Passive underwater acoustic damping using shunted piezoelectric coatings
- 格式:pdf
- 大小:107.92 KB
- 文档页数:7
TECHNOLOGY MOVES FAST. WE MOVE FASTER.* Under Construction / ** Authorized for ConstructionSUBMARINESUse of DoD visual information does not imply or constituent DoD endorsement.LOS ANGELES CLASS> SSN 717 Olympia > SSN 719 Providence > SSN 720 Pittsburgh > SSN 721 Chicago > SSN 722 Key West> SSN 723 Oklahoma City > SSN 724 Louisville > SSN 725 Helena> SSN 750 Newport News > SSN 751 San Juan > SSN 752 Pasadena > SSN 753 Albany > SSN 754 Topeka > SSN 756 Scranton > SSN 757 Alexandria > SSN 758 Asheville> SSN 759 Jefferson City > SSN 760 Annapolis > SSN 761 Springfield > SSN 762 Columbus > SSN 763 Santa Fe > SSN 764 Boise> SSN 765 Montpelier > SSN 766 Charlotte > SSN 767Hampton> SSN 768 Hartford > SSN 769 Toledo > SSN 770 Tucson > SSN 771 Columbia > SSN 772 Greeneville > SSN 773CheyenneVIRGINIA CLASS> SSN 774 Virginia > SSN 775 Texas > SSN 776 Hawaii> SSN 777 North Carolina > SSN 778 New Hampshire > SSN 779 New Mexico > SSN 780 Missouri > SSN 781 California > SSN 782 Mississippi > SSN 783 Minnesota > SSN 784 North Dakota > SSN 785 John Warner > SSN 786 Illinois> SSN 787 Washington > SSN 788 Colorado > SSN 789 Indiana> SSN 790 South Dakota > SSN 791Delaware> SSN 792 Vermont > SSN 793 Oregon*> SSN 794 Montana*> SSN 795 Hyman G Rickover*> SSN 796 New Jersey*> SSN 797 Iowa*> SSN 798 Massachusetts*> SSN 799 Idaho*> SSN 800 Arkansas*> SSN 801 Utah*> SSN 802 Oklahoma*> SSN 803 Arizona*> SSN 804 Barb*> SSN 805 Tang**> SSN 806 WAHOO**> SSN 807 (Unnamed)**> SSN 808 (Unnamed)**> SSN 809 (Unnamed)**> SSN 810(Unnamed)**FAST ATTACK (SSN)SEAWOLF CLASS> SSN 21 Seawolf > SSN 22 Connecticut > SSN 23Jimmy CarterGUIDED MISSILE (SSGN)OHIO CLASS> SSGN 726 Ohio > SSGN 727 Michigan > SSGN 728 Florida > SSGN 729GeorgiaBALLISTIC MISSILE (SSBN)OHIO CLASS> SSBN 730 Henry M Jackson > SSBN 731 Alabama > SSBN 732 Alaska > SSBN 733 Nevada > SSBN 734 Tennessee > SSBN 735 Pennsylvania > SSBN 736 West Virginia > SSBN 740 Rhode Island > SSBN 741 Maine > SSBN 742 Wyoming > SSBN 743 Louisiana > SSBN 737 Kentucky > SSBN 738 Maryland > SSBN 739 Nebraska> SSBN 826 USS Columbia**> SSBN 827USS Wisconsin**CAPABILITIES> Integrated C5ISR Systems - Integrated & AutomatedCommunications - Navigation & Management - Alarm & Announcing Systems - Bridge & Navigation Systems > Tactical Information Assurance Solutions> EW / SIGINT Systems > Ship Control & Propulsion Systems > Crypto, Key Management & Network Security Solutions > Automatic Information Systems> Defense & Security Unmanned Surface Vehicles (USV)> Commercial & Scientific USVs > Unmanned Vessel Conversion > Aluminum-Water Power Solutions > UUV Fuel Cell C5 SYSTEMS> Integrated Platform Management Systems > Nuclear Power Plant Simulators> Space Robotics Operations Training> Battle Damage Control System > Submarine Systems / Training > Visual Landing Aids / Naval Handling Systems > Mine Warfare Systems > Maritime EW / RF Mics > Electronic Systems & I ntegration> Underwater Communications > Multi-domain Situational Awareness> Hydrographic Systems> Defense & Security Unmanned Surface Vehicles (USV)> Commercial & Scientific USVs > Unmanned Vessel Conversion INTERNATIONALUse of DoD visual information does not imply or constituent DoD endorsement.CRUISERS (CG)TICONDEROGA CLASS> CG 52 Bunker Hill > CG 53 Mobile Bay > CG 54 Antietam > CG 55 Leyte Gulf > CG 56 San Jacinto> CG 57 Lake Champlain > CG 58 Philippine Sea > CG 59 Princeton > CG 60 Normandy > CG 61 Monterey> CG 62 Chancellorsville > CG 63 Cowpens > CG 64 Gettysburg > CG 65 Chosin > CG 66 Hue City > CG 67 Shiloh > CG 68 Anzio > CG 69 Vicksburg > CG 70 Lake Erie> CG 71 Cape St. George > CG 72 Vella Gulf > CG 73Port RoyalGUIDED MISSILE FRIGATE (FFG)FFG 62 Constellation**FFG 63 Congress**LITTORAL COMBAT SHIP (LCS)> LCS 1 Freedom> LCS 2 Independence > LCS 3 Fort Worth > LCS 4 Coronado > LCS 5 Milwaukee > LCS 6 Jackson > LCS 7 Detroit> LCS 8 Montgomery > LCS 9 Little Rock> LCS 10 Gabrielle Giffords > LCS 11 Sioux City > LCS 12 Omaha > LCS 13 Wichita > LCS 14 Manchester > LCS 15Billings> LCS 16 Tulsa> LCS 17 Indianapolis > LCS 18 Charleston > LCS 19 St Louis > LCS 20 Cincinnati > LCS 27 Nantucket*> LCS 28 Savannah*> LCS 29 Beloit*> LCS 30 Canberra*> LCS 31 Cleveland**> LCS 32 Santa Barbara**> LCS 34 Augusta*> LCS 36 Kingsville**> LCS 38 Pierre**DESTROYERS (DDG)ARLEIGH BURKE CLASS> DDG 51 Arleigh Burke > DDG 52 Barry> DDG 53 John Paul Jones > DDG 54 Curtis Wilbur > DDG 55 Stout> DDG 56 John S McCain > DDG 57 Mitscher > DDG 58 Laboon > DDG 59 Russell> DDG 60 Paul Hamilton > DDG 61 Ramage > DDG 62 Fitzgerald > DDG 63 Stethem > DDG 64 Carney > DDG 65 Benfold > DDG 66 Gonzalez > DDG 67 Cole> DDG 68 The Sullivans > DDG 69 Milius > DDG 70 Hopper > DDG 71 Ross > DDG 72 Mahan > DDG 73 Decatur > DDG 74 McFaul> DDG 75 Donald Cook > DDG 76 Higgins > DDG 77 O’kane > DDG 78 Porter> DDG 79 Oscar Austin > DDG 80 Roosevelt> DDG 81Winston S Churchill> DDG 82 Lassen > DDG 83 Howard > DDG 84 Bulkeley > DDG 85 McCampbell > DDG 86 Shoup > DDG 87 Mason > DDG 88 Preble > DDG 89 Mustin > DDG 90 Chafee > DDG 91 Pinckney > DDG 92 Momsen > DDG 93 Chung-hoon > DDG 94 Nitze> DDG 95 James E Williams > DDG 96 Bainbridge > DDG 97 Halsey> DDG 98 Forrest Sherman > DDG 99 Farragut > DDG 100 Kidd > DDG 101 Gridley > DDG 102 Sampson > DDG 103 Truxtun > DDG 104 Sterett > DDG 105 Dewey > DDG 106 Stockdale > DDG 107 Gravely> DDG 108 Wayne E Meyer > DDG 109 Jason Dunham> DDG 110 William P Lawrence > DDG 111 Spruance> DDG 112 Michael Murphy > DDG 113 John Finn> DDG 114 Ralph Johnson > DDG 115 Rafael Peralta > DDG 116 Thomas Hudner > DDG 117 Paul Ignatius > DDG 118 Daniel Inouye*> DDG 119 Delbert D Black*> DDG 120 Carl M Levin*> DDG 121 Frank E Petersen Jr*> DDG 122 John Basilone*> LCS 21 