重庆大学 线性代数 A201506 试卷答案
- 格式:docx
- 大小:296.77 KB
- 文档页数:4
线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数习题解答1应应胡佩2013-3-1目录第一章行列式 (1)第二章矩阵 (22)第三章向量组的线性相关性 (50)第四章线性方程组 (69)第五章矩阵的相似对角化 (91)第六章二次型 (114)附录:习题参考答案 (129)1教材:段正敏,颜军,阴文革:《线性代数》,高等教育出版社,2010。
第一章 行列式1.填空题:(1)3421的逆序数为 5 ;解:该排列的逆序数为00235t =+++=. (2)517924的逆序数为 7 ;解:该排列的逆序数为0100337t =+++++=. (3)设有行列式2311187001234564021103152----=D =)(ij a ∆, 含因子543112a a a 的项为 -1440,0 ; 解:(23154)31223314554(1)(1)526831440t a a a a a -=-⋅⋅⋅⋅⋅=-(24153)41224314553(1)(1)506810t a a a a a -=-⋅⋅⋅⋅⋅=所以D 含因子543112a a a 的项为-1440和0.(4)若n 阶行列式=-∆==∆=)(,)(ij ij n a D a a D 则()1na-;解:行列式D 中每一行可提出一个公因子1-,()()()1()1nnij ij D a a a ∴=∆-=-∆=-.(5)设328814412211111)(x x xx f --=,则0)(=x f 的根为 1,2,-2 ; 解:()f x 是一个Vandermonde 行列式,()(1)(2)(2)(21)(22)(21)0f x x x x ∴=--+-----=的根为1,2,-2.(6)设321,,x x x 是方程03=++q px x 的三个根,则行列式=132213321x x x x x x x x x 0 ; 解:根据条件有332123123123()()()()x px q x x x x x x x x x x x ax x x x ++=---=-+++-比较系数可得:1230x x x ++=,123x x x q =-再根据条件得:311322333x px q x px q x px q⎧=--⎪=--⎨⎪=--⎩原行列式333123123123=3()33()0x x x x x x p x x x q q ++-=-++--⋅-=.(7)设有行列式100132x x x -=0,则x = 1,2 ;解:2231032(1)(2)001xx x x x x x -=-+=--= 1,2x ∴=.(8)设=)(x f 444342343331242221131211a a a xa a x a a x a a x a a a ,则多项式)(x f 中3x 的系数为 0 ;解:按第一列展开11112121313141()f x a A a A a A xA =+++,112131,,A A A 中最多只含有2x 项,∴含有3x 的项只可能是41xA()()12134141222433343123413242233132234122433(1)a a x xA x a x a xa a x x a a a a a a x a a a a a a +=-⎡⎤ =-++-++⎣⎦41xA 不含3x 项,∴()f x 中3x 的系数为0.(9)如果330020034564321x =0,则x = 2 ;解:12346543122(512)(63)000265330033xx x =⋅=--= 2x ∴=.(10)00000000000dc b a= -abcd ; 解:将行列式按第一行展开:1400000000(1)0000000000ab b ac abcd c dd+=⋅-=-. (11)如果121013c ba =1,则111425333---c b a = 1 ;解:1323323133301302524121111111Tr r AA r r a a b c a b c bc -=+---=.(12)如333231232221131211a a a a a a a a a =2,则333232312322222113121211222222222222a a a a a a a a a a a a ---= -16 , 332313231332221222123121112111323232a a a a a a a a a a a a a a a ------= -4 ,3212000332313322212312111a a a a a a a a a = -4 ;解:1112131121312122231231222321233132331323332T a a a a a a A a a a A a a a a a a a a a αααβββ======()()1112121332122222312231223313232331221232222222222222222288016a a a a a a a a a a a a A αααααααααααααα--=-=-- =+-=-=-()1121112131122212223212123121231323132333122311232323232323232a a a a a a a a a a a a a a a ββββββββββββββββββ----=--=---- =-+-- =()1223122123224T A ββββββββββ-=- =-=-11213114122232132333000212423T a a a A a a a a a a + ⋅=-按第一行展开(-1).