重庆大学线性代数Ⅱ本科模拟试题答案
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
大学线性代数试题及答案一、选择题(每题5分,共20分)1. 设矩阵A是一个n阶方阵,若A的行列式|A|=0,则矩阵AA. 可逆B. 不可逆C. 一定是对角矩阵D. 一定是单位矩阵答案:B2. 向量组α1, α2, ..., αn线性无关的充分必要条件是A. 它们的坐标成比例B. 它们的坐标不成比例C. 它们的线性组合系数不全为零D. 它们的线性组合系数全为零答案:B3. 设A是m×n矩阵,B是n×m矩阵,则AB一定是A. m阶方阵B. n阶方阵C. m阶方阵或n阶方阵D. 零矩阵答案:A4. 若矩阵A满足A^2=A,则称矩阵A为幂等矩阵,那么幂等矩阵A. 一定是对角矩阵B. 一定是单位矩阵C. 一定是对称矩阵D. 以上都不对答案:D二、填空题(每题5分,共20分)1. 设A是3阶方阵,且|A|=2,则|2A|=______。
答案:42. 若向量α=(1, 2, 3),β=(4, 5, 6),则向量α与β的点积为______。
答案:223. 设矩阵A的特征值为λ1, λ2, ..., λn,则矩阵A^T的特征值为______。
答案:λ1, λ2, ..., λn4. 设A是3阶方阵,且A^(-1)存在,则A^(-1)A=______。
答案:E三、简答题(每题10分,共30分)1. 简述线性方程组有唯一解的条件。
答案:线性方程组有唯一解的条件是系数矩阵的行列式不为零。
2. 解释什么是特征值和特征向量,并给出求特征值和特征向量的方法。
答案:特征值是方阵A的标量λ,使得存在非零向量x,满足Ax=λx。
特征向量是与特征值对应的非零向量x。
求特征值和特征向量的方法是先求矩阵的特征多项式,然后解方程求得特征值,再将特征值代入方程组求得特征向量。
3. 说明什么是矩阵的秩,并简述求矩阵秩的方法。
答案:矩阵的秩是指矩阵中线性无关行(列)的最大数目。
求矩阵秩的方法通常是通过初等行变换将矩阵化为阶梯形矩阵,然后计算非零行的数量。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科试卷二)一、填空题(将正确答案填在题中横线上。
每小题2分,共10分);1. 若02215131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分);1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组sa a a ,,, 21课程代码:适用班级:命题教师:任课教师:线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100100000010010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分);1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。
① n2;② 12-n ; ③ 12+n ; ④ 4;2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关;② s ααα,,, 21中存在一个向量不能用其余向量线性表示; ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示; ④ s ααα,,, 21中不含零向量;3. 下列命题中正确的是( )。
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
重庆大学线性代数(Ⅱ)课程试卷2006~2007学年 第2学期一、 填空题(3分/每小题,共30分) ⒈517924的逆序数为 7 ;⒉ A 为3阶方阵,且A =-2,A =123A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则312123A A A A -= 6 ;⒊若向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 876β相互正交,则t =__-11______;⒋ A 为3阶方阵,且A =2,则()=+-*122A A 16729;5.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 2 ;6.齐次线性方程021=+++n x x x 的基础解系的向量个数是 N-1 ;7. A 为4阶方阵,B 为7阶方阵,且2,3A B ==-则=BO OA -6 ;8. 已知123,,ααα 线性无关,则133221,,αααααα+++线性 无关 ;9.非齐次线性方程组m n A x β⨯=有解的充分必要条件为)()(β A R A R =;10.当λ为 大于5 取值范围时, 二次型2332223121213216242),,(x x x x x x x x x x x x f λ+++++= 为正定.二、 简答题(4分/每小题,共8分)⒈若n 阶方阵A 有O A =2,问是否O A =成立?为什么?不成立(2分),可取多个反例(2分) ⒉,A B 为n 阶方阵且相似,问,A B 是否等价?为什么?成立(2分),因为,A B 为n 阶方阵且相似,则存在C ,使得B AC C =-1,而C 可逆,则可表示初等方阵的乘积,于是,A B 等价(2分)。
