旋转作图题训练题
- 格式:doc
- 大小:1018.00 KB
- 文档页数:9
23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
小升初数学专项练习一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆4.作旋转一定角度后的图形【小升初考点归纳】1.旋转作图步骤:(1)明确题目要求:弄清旋转中心、旋转方向和旋转角;(2)分析所作图形:找出构成图形的关键点;(3)找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;(4)作出新图形:顺次连接作出的各点.(5)写出结论:说明作出的图形.2.中心对称作图步骤:(1)连接原图形上的所有特殊点和对称中心;(2)再将以上连线延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等;(3)将对称点按原图形的形状顺次连接起来,即可得出关于对称中心对称的图形.【经典例题】一.选择正确的答案,把序号填在括弧中(共1小题)1.(2016•长沙模拟)下面图形中,以某一边为轴旋转一周,可以得到圆锥的是()A.B.C.D.【解析】解:直角三角形沿一条直角边旋转一周得到的几何体是一个圆锥.故选:A.二.操作题(共14小题)2.(2019春•南京月考)(1)将先向下平移5格,再向右平移13格.(2)将平行四边形沿A点顺时针方向旋转90°.【解析】解:(1)将先向下平移5格(下图红色部分),再向右平移13格(下图绿色部分):(2)将平行四边形沿A点顺时针方向旋转90°(下图蓝色部分):3.(2019春•枣阳市校级月考)(1)将图形A绕点O点顺时针旋转90°得到的图形B.(2)将图形B向右平移4格得到图形C.【解析】解:(1)将图形A绕点O点顺时针旋转90°得到的图形B(下图):(2)将图形B向右平移4格得到图形C(下图):4.(2018•泉州)(1)按要求画图.①将图中的三角形①绕O点顺时针旋转90°,画出旋转后的图形②.②将图中的三角形①平移,使平移后的三角形顶点O的位置在(9,5),画出平移后的图形③.【解析】解:根据分析可得,5.(2018春•新罗区期末)画一画:(1)把图形绕点O逆时针旋转90°.(2)把旋转后的图形向下平移两格.【解析】解:6.(2018•漳平市校级模拟)做一做,画一画(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).【解析】解:(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).故答案为:8,6.7.(2018春•隆化县校级期末)画出三角形AOB绕O点逆时针旋转180o后的图形.【解析】解:画出三角形AOB绕O点逆时针旋转180°后的图形(图中红色部分):8.(2018春•卢龙县期中)画出三角形AOB绕点O逆时针旋转90度的图形.【解析】解:画出三角形AOB绕点O逆时针旋转90度的图形(图中红色部分):9.(2018秋•廉江市期中)画出三角形AOB绕B点顺时针旋转90度后的图形.【解析】解:作图如下:10.(2018•兴仁县)按要求画一画.(1)画出图形A向右平移5格后得到的图形B.(2)画出图形B绕点O逆时针旋转90°后得到的图形C.【解析】解:(1)画出图形A向右平移5格后得到的图形B(下图):(2)画出图形B绕点O逆时针旋转90°后得到的图形C(下图):11.(2017春•海南区期末)画出三角形AOB绕O点顺时针旋转90度后的图形.【解析】解:根据题干分析画图如下:12.(2016春•洛阳月考)将长方形绕A点顺时针旋转90°.【解析】解:将长方形绕A点顺时针旋转90°(图中红色部分):13.(2016春•新郑市校级月考)画出下面的图象中的三角形沿着A点顺时针旋转90度后的图形.【解析】解:三角形沿着A点顺时针旋转90度后的图形(红色部分):14.(2016秋•永州期中)把如图的小三角旗绕点A沿顺时针方向旋转90度.再向右平移4格.分别画出旋转和平移后的图形.【解析】解:画图如下:15.(2016春•南海区期末)画出面积是3平方厘米的三角形AOB并绕O点逆时针旋转180o 后的图形.【解析】解:根据题干分析可得:三.解析题(共7小题)16.(2019春•东海县月考)按要求画一画.①将长方形绕A点逆时针旋转90°.②将小旗围绕B点逆时针旋转90°.【解析】解:作图如下:17.(2019春•古浪县校级期末)先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.【解析】解:先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.18.(2018春•抚宁区期末)画出绕点“O”顺时针旋转90度后的图形.【解析】解:作图如下:19.(2017秋•保定期末)画出三角形逆时针旋转90度后的图形.【解析】解:作图如下:20.(2018春•桃城区校级期末)(1)小鱼图从右下方移至左上方,先向上平移3格,又向左平移5格.(2)把梯形绕A点顺时针方向旋转90°,画出旋转后的图形.【解析】解:(1)根据题干分析可得:小鱼图从右下方移至左上方,先向上平移3格,再向左平移5格;(2)根据分析画图如下:故答案为:上、3、左、5.21.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:22.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:。
《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是()DA.①②③④ B.①②③C.①③ D.③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为()度. CA、30 oB、45 oC、60 oD、90 o图1 图2 图33、如图2,边有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4,△DEF是由△ABC绕着某点旋转得到的, 则这点的坐标是( B )图5 图4 A. (1,1) B. (0,1) C. (−1,1) D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______.80(或120(.三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图6 BA CO图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连结BK和DM,试用旋转的思想说明线段BK与DM的关系.,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。
