旋转作图题训练题
- 格式:doc
- 大小:982.50 KB
- 文档页数:9
23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
小升初数学专项练习一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆4.作旋转一定角度后的图形【小升初考点归纳】1.旋转作图步骤:(1)明确题目要求:弄清旋转中心、旋转方向和旋转角;(2)分析所作图形:找出构成图形的关键点;(3)找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;(4)作出新图形:顺次连接作出的各点.(5)写出结论:说明作出的图形.2.中心对称作图步骤:(1)连接原图形上的所有特殊点和对称中心;(2)再将以上连线延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等;(3)将对称点按原图形的形状顺次连接起来,即可得出关于对称中心对称的图形.【经典例题】一.选择正确的答案,把序号填在括弧中(共1小题)1.(2016•长沙模拟)下面图形中,以某一边为轴旋转一周,可以得到圆锥的是()A.B.C.D.【解析】解:直角三角形沿一条直角边旋转一周得到的几何体是一个圆锥.故选:A.二.操作题(共14小题)2.(2019春•南京月考)(1)将先向下平移5格,再向右平移13格.(2)将平行四边形沿A点顺时针方向旋转90°.【解析】解:(1)将先向下平移5格(下图红色部分),再向右平移13格(下图绿色部分):(2)将平行四边形沿A点顺时针方向旋转90°(下图蓝色部分):3.(2019春•枣阳市校级月考)(1)将图形A绕点O点顺时针旋转90°得到的图形B.(2)将图形B向右平移4格得到图形C.【解析】解:(1)将图形A绕点O点顺时针旋转90°得到的图形B(下图):(2)将图形B向右平移4格得到图形C(下图):4.(2018•泉州)(1)按要求画图.①将图中的三角形①绕O点顺时针旋转90°,画出旋转后的图形②.②将图中的三角形①平移,使平移后的三角形顶点O的位置在(9,5),画出平移后的图形③.【解析】解:根据分析可得,5.(2018春•新罗区期末)画一画:(1)把图形绕点O逆时针旋转90°.(2)把旋转后的图形向下平移两格.【解析】解:6.(2018•漳平市校级模拟)做一做,画一画(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).【解析】解:(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).故答案为:8,6.7.(2018春•隆化县校级期末)画出三角形AOB绕O点逆时针旋转180o后的图形.【解析】解:画出三角形AOB绕O点逆时针旋转180°后的图形(图中红色部分):8.(2018春•卢龙县期中)画出三角形AOB绕点O逆时针旋转90度的图形.【解析】解:画出三角形AOB绕点O逆时针旋转90度的图形(图中红色部分):9.(2018秋•廉江市期中)画出三角形AOB绕B点顺时针旋转90度后的图形.【解析】解:作图如下:10.(2018•兴仁县)按要求画一画.(1)画出图形A向右平移5格后得到的图形B.(2)画出图形B绕点O逆时针旋转90°后得到的图形C.【解析】解:(1)画出图形A向右平移5格后得到的图形B(下图):(2)画出图形B绕点O逆时针旋转90°后得到的图形C(下图):11.(2017春•海南区期末)画出三角形AOB绕O点顺时针旋转90度后的图形.【解析】解:根据题干分析画图如下:12.(2016春•洛阳月考)将长方形绕A点顺时针旋转90°.【解析】解:将长方形绕A点顺时针旋转90°(图中红色部分):13.(2016春•新郑市校级月考)画出下面的图象中的三角形沿着A点顺时针旋转90度后的图形.【解析】解:三角形沿着A点顺时针旋转90度后的图形(红色部分):14.(2016秋•永州期中)把如图的小三角旗绕点A沿顺时针方向旋转90度.再向右平移4格.分别画出旋转和平移后的图形.【解析】解:画图如下:15.(2016春•南海区期末)画出面积是3平方厘米的三角形AOB并绕O点逆时针旋转180o 后的图形.【解析】解:根据题干分析可得:三.解析题(共7小题)16.(2019春•东海县月考)按要求画一画.①将长方形绕A点逆时针旋转90°.②将小旗围绕B点逆时针旋转90°.【解析】解:作图如下:17.(2019春•古浪县校级期末)先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.【解析】解:先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.18.(2018春•抚宁区期末)画出绕点“O”顺时针旋转90度后的图形.【解析】解:作图如下:19.(2017秋•保定期末)画出三角形逆时针旋转90度后的图形.【解析】解:作图如下:20.(2018春•桃城区校级期末)(1)小鱼图从右下方移至左上方,先向上平移3格,又向左平移5格.(2)把梯形绕A点顺时针方向旋转90°,画出旋转后的图形.【解析】解:(1)根据题干分析可得:小鱼图从右下方移至左上方,先向上平移3格,再向左平移5格;(2)根据分析画图如下:故答案为:上、3、左、5.21.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:22.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:。
