N 在右. t 时刻,M 、N 两质点正好振动经过平衡位置,而且M 、N 之间只有一个波峰,经过t ∆时间N 质点恰好在波峰位置,求这列波的波速.2.图象互推问题分析要点(1)1t 时刻波形图⇔2t 时刻波形图:将“波形图平移”,即波形沿传播方向平移.平移的距离t v x ∆⋅=∆(2)振动图象与波动图象:通常取振动图象上的特殊时刻或波动图象上的特殊质点,利用波的传播方向和振动方向关联分析,任一质点的振动状态(如位移,振动方向)在波形图和振动图上应该一致.(3)1x 振动图象⇔2x 振动图象:将“振动图象平移”,即被带动的质点的振动状态(或振动图象)延迟了t ∆时间,延迟的时间vx t ∆=∆.例4.多选一列简谐横波沿x 轴正方向传播,图(a )是t =0时刻的波形图,图(b )和图(c )分别是x 轴上某两处质点的振动图象.由此可知,这两质点平衡位置之间的距离可能是( ) A .m 31B .m 32C .m 1D .m 43三、针对训练1.(多选)一列简谐横波沿直线传播,该直线上的a 、b 两点相距4.42m. 图中实、虚两条曲线分别表示平衡位置在a 、b 两点处质点的振动曲线. 从图示可知( ) A .此列波的频率一定是10Hz B .此列波的波长一定是0.1mC .此列波的传播速度可能是34m/sD .a 点一定比b 点距波源近2. 一列简谐横波沿直线由a 向b 传播,相距10.5m 的a 、b 两处的质点振动图象如图中a 、b 所示,则( )3. A .该波的振幅可能是20cm4. B .该波的波长可能是8.4m5. C .该波的波速可能是10.5m/s6. D .该波由a 传播到b 可能历时7s3.(多选)一列在竖直方向振动的简谐横波,波长为λ,沿正x 方向传播.某一时刻,在振动位移向上且大小等于振幅一半的各点中,任取相邻的两点1P 、2P ,已知1P 的x 轴坐标小于2P 的x 轴坐标,则( ) A .若221λ<P P ,则1P 向下运动,2P 向上运动 B .若221λ<P P ,则1P 向上运动,2P 向下运动 C .若221λ>P P ,则1P 向上运动,2P 向下运动 D .若221λ>P P ,则1P 向下运动,2P 向上运动4.(多选)M 、N 为介质中波的传播方向上的两点,间距s =1.5m ,它们的振动图象如图所示,这列波的波速的可能值为( )A .15 m/sB .7.5m/sC .5 m/sD .3 m/s5. 在波传播的直线上有两个质点A 、B ,它们相距60cm ,当A 质点在平衡位置处向上振动时,B 质点处在波谷位置. 已知波的速度是24m/s ,则此列波的频率可能是( ) ①30Hz ②410Hz ③400Hz ④430HzA .①②③B .②③④C .①②④D .①③④6. (多选)(2019·天津高考)一列简谐横波沿x 轴传播,已知x 轴上m 11=x 和m 72=x 处质点的振动图象分别如图1、图2所示,则此列波的传播速率可能是( )图1 图2A .7 m/sB .2 m/sC .1.2 m/sD .1 m/s7. (多选)如图所示,一根张紧的水平弹性长绳的a 、b 两点相距14.0m ,b 点在a 点右方. 当一列简谐波沿此绳向右传播时,若a 点位移达到正向极大时,b 点位移恰好为零,且向下运动,经过1.00s 后,a 点位移第一次变为零,且向下运动,而b 点的位移恰好达到负向极大,则这列简谐波的波速可能等于( ) A .4.67m/s B .6 m/s C .2 m/s D .14 m/s8. 一列简谐横波向右传播,波速为v ,沿波传播方向上有相距为L 的P 、Q 两质点,如图所示,某时刻P 、Q 两质点都处于平衡位置,且P 、Q 间仅有一个波峰,经过时间t ,Q 质点第一次运动到波谷,则t 的可能值有( ) A .1个 B .2个 C .3个 D .4个9.(多选 )一列横波以10 m/s 的速率沿水平方向传播,某时刻的波形如图中的实线所示,经时间t ∆后的波形如图中的虚线所示,已知T t T >∆>2(T 为这列波的周期). 由此可知t ∆可能是( )A .0.3sB .0.5sC .0.6sD .0.7s10. 一列简谐横波沿直线由A 向B 传播,A 、B 相距0.45m ,如图是A 处质点的振动图象,当A 处质点运动到波峰位置时,B 处质点刚好到达平衡位置且向y 轴正方向运动,这列波的波速可能是( )A .4.5m/sB .3.0m/sC .1.5m/sD .0.7m/s11. 如图所示,一简谐横波在x 轴上传播,轴上a 、b 两点相距12m ,t=0时a 点为波峰,b 点为波谷,t=0.5s 时,a 点为波谷,b 点为波峰. 则下列判断中正确的是( ) A .波一定沿x 轴正方向传播 B .波长可能是8m C .周期可能是0.5s D .波速一定是24m/s12. 如图所示,实线是一列简谐横波在01=t 时刻的波形,虚线是这列波在s 5.02 t 时刻的波形. (1)写出这列波的波速表达式;(2)若波速大小为74 m/s ,波速方向如何?13. 如图所示,实线是某时刻的波形图象,虚线是0.2s 后的波形图 (1)若波向左传播,求它的可能周期和最大周期, (2)若波向右传播,求它的可能传播速度. (3)若波速是45m/s ,求波的传播方向.14. 在波的传播方向上有两个质点P 和Q ,它们的平衡位置相距s=1.2m ,且大于一个波长,介质中的波速为v =2m/s ,P 和Q 的振动图线如图所示,求振动周期的最大值,并画出t=0时的波的图象.答案例题例1.B 解析:由图λ=0.08m ,该波的周期T 大于0.02s,波传播的距离小于波长,则据题意,由两个时刻的波形得到:T t 41=或T t 43=,解得s 08.01=T , s 308.01=T由波速公式Tv λ=,得m/s 11=v ,m/s 32=v , 故选:B例2.C 解答:解:A 、由振动图象无法比较a 、b 两质点振动的先后,所以无法判断波的传播方向,故A 错误。