一、解答题(共30小题)1、如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为_________;(3)四边形AOA1B1的面积为_________.1题图 2题图2、△ABC在平面直角坐标系中的位置如下图,其中每个小正方形的边长为1个单位长度.(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)若将△ABC绕点(﹣1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.5、(2010•鸡西)△ABC在如下图的平面直角坐标系中.(1)画出△ABC关于原点对称的△A1B 1 C1(2)画出△A1B1C1关于Y轴对称的△A2B2C2(3)请直接写出△AB2A1的形状.6、(2010•)如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答以下问题:(1)将△ABC 向右平移5个单位长度,画出平移后的△A 1B 1C 1; (2)画出△ABC 关于X 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3; (4)在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,△_________与△_________成轴对称;△_________与△_________成中心对称.7、(2010•贵港)如下图,把△ABC 置于平面直角坐标系中,请你按以下要求分别画图: (1)画出△ABC 向下平移5个单位长度得到的△A 1B 1C 1;(2)画出△ABC 绕着原点O 逆时针旋转90°得到的△A 2B 2C 2; (3)画出△ABC 关于原点O 对称的△A 3B 3C 3.9、(2010•州)△ABC 在平面直角坐标系中的位置如下图. (1)作出△ABC 关于X 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)作出将△ABC 绕点O 顺时针方向旋转180°后的△A 2B 2C 2.10、(2010•)△ABC 在平面直角坐标系中的位置如下图,将△ABC 沿Y 轴翻折得到△A 1B 1C 1,再将△A 1B 1C 1绕点O 旋转180°得到△A 2B 2C 2.请依次画出△A 1B 1C 1和△A 2B 2C 2. 13、(2010•)在小正方形组成的15×15的网络中,四边形ABCD 和四边形A ′B ′C ′D ′的位置如下图.(1)现把四边形ABCD 绕D 点按顺时针方向旋转90°,画出相应的图形A 1B 1C 1D 1, (2)若四边形ABCD 平移后,与四边形A ′B ′C ′D ′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A 2B 2C 2D 2.15、(2009•)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.16、(2009•)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C (﹣1,0).(1)请直接写出点A关于Y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.17、(2009•)如下图,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC关于Y轴对称的四边形OA1B1C1,并写出点B1的坐标是_________;(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度.18、(2009•)如下图的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答以下问题:(1)分别写出点A 、B 两点的坐标;(2)作出△ABC 关于坐标原点成中心对称的△A 1B 1C 1;(3)作出点C 关于是X 轴的对称点P .若点P 向右平移X 个单位长度后落在△A 1B 1C 1的部,请直接写出X 的取值围. 19、(2009•)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC 和一点O ,△ABC 的顶点和点O 均与小正方形的顶点重合.(1)在方格纸中,将△ABC 向下平移5个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)在方格纸中,将△ABC 绕点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2. 20、(2009•)如图,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到△A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2.21、(2008•永春县)在边长为1的方格纸中建立直角坐标系XOY,O、A、B三点均为格点.(1)直接写出线段OB的长;(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度.22、(2008•)如图,△AOB中,顶点A,B,O均在格点上,画出△AOB绕点O旋转180°后的三角形.(不要求写做法,证明,但要注明结果)23、(2008•)如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.(1)请从以下序号中选择正确选项的序号填写;①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.如果图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是_________;(2)①图1,图2关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:_________.(可以结合所画图形表达).24、(2008•眉山)如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转180°,得到△A1B2C2.(1)在方格纸中画出△A1B1C1和△A1B2C2;(2)设B点坐标为(﹣3,﹣2),B2点坐标为(4,2),△ABC与△A1B2C2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.25、(2008•)如下图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)直接写出D1点的坐标;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)26、(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)27、(2008•)在如下图出方格纸中,每个小正方形的边长都为1.