第2课时旋转作图1 •如图23-1-19 , E, F分别是正方形ABC啲边AB BC上的点,且BE= CF,连接CEDF将厶DCF绕着正方形的中心0按顺时针方向旋转到△ CBE的位置,则旋转角为() 某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是3. 如图23-1-21,在平面直角坐标系中,△ ABC三个顶点的坐标分别为A(2,3),巳1,1),Q5,1).(1) △ ABC平移后,其中点A移到点A(4,5),画出平移后得到的△ ABC;(2) 把厶ABG绕点A按逆时针方向旋转90°,画出旋转后的△ ARG.A. 30°C. 60°2.如图23-1-20, A点的坐标为(一1,5)B. 45°D. 90°,B点的坐标为(3,3) , C点的坐标为(5,3) , D点的坐标为(3 , —1) •小明发现线段AB与线段CD存在一种特殊关系, 即其中一条线段绕着图23-1-19图23-1-204. 在4X4的方格纸中,△ ABO的三个顶点都在格点上.⑴在图23-1-22中画出与厶ABC成轴对称且与△ ABC有公共边的格点三角形(画出一个即可);(2)将图23-1-23中的△ ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.AB R[¥| 2:^-I 22 图鬲I 站Cfil •拓牌创新5. 如图23-1-24所示,在平面直角坐标系中,有Rt△ ABC且A—1, 3),耳一3,—1), q —3, 3),已知△ AAC是由△ ABC旋转变换得到的.(1) 旋转中心的坐标是_____,旋转角是_____;(2) 以⑴中的旋转中心为中心,分别画出△AAC顺时针旋转90°, 180°后的三角形;(3) 设Rt△ ABC的两直角边BGa, AG b,斜边AB= c,禾用变换前后所形成的图案证明勾股定理.参考答案【分层作业】1. D2. (1,1)或(4,4)3.略4 略5. (1)(0 ,0) 90°⑵略(3)略。
《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是()DA.①②③④ B.①②③C.①③ D.③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为()度. CA、30 oB、45 oC、60 oD、90 o图1 图2 图33、如图2,边有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4,△DEF是由△ABC绕着某点旋转得到的, 则这点的坐标是( B )图5 图4 A. (1,1) B. (0,1) C. (−1,1) D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______.80(或120(.三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图6 BA CO图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连结BK和DM,试用旋转的思想说明线段BK与DM的关系.,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。
一、解答题(共30小题)1、如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为_________;(3)四边形AOA1B1的面积为_________.1题图 2题图2、△ABC在平面直角坐标系中的位置如下图,其中每个小正方形的边长为1个单位长度.(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)若将△ABC绕点(﹣1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.5、(2010•鸡西)△ABC在如下图的平面直角坐标系中.