Minneapolis/St. Paul*> LCS 22 Kansas City > LCS 23 Cooperstown*> LCS 24 Oakland > LCS 25 Marinette*> LCS 26 Mobile*> DDG 128 Ted Stevens*> DDG 129 Jeramiah Denton**> DDG 130 William Charette**> DDG 131 George M Neal**> DDG 132 Quetin Walsk**> DDG 133 Sam Nunn**> DDG 134 John E Kilmer**> DDG 135 (Unnamed)**> DDG 136 (Unnamed)**> DDG 137 John F Lehman**> DDG 138 (Unnamed)**> DDG 139 (Unnamed)**DDG ZUMWALT CLASS> DDG 1000 Zumwalt> DDG 1001 Michael Monsoor > DDG 1002 Lyndon B Johnson*SURFACE COMBATANTSAIRCRAFT CARRIERSAIRCRAFT CARRIERS (CVN)NIMITZ CLASS> CVN 68 Nimitz> CVN 69 Dwight D Eisenhower > CVN 70 Carl Vinson> CVN 71 Theodore Roosevelt > CVN 72 Abraham Lincoln > CVN 73 George Washington > CVN 74 John C Stennis > CVN 75 Harry S Truman > CVN 76 Ronald Reagan > CVN 77George H W BushFORD CLASS> CVN 78 Gerald R Ford > CVN 79 John F Kennedy*> CVN 80 Enterprise*> CVN 81Doris Miller*** Under Construction / ** Authorized for ConstructionAMPHIBIOUS WARFARE SHIPS Use of DoD visual information does not imply or constituent DoD endorsement.COMMAND (LCC)BLUE RIDGE CLASS> LCC 19 Blue Ridge> LCC 20 Mount Whitney ASSAULT SHIPS (LHA, LHD)TARAWA CLASS> LHA 6 America> LHA 7 Tripoli> LHA 8 Bougainville* WASP CLASS> LHD 1 Wasp> LHD 2 Essex> LHD 3 Kearsarge> LHD 4 Boxer> LHD 5 Bataan> LHD 6 Bonhomme Richard > LHD 7 Iwo Jima> LHD 8 Makin Island SAN ANTONIO CLASS> LPD 17 San Antonio> LPD 18 New Orleans> LPD 19 Mesa Verde> LPD 20 Green Bay> LPD 21 New York> LPD 22 San Diego> LPD 23 Anchorage> LPD 24 Arlington> LPD 25 Somerset> LPD 26 John P Murtha> LPD 27 Portland> LPD 28 Ft. Lauderdale*> LPD 29 Richard M McCool Jr*> LPD 30 Harrisburg**> LPD 31 (Unnamed)**DOCK LANDING (LSD)WHIDBEY ISLAND CLASS> LSD 41 Whidbey Island> LSD 42 Germantown> LSD 43 Fort McHenry> LSD 44 Gunston Hall> LSD 45 Comstock> LSD 46 Tortuga> LSD 47 Rushmore> LSD 48 AshlandHARPERS FERRY CLASS> LSD 49 Harpers Ferry> LSD 50 Carter Hall> LSD 51 Oak Hall> LSD 52 Pearl HarborMINE COUNTER MEASURES (MCM)AVENGER CLASS> MCM 3 Sentry> MCM 6 Devastator> MCM 7 Patriot> MCM 9 Pioneer> MCM 10 Warrior> MCM 11 Gladiator> MCM 13 Dextrous> MCM 14 ChiefCAPABILITIES> Submarine, Imaging Systems & Consoles, and Radar> Surface Imaging Systems> Fleet Support Services / Marine Services> Dipping Sonar Systems> Towed Array Systems> Bottom Mounted Active & Passive Integrated Hydrophone System> Acoustic Systems> Maritime and Training and > Ocean Observatories> Underwater AcousticCommunications> Undersea Sensor Systems > Unmanned Underwater Vehicles (UUV)> Custom Payloads> Mission Planning Software > C2 Theater ASW Systems > Common Operational Picture Tools> C2 Systems and SystemsSENSORS> Electrical Auxiliary Propulsion> Specialty Submarine Products> Support Services > Power Conversion Modules- Advanced Degaussing- Automatic Bus Transfer- Frequency Converters- AC to DC Rectifiers- Fault Isolation> Circuit Breakers> Switchboards and Load Centers > Power Node Control Centers > Support ServicesSERVICES POWERUse of DoD visual information does not imply or constituent DoD endorsement.NATIONAL SECURITY CUTTERS (WMSL)418-FOOT-LEGEND CLASS > WMSL 750 Bertholf> WMSL 751 Waesche> WMSL 752 Stratton> WMSL 753 Hamilton> WMSL 754 James> WMSL 755 Munro> WMSL 756 Kimball> WMSL 757 Midgett> WMSL 758 Stone*> WMSL 759 Calhoun*> WMSL 760 Friedman* ICEBREAKERS (WAGB) 420-FOOT> WAGB 20 Healy399-FOOT> WAGB 10 Polar Star240-FOOT> WLBB 30 Mackinaw HIGH ENDURANCE CUTTERS (WHEC)378-FOOT-HAMILTON CLASS> WHEC 717 Mellon> WHEC 724 Munro> WHEC 726 Midgett MEDIUM ENDURANCE CUTTERS (WMEC)282-FOOT> WMEC 39 Alex Haley270-FOOT> WMEC 901 Bear> WMEC 902 Tampa> WMEC 903 Harriet Lane> WMEC 904 Northland > WMEC 905 Spencer> WMEC 906 Seneca> WMEC 907 Escanaba> WMEC 908 Tahoma> WMEC 909 Campbell> WMEC 910 Thetis> WMEC 911 Forward> WMEC 912 Legare> WMEC 913 Mohawk210-FOOT> WMEC 615 Reliance> WMEC 616 Diligence> WMEC 617 Vigilant> WMEC 618 Active> WMEC 619 Confidence> WMEC 620 Resolute> WMEC 621 Valiant> WMEC 623 Steadfast> WMEC 624 Dauntless> WMEC 625 Venturous> WMEC 626 Dependable> WMEC 627 Vigorous> WMEC 629 Decisive> WMEC 630 AlertSEAGOING BUOY TENDER(WLB)225-FOOT> WLB 201 Juniper> WLB 202 Willow> WLB 203 Kukui> WLB 204 Elm> WLB 205 Walnut> WLB 206 Spar> WLB 207 Maple> WLB 208 Aspen> WLB 209 Sycamore> WLB 210 Cypress> WLB 211 Oak> WLB 212 Hickory> WLB 213 Fir> WLB 214 Hollyhock> WLB 215 Sequoia> WLB 216 AlderCOASTAL BUOY TENDER(WLM)175-FOOT> WLM 551 Ida Lewis> WLM 552 Katherine Walker> WLM 553 Abbie Burgess> WLM 554 Marcus Hanna> WLM 555 James Rankin> WLM 556 Joshua Applebey> WLM 557 Frank Drew> WLM 558 Anthony Petit> WLM 559 Barbara Mabrity> WLM 560 William Tate> WLM 561 Harry Clairborne> WLM 562 Maria Bray> WLM 563 Henry Blake> WLM 564 George CobbINLAND CONSTRUCTIONTENDERS (WLIC)160-FOOT> WLIC 800 Pamlico> WLIC 801 Hudson> WLIC 802 Kennebec> WLIC 803 Saginaw100-FOOT> WLIC 315 SmilaxPATROL CUTTERS (WPC)154-FOOT-SENTINEL CLASS> WPC 1101 Bernard C Webber> WPC 1102 Richard Etheridge> WPC 1103 William Flores> WPC 1104 Robert Yered> WPC 1105 Margaret Norvell> WPC 1106 Paul Clark> WPC 1107 Charles David Jr> WPC 1108 Charles Sexton> WPC 1109 Kathleen Moore> WPC 1110 Raymond Evans> WPC 1111 William Trump> WPC 1112 Issac Mayo> WPC 1113 Richard Dixon> WPC 1114 Heriberto Hernandez> WPC 1115 Joseph Napier> WPC 1116 Winslow W Griesser> WPC 1117 Donald Horsley> WPC 1118 Joseph Tezanos> WPC 1119 Rollin A Fritch> WPC 1120 Lawrence O Lawson> WPC 1121 John F McCormick> WPC 1122 Bailey T Barco> WPC 1123 Benjamin B Dailey> WPC 1124 Oliver F Berry> WPC 1125 Jacob L.A. Poroo> WPC 1126 Joseph Gercezak> WPC 1127 Richard T Snyder> WPC 1128 Nathan Bruckenthal> WPC 1129 Forrest O Rednour> WPC 1130 Robert G Ward> WPC 1131 Terrell Horne III> WPC 1132 Benjamin A Bottoms> WPC 1133 Joseph O Doyle> WPC 1134 William C Hart> WPC 1135 Angela McShan> WPC 1136 Daniel Tarr> WPC 1137 