(1)画出将铅笔图形ABCDE向上平移9格得到的铅笔图形A1B1C1D1E1;(2)将铅笔图形A1B1C1D1E1,绕点A1,逆时针旋转90°,画出转后的铅笔图形A1B2C2D2E2.28、(2008•)如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)29、(2008•)△ABC在平面直角坐标系中的位置如下图.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;(2)将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.30、(2008•)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按以下要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(﹣5,0)、B(﹣4,0)、C(﹣1,3)、D(﹣5,1);②将四边形ABCD沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出点C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.答案与评分标准一、解答题(共30小题)1、(2010•)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B 的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为(3,2);(3)四边形AOA1B1的面积为8.考点:作图-旋转变换。
旋转练习题集锦(含答案)一、作图题1、如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个和一点O,的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到,请画出;(2)在方格纸中,将△ABC绕点O旋转180°得到,请画出。
二、简答题2、如图,已知的三个顶点的坐标分别为、、.(1)请直接写出点关于轴对称的点的坐标;(2)将绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;(3)请直接写出:以为顶点的平行四边形的第四个顶点的坐标.三、选择题3、如图所示,在平面直角坐标系中,点A、B的坐标分别为(2,0)和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应点A’的坐标为【】(A)(2,2)(B)(2,4)(C)(4,2) (D)(1,2)4、将图按顺时针方向旋转90°后得到的是( )5、在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.如上图中的△ABC称为格点△ABC.现将图中△ABC绕点A顺时针旋转,并将其边长扩大为原来的2倍,则变形后点B的对应点所在的位置是()A.甲 B.乙C.丙 D.丁6、下图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60° B.90° C.120°D.180°7、在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是 ( )8、下面四个图案中,是旋转对称图形的是()A.B.C.D.9、下列运动是属于旋转的是( )A.电梯的上下运动 B.火车的运动C.钟表中分针的运动 D.升国旗时,国旗的徐徐运动10、如图所示,将其中的图甲变成图乙,可经过的变换是( )A.旋转、平移 B.平移、对称 C.旋转、对称 D.不能确定11、如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72° B.108° C.144° D.216°12、如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A逆时针方向旋转到△ACD’的位置,则∠ADD’的度数是( )A.25° B.30° C.35°D.45°13、如图可以看作是一个等腰直角三角形旋转若干次而成的,则每次旋转的度数最小是( )A.90° B.60° C.45°D.30°14、如图,经过平移或旋转不可能将图甲变为图乙的是()15、下列图形中,既是中心对称图形,又是轴对称图形的是()A.菱形B.等边三角形 C.等腰三角形D.平行四边形16、如图所示,可由一个“基本图案”旋转l80°而形成的是()A B CD17、已知,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转湖A3的坐标为()A.(-2,1) B.(1,1) C.(-1,1) D.(5,1)18、下图是一张边被裁直的白纸,把一边折叠后,BC、BD为折痕,、、B在同一直线上,则∠CBD的度数()A.不能确定B.大于C.小于 D.等于四、计算题19、将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片和.将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点.(1)当旋转至如图②位置,点,在同一直线上时,与的数量关系是.(2)当继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接,探索与之间有怎样的位置关系,并证明.20、如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.21、点B.C.E在同一直线上,点A.D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
第2课时旋转作图及变换知识点1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离;(3)对应点与旋转中心所连线段的夹角等于2.简单的旋转作图---旋转作图的步骤(1)确定旋转;(2)找出图形的关键点;(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题1.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5 △ABC绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°二、填空题6.图形的平移、旋转、轴对称中,其相同的性质是_________.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________. 10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.11.如图,在直角坐标系中,已知点)0,3(A、)4,0(B,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD 是能够重合的图形。