(1)画出△ABC关于原点对称的△A1B 1 C1(2)画出△A1B1C1关于Y轴对称的△A2B2C2(3)请直接写出△AB2A1的形状.6、(2010•)如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答以下问题:(1)将△ABC 向右平移5个单位长度,画出平移后的△A 1B 1C 1; (2)画出△ABC 关于X 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3; (4)在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,△_________与△_________成轴对称;△_________与△_________成中心对称.7、(2010•贵港)如下图,把△ABC 置于平面直角坐标系中,请你按以下要求分别画图: (1)画出△ABC 向下平移5个单位长度得到的△A 1B 1C 1;(2)画出△ABC 绕着原点O 逆时针旋转90°得到的△A 2B 2C 2; (3)画出△ABC 关于原点O 对称的△A 3B 3C 3.9、(2010•州)△ABC 在平面直角坐标系中的位置如下图. (1)作出△ABC 关于X 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)作出将△ABC 绕点O 顺时针方向旋转180°后的△A 2B 2C 2.10、(2010•)△ABC 在平面直角坐标系中的位置如下图,将△ABC 沿Y 轴翻折得到△A 1B 1C 1,再将△A 1B 1C 1绕点O 旋转180°得到△A 2B 2C 2.请依次画出△A 1B 1C 1和△A 2B 2C 2. 13、(2010•)在小正方形组成的15×15的网络中,四边形ABCD 和四边形A ′B ′C ′D ′的位置如下图.(1)现把四边形ABCD 绕D 点按顺时针方向旋转90°,画出相应的图形A 1B 1C 1D 1, (2)若四边形ABCD 平移后,与四边形A ′B ′C ′D ′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A 2B 2C 2D 2.15、(2009•)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.16、(2009•)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C (﹣1,0).(1)请直接写出点A关于Y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.17、(2009•)如下图,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC关于Y轴对称的四边形OA1B1C1,并写出点B1的坐标是_________;(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度.18、(2009•)如下图的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答以下问题:(1)分别写出点A 、B 两点的坐标;(2)作出△ABC 关于坐标原点成中心对称的△A 1B 1C 1;(3)作出点C 关于是X 轴的对称点P .若点P 向右平移X 个单位长度后落在△A 1B 1C 1的部,请直接写出X 的取值围. 19、(2009•)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC 和一点O ,△ABC 的顶点和点O 均与小正方形的顶点重合.(1)在方格纸中,将△ABC 向下平移5个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)在方格纸中,将△ABC 绕点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2. 20、(2009•)如图,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到△A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2.21、(2008•永春县)在边长为1的方格纸中建立直角坐标系XOY,O、A、B三点均为格点.(1)直接写出线段OB的长;(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度.22、(2008•)如图,△AOB中,顶点A,B,O均在格点上,画出△AOB绕点O旋转180°后的三角形.(不要求写做法,证明,但要注明结果)23、(2008•)如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.(1)请从以下序号中选择正确选项的序号填写;①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.如果图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是_________;(2)①图1,图2关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:_________.(可以结合所画图形表达).24、(2008•眉山)如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转180°,得到△A1B2C2.