新人教版八年级数学第十三章轴对称复习教案
- 格式:doc
- 大小:36.50 KB
- 文档页数:2
第十三章轴对称13.2 画轴对称图形第1课时一、教学目标【知识与技能】能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法.【过程与方法】让每个学生在生动具体的问题情境中参与数学活动,通过积极主动的探索,加深自己的理解和认识.【情感、态度与价值观】让学生体验到成功的喜悦,树立自信心,体验合作交流的重要性,感受数学美,明白数学来源于生活又服务于生活的道理.二、课型新授课三、课时第1课时,共1课时。
四、教学重难点【教学重点】1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.【教学难点】利用轴对称进行一些图案设计.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.(出示课件3)(二)探索新知1.创设情境,探究轴对称图形的画法教师问1:(出示课件2)观察思考,欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?学生回答:这些图案都是轴对称图形,希望学习这些图案制作方法.教师问2:在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论呢?(出示课件5)学生问:这个如何做呢?出示下边的图案教师问3:认真观察,左脚印和右脚印有什么关系?(出示课件6)学生回答:成轴对称教师问4:对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?学生回答:直线l垂直平分线段PP′教师总结点拨:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师讲解:同学们自己能做出一个类似的图形吗?学生回答:可以做到.师生共同解答如下:(1)取一张长方形纸;(2)将纸对折,中间夹上复写纸;(3)在纸上沿折叠线画出半只蝴蝶;(4)把纸展开.得到的图案如下:教师问5:取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?学生动手作图后回答:这两个图形关于某直线成轴对称.教师问6:当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?学生画图后回答:当对称轴的方向和位置发生变化时,得到图形的方向和位置不会变化.例1:将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,得到的图案是()(出示课件8)师生共同解答如下:动手剪一剪,亲自操作后得到答案:B.例2:如图,将长方形ABCD 沿DE 折叠,使A 点落在BC 上的F 处,若∠EFB =50°,则∠CFD 的度数为( )(出示课件10)A .20° B.30° C .40° D.50°师生共同解答如下:A. B. C. D. A B D CE F由折叠知道:∠EFD=∠A=90°,∵∠EFB=50°,∴∠CFD=180°-90°-50°==40°.答案:C.总结点拨:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.2、运用新知,作轴对称图形教师问7:如何画一个点的轴对称图形?学生回答:画出点A关于直线l的对称点A′.教师问8:如何画呢?师生共同解答如下:作法:(1)过点A作l的垂线,垂足为点O.(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点. (出示课件12)教师问8:如何画一条线段的对称图形?学生回答:已知线段AB,画出AB关于直线l的对称线段.师生共同解答如下:(出示课件13)教师问9:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生共同探究后,完成下边的问题例3:如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.师生共同解答如下:(出示课件14)分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l 的对称点,连接这些对称点,就能得到要画的图形.(出示课件15)作法:(1)过点A 画直线l 的垂线,垂足为点O ,在垂线上截取OA ′=OA ,A ′就是点A 关于直线l 的对称点.(2)同理,分别画出点B ,C 关于直线l 的对称点B ′,C ′ .(3)连接A ′B ′,B ′C ′,C ′A ′,得到△ A ′B ′C ′即为所求. l AB C总结点拨:(出示课件16)作轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到与原图形成轴对称的图形.例4:在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.(出示课件17)师生共同解答如下:总结点拨:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.(出示课件18)(三)课堂练习(出示课件21-25)1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.如图,把一张长方形的纸按图那样折叠后,B,D两点落在B′,D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图,把下列图形补成关于直线l的对称图形.4.如图给出了一个图案的一半,虚线l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.5.如图,画△ABC关于直线m的对称图形.参考答案:1.B2.55°3.解答如下图:4.解答如下图:5.解答如下图:(四)课堂小结今天我们学了哪些内容:1.轴对称图形的基本特征。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
13.1.1 轴对称教学设计【教学目标】一、知识与技能1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.了解线段垂直平分线的概念.二、过程与方法探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.三、情感态度与价值观欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。
【教学重点】轴对称的概念和性质【教学重点】轴对称的概念和性质【教学方法】观察、作图操作、类比【教学课型】新授课【教学准备】多媒体、剪刀、尺规【教学过程】一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、探索新知:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合。