旋转的基本作图一、选择题1、将如图绕某点逆时针旋转90°后,得到的图形是()A.B.C.D.2、如下左图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A.B.C.D.3、在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.二、解答题4、已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转90°得到的.(不写作法保留作图痕迹)5、我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心,旋转的角度称为旋转角.如图,△ABC经过旋转得到△DEF.试用直尺和圆规作出旋转中心(保留作图痕迹,不写作法).6、(1)图1,平移方格纸中的图形,使点A平移到点A′处,画出移后的图形.(2)在图2方格纸中画出三角形绕O点逆时针旋转90°后的图形.7、实验操作(1)如图1,在平面直角坐标系xOy中,△ABC的顶点的横、纵坐标都是整数,若将△ABC以点P(1,-1)为旋转中心,按顺时针方向旋转90°得到△DEF,请在坐标系中画出点P及△DEF;(2)如图2,在菱形网格图(最小的菱形的边长为1,且有一个内角为60°)中有一个等边△ABC,它的顶点A,B,C都落在格点上,若将△ABC以点P为旋转中心,按顺时针方向旋转60°得到△A′B′C′,请在菱形网格图中画出△A′B′C′.其中,点A旋转到点A′所经过的路线长为 __________ .8、如图,△ABC中,∠C=90°,将△ABC绕点A旋转得到△AB1C1,点C的对应点C1恰好落在AB边上.(1)作图:作出△AB1C1(保留作图痕迹,不要求写作法);(2)已知AC=5,BC=12,求BB1的长.9、如图,已知边长为a的正方形ABCD.求作该正方形绕点A逆时针旋转30°后的正方形AB1C1D1.(说明:请用无刻度的直尺和圆规作图,并保留作图痕迹)10、如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).11、画△ABC绕O点顺时针方向旋转90°后得到△A′B′C′.12、如图,在10×10的小正方形网格中,△ABC的顶点A、B、C在网格点上,P1、P2、P3、P4是其中一个小正方形的四个格点,将△ABC绕A点逆时针旋转90°,再向下平移2个单位,得到△A′B′C′;将△ABC按一定的规律顺次旋转,第一次将△ABC绕点P1逆时针旋转90°得到△A1B1C1;第二次将△A1B1C1绕点P2逆时针旋转90°得到△A2B2C2;第三次将△A2B2C2绕点P3逆时针旋转90°得到△A3B3C3,依次按旋转中心为P1、P2、P3、P4、P1、P2…旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)△ABC至少旋转第__________次后所得的三角形刚好与△A′B′C′重合.13、如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.14、请按下面要求画图(1)请在图1中画出一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;(2)在图2中,将直角梯形ABMN绕点M按逆时针旋转180°,画出旋转后的图形.15、分析图①、②、④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.旋转的基本作图的答案和解析一、选择题1、答案:C试题分析:抓住几个关键图形逆时针旋转90°后的位置,结合选项进行判断即可.试题解析:绕某点逆时针旋转90°后,得到的图形是.故选C.2、答案:B试题分析:认真观察旋转得到的图案,找到旋转中心,即可判断.试题解析:A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.故选B.3、答案:B试题分析:根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.试题解析:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选B.二、解答题4、答案:试题分析:利用旋转的性质分别得出对应点位置进而得出答案.试题解析:如图所示:四边形A′B′C′D′即为所求.5、答案:试题分析:根据旋转的性质,连接对应点AD、BE,再分别作AD、BE的垂直平分线,相交于点O,则点O即为旋转中心.试题解析:如图所示,点O即为△ABC旋转到△DEF的旋转中心.6、答案:试题分析:(1)利用网格特点和平移的性质画图;(2)利用网格特点和旋转的性质画图.试题解析:(1)如图1:(2)如图2:7、答案:试题分析:(1)先做出P点,然后找出点A、B、C绕点P顺时针旋转90°的位置,然后顺次连接即可;(2)找出点A、B、C绕点P顺时针旋转60°的位置,顺次连接A'B'、B'C'、C'A',然后根据弧长公式求出点A旋转到点A′所经过的路线长.试题解析:(1)(2)所作图形如下:;点A的运动路线==π.故答案为:π.8、答案:试题分析:(1)以点A为圆心,以AC为半径画弧,与AB相交于点C1,再以点A为圆心,以AB为半径画弧,以C1为圆心,以CB为半径画弧,两弧相交于点B1,然后顺次连接即可;(2)利用勾股定理列式求出AB,再求出BC1,再利用勾股定理列式计算即可得解.试题解析:(1)△AB1C1如图所示;(2)由勾股定理得,AB==13,BC1=13-5=8,B1C1=12,所以,BB1==4.9、答案:试题分析:①以点A为圆心,AD长为半径作圆,再以点D为圆心,DA长为半径作弧,与圆的交点为E,连接AE,DE,△ADE就是一个等边三角形.∠EAD=60°;②作∠EAD的角平分线,得到一个30°的角,角平分线与圆的交点为D1;③连接AC,以AC为一边根据②中30度的角作∠CAC1=30°,以点A为圆心,AC长为半径画弧与角的另一边交点为C1;④以AB为一边,作∠BAB1等于已知角30度,与圆的交点为B1.试题解析:所作图形如下:10、答案:试题分析:(1)按图2中的程序旋转一一找到对应点,第一次是绕点A顺时针旋转90°,得到对应点,再绕点B顺时针旋转90°,得到对应点.再绕点C顺时针旋转90°,得到对应点,再绕点D顺时针旋转90°,得到对应点即可.(2)从中可以看出它的路线长是4段弧长,根据弧长公式计算即可.(1)如图;(2)∵,∴点P经过的路径总长为6π.11、答案:试题分析:根据旋转的性质,将A,B,C绕O点顺时针旋转90°,由此即可画出旋转后的图形.