(1)在方格纸中画出△A1B1C1和△A1B2C2;(2)设B点坐标为(﹣3,﹣2),B2点坐标为(4,2),△ABC与△A1B2C2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.25、(2008•)如下图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)直接写出D1点的坐标;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)26、(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)27、(2008•)在如下图出方格纸中,每个小正方形的边长都为1.(1)画出将铅笔图形ABCDE向上平移9格得到的铅笔图形A1B1C1D1E1;(2)将铅笔图形A1B1C1D1E1,绕点A1,逆时针旋转90°,画出转后的铅笔图形A1B2C2D2E2.28、(2008•)如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)29、(2008•)△ABC在平面直角坐标系中的位置如下图.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;(2)将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.30、(2008•)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按以下要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(﹣5,0)、B(﹣4,0)、C(﹣1,3)、D(﹣5,1);②将四边形ABCD沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出点C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.答案与评分标准一、解答题(共30小题)1、(2010•)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B 的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为(3,2);(3)四边形AOA1B1的面积为8.考点:作图-旋转变换。
第2课时旋转作图及变换知识点1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离;(3)对应点与旋转中心所连线段的夹角等于2.简单的旋转作图---旋转作图的步骤(1)确定旋转;(2)找出图形的关键点;(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题1.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5 △ABC绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°二、填空题6.图形的平移、旋转、轴对称中,其相同的性质是_________.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________. 10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.11.如图,在直角坐标系中,已知点)0,3(A、)4,0(B,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD 是能够重合的图形。
3.4简单的旋转作图习题精选一1.如图,把绕O点逆时针旋转120°、240°,试一试画出的图形是怎样的图形.2.如图,画出长方形ABCD绕点C顺时针旋转120°所得到的图形.3.如图,画出绕点O顺时针旋转100°所得到的图形.4.如图,你能把圆O绕P点顺时针旋转90°吗?5.圈出图中的“基本图案”,说明这些美丽的图案都是怎样旋转得到的?6.图中的六边形中“基本图案”是怎样旋转而成下列图形的?7.把下面几个图形中左上角的图案绕着中心旋转90°,180°,270°,画出所得图案。
8.观察图,圈中其中的“基本图案”,说明它是怎样由“基本图案”旋转而成的.参考答案1.2.3.如下图4.如上图5.(1)一个花瓣顺时针旋转90°,180°,270°(2)螺旋桨的一半旋转180°(3)雪花顺时针旋转60°,120°,180°,240°,300°(4)一个猴子旋转180°(5)一个熊猫旋转90°,180°,270°(6)一只鸽子旋转180°画图:略.6.(1)(2)(3)中“基本图案”分别旋转60°,120°,180°,240°,300°(4)中“基本图案”旋转120°,240°.7.略.8.把“基本图案”顺时针旋转60°,120°,180°,240°,300°而成.二1.在图书、杂志、报纸、包装盒、广告单等处寻找几个旋转对称图形的实例.2.如图,非等腰三角板原在ABC的位置上,旋转后到了的位置上,请指出旋转中心、旋转角度和旋转方向.3.已知(如图),请画出以C点为旋转中心,旋转角为30°,(1)按顺时针方向旋转后的图形;(2)按逆时针方向旋转后的图形.4.下列各图形围绕自己的旋转中心最低需要旋转多少度之后,能够与它自身相重合?5.如图,下列各图形,不是旋转对称图形的是()6.