Edgar Culbertson> WPC 1138 Harold Miller> WPC 1139 Myrtle Hazard> WPC 1140 Oliver Henry> WPC 1141 Charles Moulthrop> WPC 1142 Robert Goldman*> WPC 1143 Frederick Hatch*> WPC 1144 Glenn Harris*> WPC 1145 Emlen Tunnell*> WPC 1146 John Scheuerman*> WPC 1147 Clarence Sutphin*> WPC 1148 Pablo Valent*> WPC 1149 Douglas Denman*> WPC 1150 William Chadwick*> WPC 1151 Warren Deyampert*> WPC 1152 Maurice Jester*> WPC 1153 John Patterson*> WPC 1154 William Sparling*> WPC 1155 Melvin Bell*> WPC 1156 David Duren*> WPC 1157 Florence Finch**> WPC 1158 John Witherspoon**> WPC 1159 Earl Cunningham**> WPC 1160 Frederick Mann**COAST GUARD CUTTERSUse of DoD visual information does not imply or constituent DoD endorsement.ICEBREAKING TUG (WTGB)140-FOOT> WTGB 101 Katmai Bay> WTGB 102 Bristol Bay> WTGB 103 Mobile Bay> WTGB 104 Biscayne Bay> WTGB 105 Neah Bay> WTGB 106 Morro Bay> WTGB 107 Penobscot Bay > WTGB 108 Thunder Bay> WTGB 109 Sturgeon Bay PATROL BOAT (WPB) 110-FOOT> WPB 1304 Maui> WPB 1307 Ocracoke> WPB 1309 Aquidneck> WPB 1310 Mustang> WPB 1311 Naushon> WPB 1312 Sanibel> WPB 1313 Edisto> WPB 1318 Baranof> WPB 1319 Chandeleur> WPB 1322 Cuttyhunk> WPB 1324 Key Largo> WPB 1326 Monomoy> WPB 1327 Orcas> WPB 1329 Sitkinak> WPB 1330 Tybee> WPB 1331 Washington> WPB 1332 Wrangell> WPB 1333 Adak> WPB 1334 Liberty> WPB 1335 Anacapa> WPB 1336 Kiska> WPB 1349 Galveston Island INLAND BUOY TENDERS (WLI)100-FOOT> WLI 313 Bluebell> WLI 642 Buckthorn COASTAL PATROLBOATS (WPB)87-FOOT - MARINEPROTECTOR CLASS> WPB 87301 Barracuda> WPB 87302 Hammerhead> WPB 87303 Mako> WPB 87304 Marlin> WPB 87305 Stingray> WPB 87306 Dorado> WPB 87307 Osprey> WPB 87308 Chinook> WPB 87309 Albacore> WPB 87310 Tarpon> WPB 87311 Cobia> WPB 87312 Hawksbill> WPB 87313 Cormorant> WPB 87314 Finback> WPB 87315 Amberjack> WPB 87316 Kittiwake> WPB 87317 Blackfin> WPB 87318 Bluefin> WPB 87319 Yellowfin> WPB 87320 Manta> WPB 87321 Coho> WPB 87322 Kingfisher> WPB 87323 Seahawk> WPB 87324 Steelhead> WPB 87325 Beluga> WPB 87326 Blacktip> WPB 87327 Pelican> WPB 87328 Ridley> WPB 87329 Cochito> WPB 87330 Manowar> WPB 87331 Moray> WPB 87332 Razorbill> WPB 87333 Adelie> WPB 87334 Gannet> WPB 87335 Narwhal> WPB 87336 Sturgeon> WPB 87337 Sockeye> WPB 87338 Ibis> WPB 87339 Pompano> WPB 87340 Halibut> WPB 87341 Bonito> WPB 87342 Shrike> WPB 87343 Tern> WPB 87344 Heron> WPB 87345 Wahoo> WPB 87346 Flyingfish> WPB 87347 Haddock> WPB 87348 Brant> WPB 87349 Shearwater> WPB 87350 Petrel> WPB 87352 Sea Lion> WPB 87353 Skipjack> WPB 87354 Dolphin> WPB 87355 Hawk> WPB 87356 Sailfish> WPB 87357 Sawfish> WPB 87358 Swordfish> WPB 87359 Tiger Shark> WPB 87360 Blue Shark> WPB 87361 Sea Horse> WPB 87362 Sea Otter> WPB 87363 Manatee> WPB 87364 Ahi> WPB 87365 Pike> WPB 87366 Terrapin> WPB 87367 Sea Dragon> WPB 87368 Sea Devil> WPB 87369 Crocodile> WPB 87370 Diamondback> WPB 87371 Reef Shark> WPB 87372 Alligator> WPB 87373 Sea Dog> WPB 87374 Sea FoxARMY SHIPSLOGISTICS SUPPORT VESSEL– LSV 1 CLASS> LSV 1 GEN Frank S. Besson, Jr.> LSV2 CW3 Harold C. Clinger> LSV 3 GEN Brehon B.Sommervell> LSV 4 LTG William B. Bunker> LSV 5 MG Charles P. Gross> LSV 6 SP/ 4 James A. Loux> LSV 7 SSGT Robert T. Kuroda> LSV 8 MG Robert SmallsLANDING CRAFT UTILITY –LCU 2000 CLASS> LCU 2001 Runnymede> LCU 2002 Kennesaw Mountain> LCU 2003 Macon> LCU 2004 Aldie> LCU 2005 Brandy Station> LCU 2006 Bristoe Station> LCU 2007 Broad Run> LCU 2008 Buena Vista> LCU 2009 Calaboza> LCU 2010 Cedar Run> LCU 2011 Chickahominy> LCU 2012 Chickasaw Bayou> LCU 2013 Churubusco> LCU 2014 Coamo> LCU 2015 Contreras> LCU 2016 Corinth> LCU 2017 El Caney> LCU 2018 Five Forks> LCU 2019 Fort Donelson> LCU 2020 Fort McHenry> LCU 2021 Great Bridge> LCU 2022 Harpers Ferry> LCU 2023 Hobkirk> LCU 2024 Hormigueros> LCU 2025 Malvern Hill> LCU 2026 Matamoros> LCU 2027 Mechanicsville> LCU 2028 Missionary Ridge> LCU 2029 Molino Del Ray> LCU 2030 Monterrey> LCU 2031 New Orleans> LCU 2032 Palo Alto> LCU 2033 Paulus Hook> LCU 2034 Perryville> LCU 2035 Port HudsonMANEUVER SUPPORT VESSEL(LIGHT) – MSV(L) CLASS> MSV(L) 1 SSG Elroy F. Wells*COAST GUARD CUTTERSARMY SHIPSUse of DoD visual information does not imply or constituent DoD endorsement.AUXILIARY SHIPS SPEARHEAD CLASS JHSV > T-EPF1 Spearhead> T-EPF 2 Choctaw County> T-EPF 3 Millinocket> T-EPF 4 Fall River> T-EPF 5 Trenton> T-EPF 6 Brunswick> T-EPF 7 Carson City> T-EPF 8 Yuma> T-EPF 9 City Of Bismarck> T-EPF 10 Burlington> EPF 11 Puerto Rico> EPF 12 Newport> EPF 13 Apalachicola**> EPF 14 Cody**DRY CARGO/ AMMUNITION (T-AKE)> T-AKE 1 Lewis And Clark> T-AKE 2 Sacagawea> T-AKE 3 Alan Shepard> T-AKE 4 Richard E Byrd> T-AKE 5 Robert E Peary> T-AKE 6 Amelia Earhart> T-AKE 7 Carl Brashear> T-AKE 8 Wally Schirra> T-AKE 9 Matthew C Perry> T-AKE 10 Charles Drew> T-AKE 11 WashingtonChambers> T-AKE 12 William McLean> T-AKE 13 Medgar Evers> T-AKE 14 Cesar Chavez FAST COMBAT SUPPORT (T-AOE)> T-AOE 6 Supply> T-AOE 8 ArcticFLEET REPLENISHMENT OILERS (T-AO)> T-AO 187 Henry J Kaiser> T-AO 188 Joshua Humphreys > T-AO 189 John Lenthall > T-AO 193 Walter S Diehl> T-AO 194 John Ericsson> T-AO 195 Leroy Grumman> T-AO 196 Kanawha> T-AO 197 Pecos> T-AO 198 Big Horn> T-AO 199 Tippecanoe> T-AO 200 Guadalupe> T-AO 201 Patuxent> T-AO 202 Yukon> T-AO 203 Laramie> T-AO 204 Rappahannock> T-AO 205 John Lewis*> T-AO 206 Harvey Milk*> T-AO 207 Earl Warren**> T-AO 208 Robert F Kennedy**> T-AO 209 Lucy Stone**> T-AO 210 Sojourner Truth**PREPOSITIONINGSHIPSFLEET OCEAN TUGS (T-ATF)> T-ATF 168 Catawba> T-ATF 171 Sioux> T-ATF 172 ApacheHOSPITAL (T-AH)> T-AH 19 Mercy> T-AH 20 ComfortRESCUE AND SALVAGE(T-ARS)> T-ARS 51 Grasp> T-ARS 52 SalvorSGT MATEJ KOCAK CLASS> T-AK 3005 Sgt Matej Kocak> T-AK 3006 Pfc Eugene A Obregon> T-AK 3007 Maj Stephen W PlessAVIATION LOGISTICSSUPPORT (T-AVB)> T-AVB 3 Wright> T-AVB 4 CurtissMARINE CORPS CONTAINERAND RO/RO (T-AK) 2ND LTJOHN