试题解析:如图所示:12、答案:试题分析:(1)根据旋转和平移的概念在网格中画出△A′B′C′和△A2B2C2;(2)根据△ABC的旋转规律,把△ABC进行旋转,得到三角形刚好与△A′B′C′重合的旋转次数.试题解析:(1)如图:(2)把点A按照△ABC的旋转规律进行旋转,可以发现旋转第5次后所得的三角形刚好与A′重合,故答案为:5.13、答案:试题分析:将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.因为方格的比例就是b:a,所以只要顺时针旋转90°,在格点上的还让它在格点上,得到的图形就是所求的图形.试题解析:14、答案:试题分析:(1)画出一个直角梯形MNPQ,使它与梯形ANMB构成一个等腰梯形;根据等腰梯形的性质,即可作出图形;(2)将直角梯形ABMN绕点M按逆时针旋转180°,根据旋转的性质,即可作出旋转后的图形.试题解析:(1)如图1:(2)如图2:15、答案:试题分析:由①到②是旋转了90°,由②到④是旋转了180度,即通过两次旋转90度得到,据此即可判断.试题解析:如图。
2022年中考数学复习:旋转综合体专项训练1.如图,在Rt ABC 中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A ,B 的对应点分别是点D ,E .(1)如图①,当点E 恰好在AC 边上时,连接AD ,求①ADE 的度数;(2)如图①,当60α=时,若点F 为AC 边上的动点,当①FBC 为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明2.综合与实践问题:如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,GF ⊥CD ,垂足为F .证明与推断(1)①四边形CEGF 的形状是 ;②AGBE的值为 ; 【探究与证明】(2)在图1的基础上,将正方形CEGF 绕点C 按顺时针方向旋转α角(0°<α<45°),如图2所示,并说明理由;【拓展与运用】(3)如图3,在(2)的条件下,正方形CEGF 在旋转过程中,AG 和GE 的位置关系是 .3.若①ABC ,①ADE 为等腰三角形,AC =BC ,AD =DE ,将①ADE 绕点A 旋转,连接BE ,F 为BE 中点,连接CF ,DF .(1)若①ACB =①ADE =90°,如图1,试探究DF 与CF 的关系并证明; (2)若①ACB =60°,①ADE =120°,如图2,请直接写出CF 与DF 的关系.4.在平面直角坐标系中,点(0,0)O ,点A ,点)(0),30B m m AOB >∠=︒.以点O 为中心,逆时针旋转OAB ,得到OCD ,点,A B 的对应点分别为,C D .记旋转角为α.(1)如图①,当点C 落在OB 上时,求点D 的坐标;(2)如图①,当45α=︒时,求点C 的坐标;(3)在(2)的条件下,求点D 的坐标(直接写出结果即可).5.如图,30HAB ∠=︒,点B 与点C 关于射线AH 对称,连接AC .D 点为射线AH 上任意一点,连接CD .将线段CD 绕点C 顺时针旋转60°,得到线段CE ,连接BE .(1)求证:直线EB 是线段AC 的垂直平分线;(2)点D 是射线AH 上一动点,请你直接写出ADC ∠与ECA ∠之间的数量关系.6.已知如图,等腰△ABC 中,AB=AC ,△BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较△BAD 和△CAE 的大小; (2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.7.一副三角尺(分别含30°,60°,90°和45°,45°,90°)按如图所示摆放,边OB ,OC 在直线l 上,将三角尺ABO 绕点O 以每秒10°的速度顺时针旋转,当边OA 落在直线l 上时停止运动,设三角尺ABO 的运动时间为t 秒.(1)如图,①AOD = °= ′; (2)当t =5时,①BOD = °; (3)当t = 时,边OD 平分①AOC ;(4)若在三角尺ABO 开始旋转的同时,三角尺DCO 也绕点O 以每秒4°的速度逆时针旋转,当三角尺ABO 停止旋转时,三角尺DCO 也停止旋转.在旋转过程中,是否存在某一时刻使①AOC =2①BOD ,若存在,请直接写出的值;若不存在,请说明理由.8.如图,正方形ABCO 的边OA 、OC 在坐标物上,点B 坐标为()3,3.将正方形ABCO 绕点A 顺时针旋转角度()090αα︒<<︒,得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P .连AP 、AG .(1)求证:AOG①ADG;∠的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(2)求PAG(3)当12∠=∠时,求直线PE的解析式(可能用到的数据:在Rt中,30°内角对应的直角边等于斜边的一半).(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.9.如图,等腰Rt①ABC中,AB=AC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得CD=.连接DE,以D点为中心,将线段DE顺时针旋转90°得到线段DF,连接线段EF,过点D作射线DR①BC交射线BA于点R,连接DR,RF.(1)依题意补全图形;(2)求证:①BDE①①RDF;(3)若AB=AC=2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有①BPF为定值,并证明.10.在①ABC中,AB=AC,①BAC=90°,D为平面内的一点.(1)如图1,当点D在边BC上时,BD=2,且①BAD=30°,AD=;(2)如图2,当点D在①ABC的外部,且满足①BDC﹣①ADC=45°,求证:BD AD;(3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把①DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°)直线BD 与CE 的交点为P ,连接P A ,直接出①P AB 面积的最大值 .11.已知:①ABC 为等边三角形,且AB =4,点D 在直线BC 上运动,线段DA 绕着点D 顺时针旋转60°得到线段DE ,连接AE 和BE ,直线AE 交直线BC 于点F . (1)如图,当点D 在点C 左侧时,求证:CD =BE ;(2)若①ABC 的面积等于①ABF 面积的4倍,直接写出线段CD 的长;(3)在(2)的条件下,若点E 关于直线AD 的对称点为点G ,连接DG 交线段AC 于点M ,DE 交线段AB 于点N ,连接MN ,直接写出线段MN 的长.12.