如图,正方形ABCD,画出绕顶点C顺时针旋转90°后的图形.7.画一个三角形,使通过这个三角形的旋转得到一个正方形,指出这是一个什么三角形,旋转中心是什么,每次旋转的角度,需要旋转多少次才能完成这个图形.8.如图,以线段CD外的点A为旋转中心,按逆时针方向旋转120°,请画出图形.9.如图,已知点A、B,以A为旋转中心逆时针旋转30°,B点到达;继续旋转60°到;再继续旋转90°到;再继续旋转120°到.请画出多边形.10.图中给出的是一个数轴,以原点O为旋转中心,逆时针旋转90°.画图形,连同单位和标数一齐标注上.11.在图中,画出以O点为旋转中心,顺时针旋转90°后所得到的图形.12.画一个三角形,使通过这个三角形的旋转能得到一个正五边形,指出旋转中心、旋转的次数和每次旋转的角度.13.如图,已知平行四边形ABCD,画出以平行四边形对角线交点O为旋转中心顺时针旋转90°后所得到的图形.参考答案1.略.2.旋转中心是点A,旋转角度为30°,旋转方向为顺时针.3.见答图.4.(1)60°;(2)20°;(3)90°.5.D6.答图中的是旋转后的正方形.7.见答图.三角形为等腰直角三角形,直角顶点A为旋转中心,每次转90°,转4次.8.见答图.连结AC、AD,以A为旋转中心将A C、AD分别逆时针旋转120°,得,则即由CD旋转而成.9.见答图.10.见答图.这个由两个互相垂直的数轴所构成的图形叫做平面直角坐标系.它是一个很用的数学工具,在以后的数学学习中会经常用到.11.见答图.12.见答图.这个三角形是一个顶角为72°的等腰三角形,旋转中心为顶点A,旋转次数为5次,每次旋转的角度为360°÷5=72°.13.见答图(顺时针旋转两条对角线,使转过的角度为90°).。
图1CAOB图2B 1C 1A 1CAOB【前言】从2013年旋转作图分值为7分,重要性加强了。
这个题的特点是:人人都能动手做,得满分的确不多。
变化是:加入了尺规作图的相关知识,这是课本上所没有的,要加强训练。
主要考什么:图形的平移、对称、旋转(三大变换)作图,加入点的轨迹,引入计算,常见考察弧长与扇形面积的问题,考察图形的变化规律问题。
确保本题满分条件:耐心(慢慢画)+细心(仔细看) 【2013元调】△ABC 为等边三角形,点O 是边AB 的延长线上一点(如图1),以点O 为中心,将△ABC 按顺时针方向旋转一定角度得到111A B C(1)若旋转后的图形如图2所示,将111A B C 以点O 为中心,按顺时针方向再次旋转同样的角度得到222A B C ,在图2中用尺规作出222A B C ,请保留作图痕迹,不要求写作法:(2)若将△ABC 按顺时针方向旋转到111A B C 的旋转角度为α(0°<α<360°)且AC ∥11B C ,直接写出旋转角度α的值为_____________ 分析:(1)关键在于尺规作图得到同样的旋转角度 ①以O 为圆心,OA 为半径作圆;②以1A 为圆心,1AA 为半径作圆,交圆O 于点2A ,连接2OA ,从而得到了相同的旋转角,原因是△1AOA ≌△12A OA (SSS );③以O 为圆心,OB 为半径作圆,与2OA 的交点就是2B ;④分别以2B 、2A 为圆心,22A B 的长为半径作弧,二弧的交点就是2C (2)很容易得到答案60度,很容易漏掉240度 得到111A B C 后,构造中心对称,得到222A B C 肯定也是符合条件的。
【2013四调】如图,在9×7的小正方形网格中,△ABC 的顶点A 、B 、C 在网格的格点上,将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′,将△ABC 按一定规律顺次旋转,第1次,将△ABC 绕点B 顺时针旋转90°得到△11A BC ,第2次,再将△11A BC 绕点1A 顺时针旋转90°得到△112A B C ,第3次,将△112A B C 绕点2C 顺时针旋转90°得到△222A B C ,第4次,将△222A B C 绕点2B 顺时针旋转90°得到△323A B C ,依次旋转下去。
(1)在网格画出△A′B′C′和△222A B C ;(2)请直接写出至少在第几次旋转后所得的三角形刚好是△A′B′C′; 8次B 2A 2C 2B 1A 1C 1BCAO ABC分析:题目很长,一个不小心就画错首先要能正确的画出△222A B C 最后如何重合,要继续耐心继续画完。
【2013五调】如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点式网格线的交点)和点1A(1)将△ABC 绕点A 顺时针旋转90°,画出相应的△11AB C ; (2)将△11AB C 沿射线1AA 平移到△122A B C 处,画出△122A B C ; (3)点C 在两次变换过程中所经过的路径长为__________ 10522π+A 2B 2C 2B'A'C'ABC C 2B 2B 1C 1A 1ACB【2013中考】如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2)。