(13)设n 阶行列式D =0≠a ,且D 中的每列的元素之和为b ,则行列式D 中的第二行的代数余子式之和为=a b;解:11121111211112121222121212111=n n n n n n nnn n nnn n nna a a a a a a a a a a ab bb ba a a a a a a a a 每行元素加到第二行()212220n b A A A a+++=≠按第二行展开∴212220,0n b A A A ≠+++≠且 21222n a A A A b∴+++=实际上,由上述证明过程可知任意行代数余子式之和12,1,2,,i i in aA A A i n b+++==.(14)如果44434234333224232214131211000a a a a a a a a a a a a a =1,则24231211444342343332242322000a a a a a a a a a a a a a = -1 ,443424433323423222a a a a a a a a a =111a ;解:令222324323334424344a a a B a a a a a a =,则111213142223241111113233341142434401(1)10,000a a a a a a a a B a B a a a a a a a +=⋅-= ⇒ ≠=≠且 222324323334411111424344111223240(1)10a a a a a a a B a B a a a a a a a +=⋅-=-=- 223242233343112434441T a a a a a a B B a a a a ===. (15)设有行列式1001321x x -,则元素1-的余子式21M2的代数余子式12A =()1210101+- - ;(16)设3214214314324321=D =)(ij a ∆,ij ij a A 表示元素的代数余子式,则=+++44342414432A A A A 0 ;解:方法一:14243444234A A A A +++可看成D 中第一列各元素与第四列对应元素代数余子式乘积之和,故其值为0.方法二:11424344412312342234034134124A A A A +++=推论.(17)设cdb a a cb d ad b c dc ba D ==)(ij a ∆,ij ij a A 表示元素的代数余子式,则 =+++44342414A A A A 0 ;解:1424344411011a bc c bd A A A A d b c a b d +++=推论4.(18)设6000000000000002000230023402345)(x x x x x x f --=,则5x 的系数为 6 ;解:方法一:5425525432543243200432032000()66(1)(1)6320020000200000000006x x x x x f x x x x x x x x⨯--===⋅-⋅-⋅=--方法二:()f x 只有一项非0()()54321615243342516610255543204320032000()12000000000006(1)(1)66t x x x f x a a a a a a x x x x -∴==-- =-⋅-⋅⋅=综上所述:5x 的系数为6.(19)设111212122212111211112121222212221212m mm m mm n m n m n n nnn n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =, 且111212122212m m m m mma a a a a a a a a a =111212122212n n n n nnb b b b b b b b b b =,则D =()1mnab - ;解:方法一:令111212122212m m m m mma a a a a a A a a a a ==,111212122212n n n n nnb b b b b b B b b b b ==则1A O D A B ab CB==⋅=,()()211mnmnO AD A B ab B C==-⋅=-证明:根据行列式性质2和5,将行列式A 变成下三角行列式,得到:11112121222212121212m m m m m mmm m ma a a a a a a a a A a a a a a a a a a a '====''行列式1D 、2D 的变换和行列式A 的变换完全相同,得到:1212121111211112121222212221212m m m m n m n n n nm n n nna a a a a a D c c cb b bc c c b b b c c c b b b '''='''''''''1212122111211112121222212221212m m m n m n m n n nnn n nm a a a a a a D b b b c c c b b b c c c b b b c c c '''='''''''''分别将1D 、2D 第一次按第一行展开(2a 变成第一行),第二次按第二行展开(3a 变成第一行),……,总共进行m 次第一行展开,得到:112m D a a a B A B ab ==⋅=;()()()()()11111121211111n n n mn mnm D a a a B A B ab ++++++=-⋅--⋅=-⋅⋅=-证毕.