已知在①ABC 中,90ACB ∠=︒,AC =BC =(1)如图1,以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系,直接写出点B ,C 的坐标; (2)如图2,过点C 作①MCN =45°交AB 于点M ,N ,且AM =1,求MN 的长度;(3)如图3,过点C 作①MCN =45°,当点M ,N 分布在点B 异侧时,线段AM ,BN 和MN 满足怎样的数量关系?并给予证明.13.如图,在①ABC 中,AC = BC ,①ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ①BD 于E .(1)求证:①CAE =①CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;①用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.14.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________. (4)当旋转角α=__________时,ABD △的面积最大.15.如图,在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,矩形BDEF 的边BF =1,BD =2,矩形BDEF 可以绕点B 在平面内旋转,连接AE 、BE 、CD . (1)证明:①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,求CD 的长;(3)设AE 的中点为M ,连接FM ,直接写出FM 的最大值.16.在平面直角坐标系中,四边形AOBC 是矩形,点A 的坐标为()5,0,点B 的坐标为()0,3,以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图①,当点D 落在线段BE 上时,连接AB ,AD 与BC 交于点H . ①求证:ADB AOB ≅△△; ①求点H 的坐标.(3)点K 为矩形AOBC 对角线的交点,S 为KDE 得面积,直接写出S 的取值范围.17.如图,P 是正三角形ABC 内的一点,且6,8,10PA PB PC ===,若将PAC △绕点A 顺时针旋转后得到P AB '△,(1)求旋转角的度数;(2)求点P 与点P '之间的距离; (3)求APB ∠的度数.18.如图在平面直角坐标系中,点O 为坐标原点,直线y 34=-x +b 分别交x 轴,y 轴于点A 、B ,OA =4,①OBA 的外角平分线交x 轴于点D .(1)求点D 的坐标;(2)点P 是线段BD 上一点(不与B 、D 重合),过点P 作PC ①BD 交x 轴于点C ,设点P 的横坐标为t ,△BCD 的面积为S ,求S 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,PC 的延长线交y 轴于点E ,当PC =PB 时,将射线EP 绕点E 旋转45°交直线AB 于点F ,求F 点坐标.19.如图,在菱形ABCD 中,60ABC ∠=︒,E 为对角线AC 上一点,将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F ,连接BE ,AF ,CF .(1)求证:B ,C ,F 三点共线;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.20.如图,在四边形ABCD中,BC=CD,△BCD=α°,△ABC+△ADC=180°,AC、BD交于点E.将△CBA 绕点C顺时针旋转α°得到△CDF(点B、A的对应点分别为点D、F).(1)画出旋转之后的图形(不要求写画法,保留画图痕迹);(2)求证:△CAB=△CAD;(3)若△ABD=90°,AB=3,BD=4,△BCE的面积为1S,△CDE的面积为2S,求1S:2S的值.参考答案:1.解:①将ABC绕点C顺时针旋转一定的角度α得到①DEC,E点在AC上,①CA=CD,①ECD=①BCA=30︒,(180︒−30︒)=75︒,①①CAD=①CDA=12又①①DEC=①ABC=90︒,①①ADE=90°-75︒=15︒;(2)①FBC=30︒时,四边形BFDE为平行四边形,①①FBC=①ACB=30︒,①①ABF=①A=60︒,①BF=CF=AF,①ABF是等边三角形,①BF=AB,①将ABC绕点C顺时针旋转60︒得到DEC,①DE=AB,BCE是等边三角形,①DEC=①ABC=90︒,①①CBE=①BEC=60︒,①①EBF=①EBC-①FBC=30︒,①①DEB+①EBF=180︒,①DE=BF,//DE BF,①四边形BFDE为平行四边形.2.①正方形;.理由:如图1中,∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形,∵AC BC ,,∴AG =AC ﹣CGBC ﹣EC ,∴AG BE(2)结论:AG ,理由:如图2中,连接CC ,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴△ABC 为等腰直角三角形,∴AC BC由①得四边形GECF 是正方形,∴∠GEC =∠ECF =90°,GE =EC ,∴△EGC 为等腰直角三角形.∴CG CE∴AC CG BC EC=∴△ACG ∽△BCE ,∴AG CG BE EC∴线段AG 与BE 之间的数量关系为AG ;(3)如图3中,连接CG ,∵∠CEF =45°,点B 、E ,∴∠BEC =135°.∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°.∴∠AGF =∠AGC +∠CGF =135°+45°=180°,∴点A ,G ,F 三点共线,∴∠AGE =∠AGF ﹣∠EGF =180°﹣90°=90°,∴AG ⊥GE ,故答案为:AG ⊥GE .3.(1)DF =CF 且DF ①CF ;延长CF 至点M ,使CF =FM ,连接ME ,MD ,CD ,延长DE 交CB 延长线于点N ,如图1,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM=BC=AC,①FME=①FCB,①BC①EM,①①N=①MEN,在四边形ACND中,①ACB=①ADE=90°,①①N+①CAD=360°-(①ACB+①ADE)=180°,又①①MEN+①MED=180°,①①MED=①CAD,又AD=DE,EM=AC,①①MED①①CAD(SAS),①DM=DC,①MDE=①CDA,①①MDC=①NDC+①MDE=①NDC+①CDA=①ADE=90°,①①DCM为等腰直角三角形,①点F是CM中点,CM=CF,DF①CF;①DF=12(2)DF①CF且CF;延长CF至点M,使CF=FM,连接ME,MD,CD,延长ED交BC延长线于点N,如图2,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM =BC =AC ,①FME =①FCB ,①BC //EM ,①①N =①NER ,①①ACB =60°,①①ACN =120°,①①ADE =120°,①①ADN =60°,①①N +①CAD =360°-(①ACN +①ADN )=180°,①①DER +①DEM =180°,①①DEM =①CAD ,又 AD =DE ,EM =AC ,①①MED ①①CAD (SAS ),①DM =DC ,①MDE =①CDA ,①①DCM 为等腰三角形,①①CDM =①ADE =120°,①F 是CM 的中点,①DF ①CF①60CDF ∠=︒①30DCF ∠=︒①CD =2DE由勾股定理得,222CE DE CD +=①2224CE DE DE +=解得,CF (负值舍去)①DF ①CF 且CF .4.