三、 计算题(一)(8分/每小题,共24分)1. 计算四阶行列式.5021*********321---=D 解504173012107222.1730012107022204321.5021011321014321=-------=-------=---=D有过程但结果错误得一半的分数。
重庆大学线性代数课程试题(A 卷)答案一、1. 16; 2. n2; 3. r = n , r<n ; 4. -17; 5. - 2; 6. 11<<-t . 二、1. 分别是A B A k B A B ==-=,,(4分).2. 不相似(2分)。
否则,存在可逆阵C 使C -1AC=B,即A=B,矛盾(2分).3. B A +一定为正定阵 因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n 有所以为正定阵 从而0)(>+x B A x T ,所以B A +一定为正定阵 三、1.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n n S 212dim2.(1) 121||||2+=e f ; (2)))(41()(2是任意实数b e x b x g +-=.3.(1))20(-,,零维1,秩2. (2)⎥⎦⎤⎢⎣⎡-110110;(3)⎥⎦⎤⎢⎣⎡-200310; (4)}{132e e e ,,,)}11()11{(,-,,.4.由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。
四、1.解:方程组的系数得列式)2()1(2+-=λλD (1) 当21,0-≠≠≠λλ及即D 时,方程组有惟一解; 2)1(,21,212321++=+=++-=λλλλλx x x(2) 当1=λ时,原方程组的三个方程成为1321=++x x x其系数矩阵的秩与增广矩阵的秩相等均为1,所以方程组有无穷多解, 其解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00110101132321x x x x x (32,x x 为任意实数) 或写为3211x x x --=(32,x x 为任意实数) (3) 当2-=λ时,3)~(2)(=≠=A R A R ,此时原方程无解。
线性代数考试题及答案一、选择题(每题5分,共20分)1. 线性代数中,矩阵的秩是指()。
A. 矩阵中非零行的个数B. 矩阵中非零列的个数C. 矩阵中线性无关行向量的最大个数D. 矩阵中线性无关列向量的最大个数答案:C2. 如果A和B是两个n阶方阵,那么AB和BA的秩()。
A. 一定相等B. 可能相等C. 不一定相等D. 一定不相等答案:C3. 对于一个n阶方阵A,下列说法中正确的是()。
A. A的行列式为0时,A可逆B. A的行列式不为0时,A不可逆C. A的行列式为0时,A不可逆D. A的行列式不为0时,A可逆答案:D4. 如果矩阵A和B相似,那么()。
A. A和B的秩相等B. A和B的行列式相等C. A和B的特征值相同D. A和B的迹相等答案:C二、填空题(每题5分,共20分)5. 设A是一个3×3矩阵,其行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。
答案:86. 如果矩阵A的特征值为λ1=3,λ2=-2,λ3=5,则矩阵A的迹tr(A)=______。
答案:67. 矩阵A=[1 2; 3 4]的逆矩阵A^(-1)=______。
答案:[-2 1; 1.5 -0.5]8. 若向量α=(1,2,3)和β=(4,5,6)线性相关,则α和β的线性相关系数为______。
答案:2三、解答题(每题20分,共60分)9. 已知矩阵A=[1 2; 3 4],求矩阵A的秩。
解:首先计算矩阵A的行列式|A|=1×4-2×3=-2≠0,所以矩阵A 为满秩矩阵,其秩为2。
10. 设矩阵A和B满足AB=0,证明A和B至少有一个是奇异矩阵。
证明:假设A和B都不是奇异矩阵,则它们都是可逆矩阵。
由于AB=0,两边同时左乘A^(-1),右乘B^(-1),得到I=0,这与单位矩阵的性质矛盾。
所以A和B至少有一个是奇异矩阵。
11. 已知矩阵A的特征值为λ1=2,λ2=-1,λ3=3,求矩阵A^2的特征值。
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。