方法二:设()ij m m A a ⨯=,()pq n n B b ⨯=,()()()ij m n m n A O D d C B +⨯+⎛⎫== ⎪⎝⎭其中:(), 1:,1:, 1:,1:,, , 1:,1:, ij ij pq pja i m j m db i m m n j m m n p i m q j mc i m m n j m p i m ==⎧⎪==++=++=-=-*⎨⎪=++==-⎩那么:()(){}{}1111111,,,,1,,1m m m n m m m n m n t p p p p p mp m p m n p p p m n A OD d d d d C B +++++++=+==-∑()()()()(){}{}{}{}()()()(){}{}{}{}()(){}{}()(){}11111111111111111111,,1,,,,1,,11,,1,,,,1,,11,,1,,,,11111m n m n m m n n m n m m n n m n mm t p p m l m l p mp l nl p p m l l n t p p t l l p mp l nl p p m l l n t pp t l l p mp l nl p p m l l a a b b a a b b a a b b *++=====-⎡⎤=-⋅-⎣⎦⎛⎫=-⋅- ⎪ ⎪⎝⎭∑∑∑由{}1,,n A B ab=⎛⎫⎪ ⎪⎝⎭=⋅=∑1112121222122111211112121222212221212m m m m mmn m n m n n nnn n nma a a a a a a a a Db b bc c c b b b c c c b b b c c c =2D 中m a 依次与12,,,n b b b 对换,使得m a 在n b 下面;()1m a - 依次与12,,,n b b b 对换,使得()1m a - 在n b 下面,在m a 上面;……1a 依次与12,,,n b b b 对换,使得1a 在n b 下面,在a 2 上面;总共进行了mn 次对换。
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数大学试题及答案### 线性代数大学试题及答案#### 一、选择题(每题2分,共20分)1. 设矩阵A是3阶方阵,且|A| = 5,下列哪个矩阵是A的伴随矩阵?A. [1, 2, 3][4, 5, 6][7, 8, 9]B. [1, 4, 7][2, 5, 8][3, 6, 9]C. [1, 2, 3][2, 5, 8][3, 6, 5]D. [1, 2, 3][4, 5, 7][5, 6, 8]2. 向量组的线性相关性是指:A. 向量组中至少有一个向量是0向量B. 向量组中存在不全为0的向量,使得它们线性组合为0向量C. 向量组中任意向量都是其他向量的线性组合D. 向量组中任意向量都不是其他向量的线性组合3. 矩阵的特征值是指:A. 矩阵的对角线上的元素B. 方阵A的非零解x满足Ax = λx的λC. 矩阵的行列式D. 矩阵的迹...(此处省略其他选择题)#### 二、简答题(每题10分,共20分)1. 解释什么是线性空间,并给出一个不是线性空间的例子。
2. 说明什么是矩阵的秩,并解释如何计算一个矩阵的秩。
#### 三、计算题(每题15分,共30分)1. 给定矩阵A:```[2, 1, 1][1, 3, 1][1, 1, 2]```计算矩阵A的行列式,并判断矩阵A是否可逆。
2. 已知向量v1 = (1, 2, 3)^T和v2 = (4, 5, 6)^T,求这两个向量的点积。
#### 四、证明题(每题15分,共20分)1. 证明如果矩阵A和矩阵B可交换,即AB = BA,则矩阵A和B的特征值可以同时对角化。
2. 证明线性变换的核与像的维数之和等于定义域的维数。
#### 五、应用题(每题15分,共10分)1. 某公司有三种产品,其成本和售价如下表所示:| 产品 | 成本 | 售价 |||||| A | 10 | 15 || B | 20 | 30 || C | 5 | 10 |公司希望最大化利润,且每种产品的销售量不超过其成本的两倍。
线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。