(1)如图,过点D 作DE OA ⊥,垂足为E .① 0A ,B m )0m (>),① AB OA ⊥,OA =AB m =.① 30AOB ∠=︒,① 22OB AB m ==.在Rt OAB 中,由222OA AB OB +=,得2234m m +=.解得1m =.① 1AB =,2OB =.① OCD 是由OAB 旋转得到的,① 2OD OB ==,30DOC AOB ∠=∠=︒.① 60DOE DOC BOA ∠=∠+∠=︒.① 9030ODE DOE ∠=︒-∠=︒.① 112OE OD ==. 在Rt OED 中,DE =① 点D 的坐标为(.(2)如图,过点C 作CT OA ⊥,垂足为T .由已知,得45COT ∠=︒.① 9045OCT COT ∠=︒-∠=︒.① OT CT=.① OCD是由OAB旋转得到的,① OC OA==在Rt OTC△中,由222T TO C OC+=,得OT CT=① 点C的坐标为.(3)如图①中,过点D作DJ①OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.①①DOC=30°,①COT=45°,①①DOJ=75°,①①ODJ=90°-75°=15°,①KD=KO,①①KDO=①KOD=15°,①①OKJ=①KDO+①KOD=30°,①OK=DK=2m,KJ,①OD2=OJ2+DJ2,①22=m2+(2m)2,解得m=,①OJ DJ①D⎫⎪⎪⎝⎭.5.(1)证明:连接AE,DB,CB①点B 与点C 关于射线AH 对称,30HAB ∠=︒ ①CD BD =,AC AB =①30HAB HAC ∠∠==︒①260CAB HAC ∠∠==︒①ABC 为等边三角形,60ACB ∠=︒ ①60DCE ∠=︒①DCE ACD ACB ACD ∠∠∠∠-=- ECA DCB ∠=∠①在ECA △和DCB 中,EC DC ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩①()ECA DCB SAS ≅△△①BD EA =①DC BD EC ==,①AE EC =又AB BC =①EB 垂直平分AC(2)分两种情况来讨论:第一种情况,如图,当点D 在ABE △内部时:①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠+∠=︒+∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒+∠第二种情况,如图,当点D 在ABC 外部时: ①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠-∠=︒-∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒-∠6.如图,即为补全的图形,根据题意可知BAC DAE α∠=∠=,①BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,①在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,①()BAD CAE SAS ≅,①BD CE =.①BD BC CD =+,①CE BC CD =+.①点F 为BC 中点,①2BC BF =,①2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,①AB=AC ,F 为BC 中点,①90AFD ∠=︒,12FAB FAC α∠=∠=. 根据作图可知90AND ∠=︒,①180AFD AND ∠+∠=︒,①A 、F 、D 、N 四点共圆,①AFN ADN ∠=∠.①AD AE =,AN DE ⊥,①EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ①11909022AFN FAC αα∠+∠=︒-+=︒. ①90AFH FAC ∠+∠=︒,且点H 在线段DE 上,①点H 与点N 重合,①EH DH =.7.(1)①180AOD AOB COD ∠=︒-∠-∠,3045AOB COD ∠=︒∠=︒,,①10510560=6300AOD '∠=︒=⨯.故答案为:105,6300;(2)当5t =时,即三角尺ABO 绕点O 顺时针旋转了51050⨯︒=︒,如图,ABO 即为旋转后的图形.由旋转可知50BOM ∠=︒,①180180455085BOD COD BOM ∠=︒-∠-∠=︒-︒-︒=︒,故答案为85;(3)当三角尺绕点O 顺时针旋转到如图所示的ABO 的位置时,边OD 平分①AOC .①224590AOC COD ∠=∠=⨯︒=︒,①90AOM ∠=︒①90903060BOM AOB ∠=︒-∠=︒-︒=︒, ①60610t ==; 故答案为:6;(4)①当边OA 落在直线l 上时停止运动时, ①180150=1510t -≤. 当OA 和OC 重合时,即有10418030t t +=︒-︒, 解得:757t =. ①当757t ≤时,1801030415014AOC t t t ∠=︒--︒-=︒-, 当757t >时,1030418014150AOC t t t ∠=+︒+-︒=-︒. 当OB 和OD 重合时,即有10418045t t +=︒-︒, 解得:13514t =①当13514t ≤时,1801045413514BOD t t t ∠=︒--︒-=︒-, 当13514t >时,1045418014225BOD t t t ∠=+︒+-︒=-︒. ①可根据2AOC BOD ∠=∠分类讨论,①当13514t ≤时,有15014=2(13514)t t ︒-︒-, 解得:607t =,符合题意; ①当13575147t <≤时,即有150142(14225)t t ︒-=-︒ 解得:1007t =,符合题意; ①当757t >时,即有141502(14225)t t -︒=-︒解得:150157t =>,不符合题意舍; 综上,可知当607t =或1007t =时,2AOC BOD ∠=∠. 8.