P BOBO CLASS> T-AK 3008 2nd Lt John P Bobo> T-AK 3009 Pfc Dewayne TWilliams> T-AK 3010 1st Lt BaldomeroLopez> T-AK 3011 1st Lt Jack Lummus> T-AK 3012 Sgt William R ButtonLT HARRY L. MARTIN CLASS> T-AK 3015 1st Lt Harry L Martin> T-AK 3016 LCPL Roy M Wheat> T-AK 3017 GySgt Fred WStockhamVEHICLE CARGO SHIP> T-AKR 10 Cape Island> T-AKR 11 Cape Intrepid> T-AKR 112 Cape Texas> T-AKR 113 Cape TaylorLARGE, MEDIUM-SPEED,RO/RO (T-AKR)> T-AKR 310 Watson> T-AKR 311 Sisler> T-AKR 312 Dahl> T-AKR 313 Red Cloud> T-AKR 314 Charlton> T-AKR 315 Watkins> T-AKR 316 Pomeroy> T-AKR 317 SodermanOPDS (T-AG)> T-AG 5001 Vadm K R WheelerAIR FORCE CONTAINER(T-AK)> T-AK 4396 Maj Bernard F FisherARMY CONTAINER (T-AK)> T-AK 4543 Ltc John U D Page> T-AK 4544 SSG Edward A Carter JrMODULAR CARGO (T-AK)> T-AK 5029 Cape Jacob> AK 5070 Cape Flattery> AK 4073 Cape FarewellHIGH SPEED VESSEL (HSV)> HSV 2 Swift> HSV 4676 Westpac ExpressMISSILE RANGEINSTRUMENTATION (T-AGM)> T-AGM 24 Invincible> T-AGM 25 Howard O LorenzenSPECIAL MISSION &SEALIFT SHIPSOCEAN SURVEILLANCE(T-AGOS)> T-AGOS 19 Victorious> T-AGOS 20 Able> T-AGOS 21 Effective> T-AGOS 22 Loyal> T-AGOS 23 ImpeccableSUBMARINE AND SPECIALWARFARE SUPPORT> MV C-Commando> MV C-Champion> MV Malama> MV Dolores Chouest> MV Hos DominatorSUBMARINE ESCORT SHIP> T-AGSE 1 Black Powder> T-AGSE 2 Westwind> T-AGSE 3 Eagleview> T-AGSE 4 ArrowheadMILITARY SEALIFT COMMANDUse of DoD visual information does not imply or constituent DoD endorsement.MILITARY SEALIFT COMMAND* Under Construction / ** Authorized for ConstructionOCEANOGRAPHIC SURVEY (T-AGS)> T-AGS 60 Pathfinder > T-AGS 62 Bowditch > T-AGS 63 Henson> T-AGS 64 Bruce C Heezen > T-AGS 65 Mary Sears > T-AGS 66MauryCABLE LAYING /REPAIR (T-ARC)> T-ARC 7ZeusNAVIGATION TEST SUPPORT (T-AGS)> T-AGS 45WatersSUBMARINE TENDER (AS)> AS 39 Emory S Land > AS 40Frank CableTANKERS (T-AOT)> T-AOT 1125Lawrence H GianellaDRY CARGO (T-AK)> T-AK 4729 American Tern > T-AK 9205VirginianLARGE, MEDIUM-SPEED RO/RO (T-AKR)> T-AKR 295 Shughart > T-AKR 296 Gordon > T-AKR 297 Yano > T-AKR 298 Gilliland > T-AKR 300 Bob Hope > T-AKR 301 Fisher > T-AKR 302 Seay> T-AKR 303 Mendonca > T-AKR 304Pililaau> T-AKR 305 Brittin > T-AKR 306 BenavidezEXPEDITIONARY TRANSFER DOCK (ESD)> T-ESD 1 Montford Point > T-ESD 2John GlennEXPEDITIONARY SEA BASE (ESB)> T-ESB 3 Lewis B Puller> T-ESB 4 Hershel “Woody” Williams > T-ESB 5 Miguel Keith*> T-ESB 6 (Unnamed)*> T-ESB 7(Unnamed)**L3Harris' solutions address customers' critical missions across air, land, sea, space and cyber domains. We empower people who serve from ocean to orbit and everywhere in between.As a full-spectrum systems integrator and network provider, L3Harris is among the world's leading integrators of C5ISR systems for customers around the globe. Our expertise delivers complete turnkey integration of whole-ship electrical, mechanical and electronic systems; powermanagement and distribution; undersea warfare systems; unmanned and autonomous surface and underwater vehicles; and airborne systems for maritime patrol and surveillance that enable secure, agile worldwide interoperability.In a world of ever-accelerating change, threat environments move fast. We move forward faster by delivering systems integrated solutions and。
第31卷第8期2009年8月舰 船 科 学 技 术SH I P SC I E NCE AND TECHNOLOGY Vol .31,No .8Aug .,2009水下吸声覆盖层结构及吸声机理研究进展罗 忠1,朱 锡1,林志驼2,王卫忠2(1.海军工程大学船舶与动力学院,湖北武汉430033;2.海军92143部队,海南三亚572021)摘 要: 经过50多年的发展,尤其是近20年中,在水下目标声隐身背景需求的促进和推动下,以吸声覆盖层为主要研究对象的声隐身结构研究,已经建立了完整的理论框架。
本文将目前国内外主要的吸声覆盖层结构分为粘弹性复合吸声结构、周期散射复合吸声结构、孔腔谐振吸声结构等,比较了各种吸声覆盖层的结构形式对吸声性能的影响,并从吸声机理出发,分析了各种吸声覆盖层结构的主要研究方法,最后展望了我国水下吸声覆盖层结构及吸声机理研究的趋势。
关键词: 声隐身;吸声覆盖层;粘弹性;散射;谐振中图分类号: T N91117 文献标识码: A文章编号: 1672-7649(2009)08-0023-08 DO I:1013404/j 1issn 11672-7649120091081002A rev i ew of underwa ter anecho i c coa ti n g structure and absorpti on theor i esLUO Zhong 1,ZHU Xi 1,L IN Zhi 2tuo 2,WANG W ei 2zhong2(1.College of Naval A rchitecture and Power,Naval University of Engineering,W uhan 430033,China;2.Unit 92143,P LA,Sanya 572021,China )Abstract: The require ments of under water acoustic stealth technique had p r omoted the research on under water anechoic coating structure for recent 50years .Accordingly,a comp rehensive theoreticalf oundati on had been f or med f or the passed 20years .This paper su mmarized the main structure and valuable results of under water anechoic coating .More s pecifically,it classified the main structure int o vis oelastic composite abs or p ti on structures,cycle scattering composite abs or p ti on structures,cavity res onant abs or p ti on structures .The effect of structure for m t o abs or p ti on p r operties was compared .The under water anechoic coating structures and abs or p ti on theories were analyzed .I n the end of this paper,it p r os pected the feature research trend on this t op ic in our country .Key words: acoustic stealth;anechoic coating;viscoelastic;scattering;res onant收稿日期:2009-02-10;修回日期:2009-03-10基金项目:国家973重大基础研究基金资助项目(51335020101);国防重点预研基金资助项目作者简介:罗忠(1982-),男,博士研究生,主要从事水下声隐身材料与结构研究工作。