第1课时轴对称(1)教学目标1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.教学重点由具体情境抽象出轴对称图形与轴对称的概念.教学难点理解轴对称与轴对称图形之间的区别与联系.教学互动设计设计意图一、创设情境感受新知【问题】观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,?甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.二、合作交流解读探究⑴轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。
就是它的对称轴。
⑵轴对称1、做一做: 折纸印墨迹问题1:你发现折痕两边的墨迹形状一样吗?问题2:两边墨迹的位置与折痕有什么关系?2、想一想: 教材P30-----思考3、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。
这条直线就是,两个图形中的对应点(即两个图形重合时互相重叠的点)叫做。
⑶关于某条直线成轴对称的图形的性质特征经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.学生观察图片,在独立思考的基础1、想一想:教材P31 ---思考1结论:2、轴对称与轴对称图形的联系与区别.轴对称图形轴对称区别联系如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,?如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.三、应用迁移巩固提高【例1】下列汉字,如果用一样粗细的笔写出来,哪些是轴对称图形?是轴对称图形的,有几条对称轴?大小口中朋木【例2】在26个英文字母中,请你说出几个成轴对称图形的字母,并且指出有几条对称轴【例3】判断下面每组图形是否关于某条直线成轴对称.【例4】标出下列图形中的对称点【例5】观察下列各种图形,判断是不是轴对称图形,若是,请画出对称轴。
第十三章轴对称复习教学设计一、复习目标1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。
3、理解线段的垂直平分线的概念并掌握其性质;理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。
二、自主复习,盘点知识(一)基本概念1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做。
折叠后重合的点是对应点,叫做。
2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做。
(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形有的三角形,叫做等腰三角形。
相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做。
5.等边三角形三条边都的三角形叫做等边三角形。
(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的。
2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离。
3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。
4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角” )。
(2)等腰三角形的顶角、底边上的、底边上的相互重合。
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的。
(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。
5.等边三角形的性质(1)等边三角形的三个内角都 ,并且每一个角都等于 。
第十三章轴对称复习教案
小街镇二中李刚
学习目标:
1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。
2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。
3.掌握线段的垂直平分线及应用。
4.理解等腰三角形的性质并能够简单应用。
了解等边三角形的概念并探索其性质;
5.能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏和设计简单的轴对称图案。
重点:掌握线段的垂直平分线、等腰三角形的性质及应用。
难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用
教学准备:多媒体课件圆规直尺
教学过程:
一、课件出示本章结构图
老师作简单介绍本章主要知识
二、课件出示本章知识回顾(主要六块)
本章知识回顾
一.轴对称图形,成轴对称
二.线段的垂直平分线
三.用坐标表示轴对称
四.等腰三角形
五.等边三角形
六.利用轴对称作图(尺规)
三、知识点复习
1、知识点一:轴对称
(1)轴对称概念
师提问学生,采用个别提问,而后给出概念(课件展示)
(2)成轴对称
师提问学生,采用个别提问,而后给出概念(课件展示)
(3)轴对称图形和成轴对称的区别与联系
单独提问,也可学生齐答,如果回答困难师作引导后课件出示
(4)轴对称的性质
引导学生回答后展示(课件)
2、知识点二:线段的垂直平分线
(1)定义:
提问学生什么是线段垂直平分线。
课件出示
(2)性质
线段垂直平分线有何性质,学生举手回答,点名答,课件出示
(3)判定
与上面方法相同
3、知识点三:用坐标表示轴对称
(1)关于X轴对称
点(x, y)关于x轴对称的点的坐标为________ (x, -y)
点名答,课件出示
(2)关于Y轴对称
点(x, y)关于y轴对称的点的坐标为____________ (-x, y)
总结:提问学生
在平面直角坐标系中,关于x 轴对称的点横坐标相等,纵坐标互为相反数.关于y 轴对称的点横坐标互为相反数,纵坐标相等.
4、知识点四:等腰三角形
(1)定义:
(2)性质(3条):
(3)判定(2条):
均采取提问学生方式,如果学生回答困难,师作引导。
课件展示。
5、知识点五:等边三角形
(1)定义:三边相等的三角形是等边三角形,也叫做正三角形
(2)性质(3条):
A.等边三角形的三条边相等。
B.等边三角形的三个角相等,并都为60度。
C.等边三角形有三个“三线合一”
(3)判定(3条)
A.三边都相等的三角形(定义判定法)
B.三个角都相等的三角形
C.有一个角为60度的等腰三角形
(4)引申特性:在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
6、知识点六:尺规作图
师作简单介绍和示范
四、基础练习
学生练习自制练习,印好分发给学生
师作巡视指导,
点名作答,师订正结果,也可学生订正。
五、结束本节课程。