(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△11A B C ;平移△ABC ,若A 的对应点2A 的坐标为(0,-4),画出平移后对应的△222A B C ; (2)若将△11A B C 绕某一点旋转可以得到△222A B C ,请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标; 分析:第(1)问较简单第(2)问“将△11A B C 绕某一点旋转可以得到△222A B C ”,要求的是“旋转中心的坐标” 并没有指出是旋转180度(中心对称),所以不能认为直接连接12A A 、12B B 交点即为旋转中心 实际上这个题目恰好是中心对称,因此很多同学的错误被掩藏起来了。
正确的做法是:根据求中点的公式,求出12A A 、12B B 的中点坐标,发现恰好为同一个点,于是可以判别为中心对称。
对于没有旋转角不是180度(非中心对称),要找出旋转中心的话,那么就是找对应点连线的垂直平分线的交点。
学习了圆后,对这点应该有更深刻的认识。
本题旋转中心坐标(23,1-) 第(3)问来自课本的一个知识:轴对称求二线段之和的最小值,结合一次函数,点P 的坐标(-2,0); 由本题可以看出:课本基础知识的重要性,不要是是而非,那样容易出错。
y xDC 2B 2A 2B 1A 1CBAOy xP A'OC BA【题组训练】1、(2008元调)数学课上,小芳把一个菱形通过两次旋转且每次旋转120°后得到了如图1所示的图案。
在直角坐标系中(如图2),若菱形ABCO 中,∠AOC =60°,A (–2,0) 。
(1)完成图2;(2)写出每次..旋转后点A 、B 、C 对应点...的坐标;2、(2009元调)在如下的方形点阵中有Rt △ABC 和点O ,将△ABC 以点O 为旋转中心逆时针分别旋转90°,180°,270°,请画出旋转后的图形.3、(2010元调)在平面直角坐标系中有A(0,1),B(-2,0)两点,将线段AB 以O 为旋转中心逆时针分别旋转90°,180°,270°,请画出旋转后的图形.ABCB 1A 1C 1 xy O图2图 1BC AOyxBAO4、(2011元调)如图,网格中有△ABC 和点O 。
将△ABC 以O 为旋转中心逆时针分别旋转90°得到△A 1B 1C 1,旋转180°得到△A 2B 2C 2,请画出旋转后的图形。
5、(2012元调)在网格中有△ABC ,将△ABC 以C 为旋转中心顺时针旋转90°得到△EDC(其中点A 与点E 对应,点B 与点D 对应),再以CE 所在直线为对称轴作△EDC 的轴对称图形△EFC 。
请画出变换后的图形△CED 与△CEF .ACBOCBA6、(2013安徽中考)如图,已知A (-3,-3),B (-2,-1),C (-1,-2)是直角坐标平面上三点, (1)请画出△ABC 关于原点O 对称的△111A B C ;(2)请写出点B 关于y 轴对称的点2B 的坐标,若将点2B 向上平移h 个单位,使其落在△111A B C 的内部,指出h 的取值范围。
7、(2012武汉)如图,在平面直角坐标系中,点A 、B 的坐标分别为(-1,3)、(-4,1),先将线段AB沿一确定方向平移得到线段A 1B 1,点A 的对应点为A 1,点B 1的坐标为(0,2),在将线段A 1B 1 绕远点O 顺时针旋转90°得到线段A 2B 2,点A 1的对应点为点A 2. (1)画出线段A 1B 1、A 2B 2;(2)直接写出在这两次变换过程中,点A 经过A 1到达A 2的路径长;xyACBOxy –1–2–3–4–512345–1–2–3–41234ABO8、△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度。
(1)将△ABC 向右移平2个单位长度,作出平移后的△111A B C ,并写出△111A B C 各顶点的坐标; (2)若将△ABC 绕点(1 ,0)顺时针旋转180°后得到△222A B C ,并写出△222A B C 各顶点的坐标; (3)观察△111A B C 和△222A B C ,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由9、如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△ABC 向右平移5个单位长度,画出平移后的△111A B C ; (2)画出△ABC 关于x 轴对称的△222A B C ;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△333A B C ;(4)在△111A B C 、△222A B C 、△333A B C 中,△ _________ 与△ _________ 成轴对称;△ _________ 与△ _________ 成中心对称。
(编外)1、已知:如图,若线段CD是由线段AB经过旋转变换得到的.尺规作图:找出旋转中心O点.2、如图,已知四边形ABCD及点O。
求作:四边形A′B′C′D′,使得四边形A′B′C′D′与四边形ABCD关于O点中心对称.3、如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹(用3种办法)。