一种基于Logistic映射的水声混沌信号测距方法郭亚静;王黎明;王琳;范浩【摘要】在浅海水声定位系统中,针对传统声呐信号持续时间长、效率低、正交性差的问题,提出了一种抗噪声、快速、窄带的水声混沌信号.通过推导Logistic混沌序列的混沌性和相关特性;并据此将具有混沌特性的相位信息对混沌序列进行调制.理论表明调制后的水声混沌信号具有正的Lyapunov指数、理想的相关性和窄带性.水域数据分析显示,水声混沌信号依旧表现出混沌性和窄带性;并且与同水域实验的m序列相比,定位精度提高了5 cm左右,信号时长缩短了73 ms,为海洋中动态目标的快速定位提供了参考.%In the shallow water acoustic localization systems,a kind of underwater acoustic chaotic signal that is anti-noise,fast and narrowband is proposed for tranditional sonar signal being a long time,low efficiency and poor orthogonality.The chaos and correlation properties of Logistic chaotic sequences are dericed, and the chaotic sequence is modulated by the phase information with chaotic characteristics.The theory shows that chaotic modulated signal of underwater acoustic chaotic signal has a positive Lyapunov exponent, ideal correlation and narrowband.Analysis of water experimental data show that underwater acoustic chaotic signal still puts up chaotic characteristics and narrowband,and compares with the m-sequence that the positioning accuracy improves the 4 cm and the time of signal is shortened 73 ms at the same waters.It provides a reference for the rapid localization of the dynamic target in the ocean.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)005【总页数】6页(P10-14,46)【关键词】浅海水声定位;Logistic映射;相位调制;快速定位【作者】郭亚静;王黎明;王琳;范浩【作者单位】中北大学信息探测与处理技术研究所,太原 030051;中北大学信息探测与处理技术研究所,太原 030051;中北大学信息探测与处理技术研究所,太原030051;中北大学信息探测与处理技术研究所,太原 030051【正文语种】中文【中图分类】TB566声波是目前在海洋中能够远距离传播的能量辐射形式,而无线电波和光波在海水中传播时都要受到严重的衰减,不利于作为传递信息的载体,因此声呐信号的研究成为提高海洋探测、目标定位、通信质量的手段[1]。
创新核潜艇作文英语Title: Innovations in Nuclear Submarines。
Nuclear submarines, the pinnacle of modern naval engineering, represent a fusion of technological ingenuity and strategic prowess. Over the years, these vessels have undergone significant advancements, particularly in terms of innovation. In this essay, we will explore the remarkable innovations that have shaped the evolution of nuclear submarines.To begin with, propulsion systems are at the heart of nuclear submarines' advancements. Traditional submarines relied on diesel-electric propulsion, which necessitated frequent surfacing for air and recharging batteries. However, the introduction of nuclear propulsion revolutionized underwater navigation. Nuclear reactors generate immense power without the need for air, enabling submarines to operate submerged for extended periods. This innovation not only enhances stealth but also extendsoperational range, enabling submarines to traverse vast distances without refueling.Moreover, advancements in materials science have played a crucial role in enhancing the capabilities of nuclear submarines. High-strength, lightweight materials such as titanium and advanced composites have enabled the construction of submarines with improved durability and stealth. These materials also contribute to reducing the overall weight of the vessel, allowing for increased payload capacity without compromising maneuverability or submerged endurance.In addition to propulsion and materials, innovations in stealth technology have significantly enhanced the clandestine capabilities of nuclear submarines. The development of hydrodynamic hull designs, acoustic damping technologies, and advanced noise reduction measures has made modern submarines virtually undetectable to enemy sensors. This cloak of invisibility enables submarines to operate covertly in hostile waters, gathering intelligence and executing strategic missions without alertingadversaries.Furthermore, advancements in automation and artificial intelligence have transformed the operational capabilities of nuclear submarines. Integrated control systems, augmented by AI algorithms, optimize performance, navigation, and energy management, reducing the workload on crew members and enhancing operational efficiency. Additionally, autonomous underwater vehicles (AUVs) deployed from submarines augment reconnaissance and surveillance capabilities, extending the reach of the submarine's sensor network.Another significant innovation in nuclear submarines is the integration of advanced communication systems. Through satellite links, secure data networks, and advanced encryption protocols, submarines can maintain real-time connectivity with command centers and allied forces, enabling seamless coordination of operations even in remote regions or under arduous conditions. These communication innovations enhance situational awareness and facilitate rapid response to emerging threats.Moreover, advancements in weapons systems have augmented the offensive capabilities of nuclear submarines. The integration of advanced torpedoes, cruise missiles, and ballistic missiles equipped with precision guidance systems enables submarines to engage a wide range of targets with unparalleled accuracy and lethality. This firepower serves as a potent deterrent against potential adversaries and reinforces the submarine's role as a strategic asset in modern warfare.In conclusion, nuclear submarines represent a testament to human innovation and technological advancement. From propulsion and materials to stealth, automation, communication, and weaponry, continuous innovation has propelled these vessels to the forefront of maritime superiority. As we look to the future, further advancements in fields such as renewable energy, quantum computing, and unmanned systems hold the promise of unlocking even greater capabilities for nuclear submarines, ensuring they remain indispensable assets in safeguarding national security and maintaining global stability.。
电气专业英汉词对照汇UU-port U型端口U-tube manometer U形管压力计ultra-high vacuum 超高真空ultra-high voltage electron microscope 超高压电子显微镜ultralongwave spectrometer 超长波光谱仪ultrasonic anemometer 超声波风速表ultrasonic disc cutter 超声样品切割机ultrasonic Doppler blood pressure transduce [sensor] 超声多普勒血压传感器ultrasonic flaw detection 超声探伤ultrasonic flaw detector 超声探伤仪ultrasonic flow transducer 超声流量传感器ultrasonic flowmeter 超声流量计ultrasonic hardness tester 超声硬度计ultrasonic level measuring device 超声物位测量装置ultrasonic levelmeter 超声物位计ultrasonic methods 超声法ultrasonic sensor 超声(波)传感器ultrasonic thickness meter 超声(波)厚度计ultrasonic transducer 超声换能器ultrasonic wave 超声波ultrathin section sample 超薄切片样品ultra-violet and visible spectrophotometer 紫外可见光分光光度计ultraviolet filter 透过紫外线的滤光片ultraviolet hygrometer 紫外湿度表ultraviolet lamp 紫外线照射装置ultraviolet light transducer [sensor] 紫外光传感器ultraviolet photo-electron spectrometer 紫外光电子能谱仪ultraviolet photo electron spectroscopy (UPS) 紫外光电子能谱法ultraviolet radiation 紫外线辐射ultraviolet ray intensity meter 紫外线强度计ultraviolet remote sensing 