波的传播的多解性【学习目标】1.理解波传播的时间周期性特征。
2.理解波传播的空间周期性特征。
【要点梳理】要点一、波的传播的多解性的形成原因机械波传播过程中在时间和空间上的周期性、传播方向上的双向性、质点振动方向的不确定性都是形成波动问题多解的主要原因.解题时常出现漏解,现归类分析.1.波动图像的周期性形成多解机械波在一个周期内不同时刻图像的形状是不同的,但在相隔时间为周期整数倍的不同时刻图像的形状则是相同的.机械波的这种周期性必然导致波的传播距离、时间和速度等物理量有多值与之对应,即这三个物理量可分别表示为:s n s λ∆=+,t kT t ∆=+,/()/()v s t n s kT t λ∆∆==++,其中0123n =,,,,;0123k =,,,,. 2.波的传播方向的双向性形成多解在一维条件下,机械波既可以向x 轴正方向传播,也可以向x 轴负方向传播,这就是波传播的双向性.3.波形的隐含性形成多解许多波动习题往往只给出完整波形的一部分,或给出了几个特点,而其余部分处于隐含状态.这样,一道习题就有多个图形与之对应,从而形成多解.由于波动的时间周期性、空间周期性及传播的双向性,从而造成波动问题的多解.解题时要先建立通式,再根据限制条件从中取出符合题意的解.要点二、波的传播的多解性的解题方法 1.多解问题的解题技巧(1)方向性不确定出现多解.波总是由波源发出向外传播的,介质中各质点的振动情况是根据波的传播方向来确定的,反之亦然.因此,题目中不确定波的传播方向或者不确定质点的振动方向,就会出现多解,学生在解题时往往凭主观选定某一方向为波的传播方向或质点振动方向,这样就会漏掉一个相反方向的解.【例】图为一列简谐横波在某时刻的波形图,其中M 点为介质中一质点,此时刻恰好过平衡位置,已知振动周期为0.8 s ,问M 至少过多长时间达到波峰位置?【解析】题设条件中没有给出M 点过平衡位置的振动方向,也没给出波的传播方向,故我们应分情况讨论,当波向右传播时,M 点向下振动,则至少经过3/4T 才能达到波峰;当波向左传播时,质点M 向上振动,则至少需要/4T 才能够到达波峰,所以此题应该有两个答案.即至少再经过0.6 s 或0.2 s ,M 点到达波峰.(2)时间、距离不确定形成多解.沿波的传播方向,相隔一个波长的两个相邻的质点振动的步调是完全相同的,相隔一定周期的前后两个相邻时刻的波形图线是完全相同的,所以题目中没有给定传播时间与周期的关系或传播距离与波长的关系,就会出现多解现象,学生解题时只按t ∆小于T 或x ∆小于λ来解,就会造成用特解取代通解的现象.【例】如图所示。
关于机械波多解问题的例析山东临沂双月园学校(276017)刘忠涛机械波多解问题历来是各级各类考试中经常考察的热点,也是高中物理教学中的一个重点和难点。
学生在求解机械波问题时,往往由于对波动的实质理解不深刻、对题目中隐含条件挖掘不透彻、对已知条件使用不全面等,常常会出现解答不完整而造成漏解。
本文限于横波沿一条直线传播的情形,就常见的机械波多解问题通过剖析其成因进行归类例析,力求帮助学生掌握解决此类问题的根本。
一、波传播的“双向性”带来的多解问题机械波在同种介质中沿一条直线传播的情形下,波的传播方向有两种可能,这就是波传播的“双向性”。
当题目没有明确波的传播方向时,我们必须要考虑波传播的“双向性”,才能得出完整的答案。
例1如图1所示,一列简谐横波以速率v传播,t1时刻的波形为实线,t2时刻的波形为虚线。
已知△t= t2- t1=0.06s,且△t小于一个周期T。
则下列关于该列波传播的周期与速率的判断,可能正确的是( )。
A.T=0.24s,v=50m/sB.T=0.08s,v=150m/sC.T=0.24s,v=150m/sD.T=0.08s,v=50m/s解析:本题没有明确波的传播方向,因此需要考虑波传播的“双向性”。
由图1可知,该波的波长为λ=12m。
(1)若波沿+x方向传播,由图1可看出,波在△t内传播的最小距离为△S=λ/4。
又则波速大小v=△s/△t=λ/T =50m /s.(2)若波沿-x 方向传播,同理可得另一组解T=0.08s ,v=150m /s.故本题正确选项为A 、B 。
二、波传播的周期性带来的多解问题机械波在介质中传播的过程中,由于介质质点做周期性的振动,因而波的图像也具有周期性。
这种周期性表现在两个方面:时间上的周期性和空间上的周期性。
(一)波传播的时间上的周期性产生多解设某简谐波周期为T ,传播过程中在时刻t 各振动质点形成一波形,经过时间△t=nT (n=0,1,2,3,……)各振动质点又回到t 时刻的位置。