重庆大学《线性代数II 》课程试卷 第1页 共4页重庆大学《线性代数II 》课程试卷2014 — 2015 学年 第 2 学期开课学院:数学与统计课程号: MATH10032 考试日期: 201506考试方式:考试时间: 120 分钟一、填空题(每小题3分,共18分)1.已知123,,,,αααβγ均为4维列向量,且123123,,,,,,,n m γααααβγαα=+=, 则123,,,3αααβ= 3()m n +2.设123(1,1,),(1,,1),(,1,1)TTTk k k ααα===是3R 的基, 则k 满足的关系式 1,2k ≠-3.设,A B 为三阶相似矩阵,且1220,1,1E A λλ+===-为B 的两个特征值,则行列式2A AB += 184.已知,A B 均是三阶矩阵,将A 的第三行的2-倍加到第二行得矩阵1A ,将B 中第一列和第二列对换得到1B ,又11111102213A B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则AB = 111258123⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5.设123,,ααα为四元非齐次线性方程组Ax β=的三个解,()3R A =,其中123(1,2,3,4),(0,1,2,3)T T ααα=+=,则Ax β=的通解是(2,3,4,5)(1,2,3,4)T T x k =+6.在线性空间2P (次数不超过2的全体多项式)中,2()23f x x x =++在基21,(1),(1)x x --下的坐标为 (6,4,1)二、单项选择题(每小题3分,共18分)1.设A 为(1)n n >阶方阵,且A 的行列式0A a =≠,而A *是A 的伴随矩阵,则2A *=【B 】(A)2a (B)12(2)n a - (C)1(2)n a - (D)2na2.设112321233123(,,),(,,),(,,)T T Ta a ab b bc c c ααα===,则三条直线(1,2,3)i i i a x b y c i +==(其中220,1,2,3)i i a b i +≠=交于一点的充分必要条件是【A 】 (A)123,,ααα线性相关,12,αα 线性无关 (B) 123,,ααα线性无关(C) 12312(,,)(,)R R ααααα= (D) 123,,ααα线性相关3.任意两个n 维向量组1,,m αα和1,,m ββ,若存在两组不全为零的数1,,m λλ和1,,m k k ,使111111()()()()0m m m m m m k k k k λαλαλβλβ+++++-++-=,则【D 】 (A)1,,m αα和1,,m ββ都线性相关命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(B) 1,,m αα和1,,m ββ都线性无关 (C) 1111,,,,,m m m m αβαβαβαβ++--线性无关 (D)1111,,,,,m m m m αβαβαβαβ++--线性相关4.设123,,ξξξ是0Ax =的基础解系,则方程组的基础解系还可以表示成【D 】 (A) 123,,ξξξ的一个等价向量组 (B) 123,,ξξξ的一个等秩向量组 (C) 122331,,ξξξξξξ--- (D) 122331,,ξξξξξξ+++5.设A 为n 阶实矩阵,TA 是A 的转置矩阵,则对于线性方程组(I ):0Ax =和(II ):0T A Ax =,必有【A 】(A)(II )的解是(I )的解,(I )的解也是(II )的解 (B)(II )的解是(I )的解,但(I )的解不是(II )的解 (C) (I )的解不是(II )的解,(II )的解也不是(I )的解 (D) (I )的解是(II )的解,但(II )的解不是(I )的解6.二次型2221231231223(,,)22f x x x ax ax x x x x x =++++是正定的,则a 的取值范围为【D 】(A) a <a <(C) a ≥(D) a >三、判断题(每小题2分,共10分)1.加法和数乘按通常方式定义,满足lim ()0x f x →+∞=的全体函数f 构成向量空间。
(√)2.在3R 中,定义221231233(,,)(,,)T x x x x x x x =+,则T 为线性变换。
(⨯) 3.如果n 阶方阵A 是正定矩阵,则A 必是满秩矩阵。
(√) 4.设有n 阶方阵12(,,,)n A ααα=,若12,,,n ααα为正交向量组,则方阵A 为正交阵。
(⨯)5.向量组21(1,,,,)(1,2,,)n s s s s t t t s n α-==线性无关的充要条件是(1,2,,)s t s n =为互不相同的数。
(√)四、计算题(一)(每小题8分,共16分)1.计算n 阶行列式0000000000a b a ba b b a解:按第1列展开得:111(1)(1)nn n n n n n D a b ba b +-+=+-=+-2.设矩阵A 的伴随阵100001001010038A *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦,且113ABA BA E --=+,求矩阵.B 解:32A A A *=⇒=,用A *左乘,用A 右乘113ABA BA E --=+得:1133A ABA A A BA A A A A B A B A E *-*-**=+⇒=+,即111000600001000600(2)66(2)61010606003060301E A B E B E A -**-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=⇒=-==⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦五、计算题(二)(每小题12分,共24分) 1.已知线性方程组1234123412341234230264132716x x x x x x x x x x px x x x x x t+-+=⎧⎪+-+=-⎪⎨+++=-⎪⎪---=⎩讨论参数,p t 取何值时,方程组有解?无解?当有解时,求出其解。