紫外遥感ultraviolet-visible detector 紫外—可见光检测器unaddressed operation 非寻址操作unbalance 不平衡unbalance component measuring device 不平衡分量测量装置unbalance mass 不平衡质量unbalance reduction ratio (URR) 不平衡量减少率unbalance response 不平衡响应unbalance vector 不平衡矢量unbalance vector measuring device 不平衡矢量测量装置unbalanced output 非对称输出unbiased estimation 无偏估计unbonded strain gauge 非粘贴式应变计uncertainty 不确定度uncertainty of measurement 测量不确定度uncorrected result 未修正结果uncoupled modes 非耦合振型undampted natural frequency 无阻尼固有频率undamped natural mode of vibration 无阻尼固有振动模态under water acoustic measurment 水声综合测量仪underdamping 周期阻尼;欠阻尼undersea buoy system 水下浮标系统understandability 可理解性underwater absorption meter 水下吸收仪underwater acoustic 水(下)声学underwater acoustic communication set 水下通讯装置underwater acoustic measurement 水声测量underwater acoustic transducer 水声换能器underwater camera 水下照相机underwater communication system 水下通讯装置underwater holography 水下全息摄影underwater irradiance meter 水下辐照度计underwater lighting system 水下照明装置underwater movie camera 水下电影摄影机underwater panoramic camera 水下全景照相机underwater polarimeter 水下偏振仪underwater radiance meter 水下辐射率计underwater scattering meter 水下散射仪underwater sound 水(下)声学underwater sound integrated measuring set 水声综合测量仪器underwater sound test tank 水声试验水池underwater television camera 水下电视摄像机underwater towed system 水下拖曳系统underwater towed vehicle 水下拖曳体underwater transducer array 水声换能器基阵underwater transmissometer 水下透射率仪underwater vehicle 水下运载工具underwater visibility 水下能见度underwater window 水下“窗口”undetermined components 非测组分unearthed voltage transformer 不接地型电压互感器uniaxial strain gauge 单轴应变计uniform stability 一致稳定性uniform temperature zone 均温区uniform temperature zone length 均热带长度uniformity of table motion 台面运动的均匀度union nut 双端螺母unit 单元;单位unit(of measurement) (测量)单位unit area acoustic impedance 声阻抗率unit feedback 单位反馈unit resolution 单位分辨unit resolution mass 单位分辨质量unit step function 单位阶跃函数universal balancing machine 通用平衡机universal gas chromatograph 通用气相色谱仪universal head loss coefficient 通用压头损失系数universal testing machine 万能试验机universal toolmaker's microscope 万能工具显微镜unmanned submersible 无人潜水器unsaturated standard cell 不饱和式标准电池unsteady flow 不稳定流upper-air observation 高空观测upper limit of the nominal of use for frequency 标称使用频率范围上限upward (total) radiation 向上(全)辐射upward terrestrial radiation 向上地球辐射urea enzyme transducer [sensor] 酶(式)尿毒传感器urinary bladder inner pressure transducer [sensor] 膀胱内压传感器usable cross-section of the test channel 试验流道的可用横截面usable minimum immersion depth 最小可用浸入深度useful life 使用寿命useful spectral range 有效光谱范围user adjustment 用户调整user layer 用户层utility routine 服务程序;实用程序;实用例行程序utility software 实用软件UV dosimeter 紫外线表UVW anemometer 三维风速表;UVW风速表。
A Novel Conditioning and Recording System of Low-noise Underwater AcousticSignalNi Xiuhui, Zheng Yi*, Meng Qingming Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology Shandong Academy of Sciences Institute of Oceanographic InstrumentationQingdao, ChinaLi Weidong People's Hospital of Zhao YuanYantai, ChinaAbstract—A novel conditioning and recording system of Low-noise underwater acoustic signal is proposed in order to coordinate the applied vector hydrophones. The low-noise analog circuit design is taken into account seriously according to the requirements of high precision and low distortion of underwater acoustic data. Compared with other similar systems, it features on miniaturization, high dynamic range, low distortion and low power consumption.Keywords-Underwater acoustic experiment, Low noise, Data recording, MSP430I.I NTRODUCTIONMost of underwater acoustic signals picked up by sensors like hydrophones are very weak, which requires a data acquisition system with high SNR performance.In order to obtain high-quality experimental data, An underwater acoustic data recording system is accomplished based on low-noise analog circuit design techniques, this system also features on high dynamic range, low distortion signal acquisition while achieving high sample rate and real time storage. This paper describes the Date Recording system of Underwater Acoustic Data in detail, including both the hardware and software implementation, as well as the key design challenges and the techniques employed to meet the specifications.The system is applied in the marine-self noise field measurement experiment which using the combined acoustic vector sensors. Therefore, four channel signals are collected and stored by this system. one channel is sound pressure signal, and other channels are particle velocity signals.The workflow and the structure of proposed system are shown in Fig.1 and Fig.2.Figure 1.The workflow of the recording systemFigure 2. The structure of the recording systemThis proposed system includes the following functions:•Variable gain amplification of acoustic signals;•High order band-pass filter;•Data acquisition and storage.According to the require of high dynamic range signal acquisition, the power supply of analog board comes from positive and negative 12 volt lithium battery. The acoustic signals after conditioning can swing up to ±10v with little distortion. Thus, it is suitable to choose a ±10v input range ADC like the 16-bit LT1859 for the digitization of analog signals. and the 5v、3.3v voltage is generated by low quiescent current LDO for the overall digital system power supply.II.T HE D ESIGN OF H ARDWAREThe design of analog circuit includes multi-level signal amplification、high-pass filter、low-pass filter and phase adjust section. The purpose of analog circuit mainly is to extract the useful signal from the noises, filter out unwanted interference and increase signal amplitude.Low-noise preamplifier should be used because low noise is one of the important characteristic for the conditioning of underwater acoustic signal. The ADI instrument amplifier AD8221 is taken for amplifier of the velocity signals channel whose the noise density of input voltage is 8 /nV Hz. Due to the high source impedance of piezoceramic pressure sensors, the JFET input, monolithicinstrumentation amplifier AD8220 is selected instead. Using JFET transistors, the AD8220 offers extremely high input impedance, extremely low bias currents, therefore, minimize the current noise which is the main problem of high source impedance sensors.The useful signal needs to be extracted form a variety of background noises by appropriate filters. Low-frequency signal is eliminated by the high-pass filter in order to avoid the output saturation cause by the low frequency marine hydrodynamic noise, and then the high frequency noise is almost completely removed by the 8th-order order low-pass Butterworth filter which has the least attenuation for all frequencies in the pass band. The Sallen–Key topology is used to implement both the 6-order high-pass and 8-order low-pass Butterworth filters that are particularly valued for its simplicity. Just one single amplifier, two resistors and two capacitors are needed by the 2-order filter of SK topology structure at the unit gain as are shown in Fig.3. The RC value can be calculated through the assisted tools of filter design, and pay attention to that the metal film resistors of smallerresistance value help to reduce system noise [1].Figure 3. A unity-gain low-pass filter implemented with a Sallen–Keytopology.Where the undamped natural frequency fo and Q factor (i.e., damping ratio ζ) are given by(1) And, (2)So,(3) The intensity of underwater acoustic signal is in the range of 104 orders of magnitude [2], The PGA section amplification circuit of this system carry out the adjustment of the overall gain from 20dB-80dB by different feedback resistors which are selected by analog switch DG211, so that the signal sampling of a large dynamic range is achieved. Besides, this system also includes amplifier circuits used in the impedance isolation and RC phase adjustment circuit. It is better that it is independent for four-channel analog board or a PCB board is made for the minimum interference among four channels, and the even channels of ADC are grounded to achieve the previous purpose. In the noise test of the electronic system, the analog signal input is grounded, the electronic system is configured to 4000 times amplification, and we found the output noise is about 10mv. Therefore, the valid noise of input terminal is 10mv/4000=2.5uv. The analog circuits are fully tested for low noise (less than 10uV noise).By the way, the high order filters also contribute to the low noise performance because it filtered out most of the high frequency noise. The low-pass and high-pass filters are cascade by SK topology using the low-noise amplifier OP2177. The magnitude-frequency characteristic is shown in Fig4. (The pass band is 10-500Hz in this case, and it canbe adjusted as needed to design)Figure 4. Amplitude frequency response of analog circuitsThe design of digital circuit includes MCU and interfacewith various peripherals.The Texas Instruments MSP430 family of ultra low power microcontrollers consists of several devices featuring lower power consumption, and 25MIPS CPU speed [3]. The5xx series MSP430 chip -Msp430F5438A have beenselected for governing digital system. This kind of devicesare complete system on-a-chip and in clued many integrated peripherals like Direct Memory Access (DMA) modules,UARTs, etc. All these characteristics make them a very attractive choice for this design.The media chosen to store the experimental data acquiredduring an inspection is a Secure Digital cards. Which is removable Flash-based storage devices that are gaining in popularity in small consumer devices such as digital cameras. Their small size, relative simplicity, low power consumption, and low cost make them an ideal solution for many applications. This interface combined with the MSP430, can form the foundation for a low-cost, long-life data logger. So, the SD card is a good choice for the underwater acoustic signal recording system when the data collection system takes a long time to collect and record huge amounts of data. It has two optional protocols: the SD mode and the SPI mode. All of data exchange can be completed by the four lines in the SPI mode, which greatly simplify the design of hardware circuit. The interface between SD and the MCU is use the SPI protocol which is shown in Fig.5.Figure 5. SD Card Schematic-SPI ModeThis system takes the 16bit softspan ADC chip LTC1859 in order to meet the 10V sampling of positive and negative analog signal. 16-bit resolution analog to digital conversion provides a responsive instrument capable of registering changes as small as one part in 65536 (0.000015% of the full scale measurement range). Besides, the voltage reference of chip internal is 10ppm, the SNR is 87dB, these features are all very important for a high-quality data acquisition system. It is connected to MCU through SPI interface, as is shown in Fig.6.Figure 6. ADC chip interface with the MCUThe electronic compass, with a pointing accuracy of 1º rms, uses the low-power three-dimensional digital compass of the PNI Company, and it is linked to MCU through RS232 interface.All the interfaces like SPI and 232 are industrial standard and therefore very convenient for firmware development and debug.III. T HE D ESIGN OF F IRMWAREThe mount of data to be collected can be estimated as shown in Equation 4. Fs is the sampling frequency, Word_Size is the number of bytes needed to store one single sensor read (2bytes for a16-bit resolution), N ch the number of sensor. T is the recording time in seconds. As at 10k sampling rate from four channels for an hour , the amount of data to be collected is:Data_Size = fs*Word_Size* N ch *T(4) =10240*2*4*3600=294912000bytes=280Mbytes