解:112301123010411*******22101221327101621008001161024400002A p p p t t t ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥--+--+⎢⎥⎢⎥⎢⎥------+⎣⎦⎣⎦⎣⎦(1)当2t ≠-时,()()R A R A ≠,方程组无解。
(2)当2,8t p =-=-时,()()24R A R A ==<,方程组有无穷解。
其解为12(4,2,1,0)(1,2,0,1)(1,1,0,0)T T T x c c =-+--+-(3)当2,8t p =-≠-时,()()34R A R A ==<,方程组有无穷角解。
此时1041110011012210102100800001000000000000A p ---⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎣⎦其通解为(1,2,0,1)(1,1,0,0)TTx c =--+- 2.设二次型21232121323(,,)424(,f x x x a x x x b x x x x a b =-++为整数),其中二次型的矩阵的特征值之和为3,特征值之积为5。
用正交变换化二次型为标准形,并求所用的正交变换及对应的正交矩阵。
解:二次型对应的矩阵为022220b A a b -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。
由已知20033,158a a b A b ab++=⎧⎪⇒==-⎨==--⎪⎩ 于是,由2(1)(5)0A E λλλ-=-+-=得矩阵A 特征值为1231, 5.λλλ==-=121λλ==-对应的特征向量为120,110⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,将其正交化可得110,111⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,将其标准化可得12110,111p p ⎡⎤⎡⎤⎥⎥==⎥⎥⎥⎥-⎦⎦35λ=对应的特征向量为121-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,将其标准化得3121p -⎡⎤⎥=⎥⎥⎦从而,取正交阵123(,,)P p p p =可将二次型化为标准形2221235.f y y y =--+六、证明题(每小题7分,共14分)1.设向量组123:,,A ααα;向量组1234:,,,B αααα;向量组1235:,,,C αααα, 向量组;若()()3,()4R A R B R C ===.证明:() 4.R D = 证法1:只须证12354:,,,D ααααα-线性无关.设存在常数1234,,,k k k k ,使得112233454()0k k k k ααααα+++-= (1)又因()()3R A R B ==,向量组123:,,A ααα线性无关,而向量组1234:,,,B αααα线性相关,所以向量4α可由向量组A 线性表示且表示唯一.即存在123,,λλλ使得4112233αλαλαλα=++ (2)将(2)代入(1)并整理,得11412242334345()()()0k k k k k k k λαλαλαα-+-+-+=又由()4R C =知向量组1235:,,,C αααα线性无关,故12354:,,,D ααααα-1142241234334400000k k k k k k k k k k k λλλ-=⎧⎪-=⎪⇒====⎨-=⎪⎪=⎩ 故向量组12354:,,,D ααααα-线性无关,从而() 4.R D =证法2:因()()3R A R B ==,故向量组123:,,A ααα线性无关,而向量组1234:,,,B αααα线性相关,所以向量4α可由向量组A 线性表示且表示唯一.即存在123,,λλλ使得4112233αλαλαλα=++。
若向量组线性相关,则5411223351122334k k k k k k αααααααααα-=++⇒=+++即5111222333()()()k k k αλαλαλα=+++++ 这与C 组线性无关相矛盾。
证法3:因4112233αλαλαλα=++1235412351122331235(,,,)(,,,)(,,,)D C αααααααααλαλαλααααα=-=---= 即()()4R D R C ==2.设A 为n 阶正定矩阵,证明:对任意的可逆矩阵P ,TP AP 为正定矩阵。
证明:显然T B P AP =为对称阵。
因A 为正定阵,故0x ∀≠,有0T x Ax >。
因P 可逆,所以00≠⇔≠x P x故0)()()(,0>==≠x P A x P x AP P x x B x x T T T T。