The 32G SD card can fulfill 4 days deployment storage.The data from this recording system is writing directly in the sector rather than through the creation of file system storage, which results in higher writing speed.The writing sector of SD card consists of three procedures: sent the writing sector command to the SD card; transmit data to the SD card; the SD card internal programming. Here I must say The SD card programming internal needn’t the CPU intervention, however, the time-consuming of one sector can reach up to hundreds of mill-seconds [5]. So in order to achieve the high-speed writing of SD card, big RAM caches are essential. And The DMA capabilities available in the MSP430 MCU, that permit fast data transfers without CPU intervention, are of a great advantage in applications where high sampling rates are required. The strategy of high-speed recording proposed below also relies on the exploitation of the DMA capabilities The classic double-buffer strategy is adopted, Two array of memory buffers of 512*12 bytes each is used to temporarily store the acquired data while is being transferred to the SD card. Let us focus on the data acquisition strategy implemented in the MCU: 1. 0.1ms timer interrupts is established for the sampling rate of 10k. The four channels is sampled once the interrupts is carried out, all of eight bytes from 2 bytes per channel is continuously written in the established AdcBuffer; 2. After 768 interrupts, the AdcBuffer of 6K is full, and the DMA is opened so that the data in the AdcBuffer is transmitted to the MMCBuffer of the same capacity; 3. Meanwhile, the new sampled data is over write in AdcBuffer. 4. The 6K bytes data will be transmitted to the SD card once the DMA transmission is completed;The flow chart of this strategy is shown in Fig.7. With the 16K RAM and DMA modules of Msp430F5438A combined with 25Mips processing speed, the real-time data recording up to 20ksps four channels is achieved. The high-speed SD card is used in this Stand-alone data logger with configurable sample rate from as low as 0.001 Hz up to as high as 10,000 samples per second.Figure 7. The system sampling and real-time handlingIV.C ONCLUSIONSeveral tests have been performed in order to ensure the low-noise performance on the analog circuits and check the effectiveness of the strategies adopted to optimize the SD real-time writing performance of the recording system.The system provides a reliable data acquisition platform for the underwater acoustic experiment, satisfying the requirements derived from the targeted application, in terms of sampling rate, resolution, data storage capabilities and power consumption. Besides, the dynamic range of signal is greater than 70dB, and the equivalent input noise is less than 10μv, the pass-band ripple is less than 0.1dB, the phase difference among channels is small. Also, the operating current of the whole system is about 80mA, the entire system is lightweight and portable if the high-energy lithium-ion battery is adopted, and it is convenient to be placed in equipment and deploy. In a word, this system is very feasible in the marine environment noise field measurement experiment for the use on underwater acoustic signal logging.A CKNOWLEDGMENTThe first author wishes to thank Zheng yi and Yang guang for their valuable comments that improved the qualityof this paper. And this paper was supported by the National Natural Science Foundation of China under Grant 40806044, and supported by the QingDao Science and Technology Planning Project Fund of China under Grant 10-3-4-9-2-jch, and supported by Research Fund for the Doctoral Program of the Shandong Academy of Sciences under Grant Y09-2.R EFERENCES[1]Henry, Wang pei-qing, etc. The noise suppression and attenuationtechnology of electronic systems[M]. Electronic industry press, 2003(In Chinese).[2]Liu bo-sheng, Lei jia-yu etc. Underwater acoustic principle [M].Harbin engineering university press, 2010 (In Chinese).[3]Texas Instruments Incorporated. MSP430 Family User's Guideslau208g. /.[4]Linear Technology Corporation. LTC1859 Datasheet./.[5]SanDisk. Secure Digital Card Product Manual - Revision 1.7,September 2003.。
期刊网址:引用格式:刘江, 刘彦森, 黎胜. 基于Kriging 代理模型的水下目标模型几何参数识别方法[J]. 中国舰船研究, 2024, 19(增刊 1): 42–51.LIU J, LIU Y S, LI S. Geometry parameters recognition method for underwater target model based on Kriging surrogate model[J]. Chinese Journal of Ship Research, 2024, 19(Supp 1): 42–51 (in Chinese).基于Kriging 代理模型的水下目标模型几何参数识别方法刘江1,刘彦森2,黎胜*11 大连理工大学 船舶工程学院,辽宁 大连 1160242 水下测控技术重点实验室,辽宁 大连 116013摘 要:[目的]水下目标参数识别可为目标分类识别提供依据,为此,提出一种基于Kriging 代理模型的水下目标参数识别方法。
[方法]首先,对敷设声学覆盖层的水下目标模型在螺旋桨和主辅机激励情况下的结构表面低频振动声辐射与声辐射灵敏度进行分析;然后,基于分析结果建立低频声辐射功率代理模型,并基于该代理模型构造由低频声辐射响应特征和目标参数组成的样本空间;最后,基于所构建的样本空间,建立目标参数识别代理模型并选取测试点进行模型验证。
[结果]结果显示,测试样本的实际目标参数值与所构建代理模型的目标参数预测值吻合良好;利用有限元法和边界元方法可以实现考虑阻尼材料频变特性的黏弹性阻尼结构的低频声辐射分析,并能解决商业软件无法大批量处理振动结果文件的问题;影响水下目标模型低频振动声辐射的主要目标参数为目标长度、最大半径、基层壳厚度和声学覆盖层厚度。
[结论]基于Kriging 代理模型的水下目标参数识别方法可以通过声辐射线谱特征准确预测水下目标模型的主要目标参数值。
【演讲稿范文】We're going to go on a dive to the deep sea, and anyone that's had that lovely opportunity knows that for about two and half hours on the way down, it's a perfectly positively pitch—black world。
And we used to see the most mysterious animals out the windowthat you couldn't describe these blinking lights —— a world of bioluminescence, like fireflies。
Dr。
Edith Widder —— she's now at the Ocean Research and Conservation Association —— was able to come up with a camera that could capture some of these incredible animals, and that's what you're seeing here on the screen。
好了,我们即将潜入海底深处。
任何一个有过这种美妙机会的人都知道在这两个半小时的下降过程中,是一个完全漆黑的世界。
我们透过窗户会看见世界上各种最神秘的动物,各种无法形容的动物。
这些闪亮着的光,完美地构成了如萤火虫般发光的世界。
研究保护协会的Edith Witter博士发明了一种照相机,这种照相机可以拍下这些令人难以置信的生物。
这就是你现在在屏幕上看到的。
That's all bioluminescence。