(1)证明:在Rt△AOG 和Rt△ADG 中,AO AD AG AG=⎧⎨=⎩ ①AOG ①ADG (HL ).(2)在Rt ①ADP 和Rt ①ABP 中,AD AB AP AP=⎧⎨=⎩ ΔΔADP ABP ∴≅(HL ), 则DAP BAP ∠=∠;ΔΔAOG ADG ≅,1DAG ∴∠=∠;又190DAG DAP BAP ∠+∠+∠+∠=︒,2290DAG DAP ∴∠+∠=︒,45DAG DAP ∴∠+∠=︒,PAG DAG DAP ∠=∠+∠,45∴∠=︒PAG ;ΔΔAOG ADG ≅,DG OG ∴=,ΔΔADP ABP ≅,DP BP ∴=,PG DG DP OG BP ∴=+=+.(3)解:ΔΔAOG ADG ≅,AGO AGD ∴∠=∠,又190AGO ∠+∠=︒,290PGC ∠+∠=︒,12∠=∠,AGO PGC ∴∠=∠,又AGO AGD ∠=∠,AGO AGD PGC ∴∠=∠=∠,又180AGO AGD PGC ∠+∠+∠=︒,180360AGO AGD PGC ∴∠=∠=∠=︒÷=︒,12906030∴∠=∠=︒-︒=︒;∴在Rt ΔAOG 中,2,3AG OG OA ==,222AG OG OA =+∴222(2)3OG OG =+ 解得OGG ∴点坐标为0),3CG =在Rt ΔPCG 中,2PG CG =,222PG CG PC =+∴222(2)CG CG PC =+, ∴3PC =,P ∴点坐标为:(3,3),设直线PE 的解析式为:y kx b =+,则033b k b +=+=⎪⎩,解得3k b ⎧=⎪⎨=-⎪⎩∴直线PE 的解析式为3y =-.(4)①如图1,当点M 在x 轴的负半轴上时,AG MG =,点A 坐标为(0,3),∴点M 坐标为(0,3)-.①如图2,当点M 在EP 的延长线上时,由(3),可得60AGO PGC ∠=∠=︒,EP ∴与AB 的交点M ,满足AG MG =,A 点的横坐标是0,GM ∴的横坐标是3,∴点M 坐标为3).综上,可得点M 坐标为(0,3)-或3).9.(1)如图,(2)DR ①BC90RDB ∴∠=︒将线段DE 顺时针旋转90°得到线段DF ,90,EDF ED FD ∴∠=︒=BDR EDF ∴∠=∠即BDE EDR EDR RDF ∠+∠=∠+∠BDE RDF ∴∠=∠ ABC 是等腰直角三角形90BDR ∠=︒45BRD ∴∠=︒BRD ∴是等腰直角三角形BD DR ∴=∴①BDE ①①RDF ;(2)如图,当24PB AB ==时,使得对于任意的点D ,总有①BPF 为定值,证明如下,ABC 是等腰直角三角形,2AB AC ==BC ∴=DC =设DE a =,则CD =,①BDE ①①RDF ,DR BD ∴==,FR BR a == ABC 是等腰直角三角形,45EBD ∴∠=︒DR BC ⊥45BRD ∴∠=︒BDR ∴是等腰直角三角形,42BR a ∴==-()4422PR BP BR a a ∴=-=--=①BDE ①①RDF ,45FRD EBD ∴∠=∠=︒90BRF BRD DRF ∴∠=∠+∠=︒1tan 22RF a BPF RP a ∴∠=== BPF ∴∠为定值10.证明:(1)如图1,将①ABD 沿AB 折叠,得到①ABE ,连接DE ,①AB =AC ,①BAC =90°,①①ABC =45°,①将①ABD 沿AB 折叠,得到①ABE ,①①ABD ①①ABE ,①AE =AD ,BE =BD ,①ABE =①ABD =45°,①BAD =①BAE =30°,①①DBE =90°,①DAE =60°,且AD =AE ,BE =BD ,①①ADE 是等边三角形,DE =,①AD =DE =故答案为:(2)如图2,过点A 作AE ①AD ,且AE =AD ,连接DE ,①AE ①AD ,①①DAE =①BAC =90°,①①BAE =①DAC ,且AD =AE ,AB =AC ,①①BAE ①①CAD (SAS )①①ACD=①ABE,①①ACD+①DCB+①ABC=90°,①①DCB+①ABC+①ABE=90°,①①BOC=90°,①AE=AD,AE①AD,①DE=,①ADE=45°,①①BDC﹣①ADC=45°,①①BDC=①ADC+45°=①EDC,且DO=DO,①DOB=①DOE=90°,①①DOB①①DOE(ASA)①BD=DE,①BD=;(3)如图3,连接PC交AB于G点①①DAE绕A点旋转①AD=AE,AB=AC,①①DAE=①BAC=90°①①DAB=①EAC①①DAB①①EAC①①DBA=①ECA①①PGB=①AGC①①BPC=①GAC=90°①①BPC为直角三角形①点P在以BC中点M为圆心,BM为半径的圆上,连接PM交AB所在直线于点N,当PM①AB时,点P到直线AB的距离最大,①①BAC=90°①A 、P 、B 、C 四点共圆①PM ①AB ,①N 是AB 的中点①M 是BC 的中点①MN =122AC = ①AB =AC =4,①CB =22442,①BM =PM =12BC =,①PN =2 ,①点P 到AB 所在直线的距离的最大值为:PN =2 . ①①P AB的面积最大值为12AB ×PN =4. 11.(1)证明:ABC 是等边三角形60,BAC AB AC ∴∠=︒=线段DA 绕着点D 顺时针旋转60°得到线段DE , 60,DAE DA DE ∴∠=︒=ADE ∴是等边三角形DAC DAE CAE BAC CAE EAB ∴∠=∠-∠=∠-∠=∠ 即DAC EAB ∠=∠∴ADC AEB △≌△∴CD BE =(2)ABC 是等边三角形,AB =4,则60BAC ∠=︒过点A 作AM BC ⊥,则1302BAH BAC ∠=∠=︒ Rt ABH 中,122BH AB ==AH ∴=142ABC S ∴=⨯⨯△①ABC 的面积等于①ABF 面积的4倍ABF S ∴=△11sin 60422ABF S BF AB =⋅⨯︒=⨯=△ 1BF ∴= ①当F 点在B 点的左侧时,如图,60ACB ABC ∠=∠=︒120ACD ∴∠=︒ADC AEB △≌△ADC AEB ∴∠=∠,BE DC =60ABC ∠=︒60EBF ABE ABC ∴∠=∠-∠=︒60FBE FCA ∴∠=∠=︒又AFC EFB ∠=∠AFC EFB ∴∽FB BE FC AC∴= 4,1AC BC AB BF ====413FC ∴=-=14433FB AC BE FC ⋅⨯∴=== 43CD EB ∴==①当F 点在B 点的右侧时,如图,ADC AEB △≌△60ACD EBA ∴∠=∠=︒60ABC ∠=︒18060EBF ABC ABE ∴∠=︒-∠-∠=︒BE AC ∴∥FEB FAC ∴∽FB BE FC AC∴= 1,4,145FB AC FC BC BF ===+=+=45FB AC BE FC ⨯∴== 45CD EB ∴==综上所述CD 的长为43或45(3)如图,点E 关于直线AD 的对称点为点G ,ADE 是等边三角形60ADE ADG ∴∠=∠=︒,AE AD =AEN ADM ∴∠=∠60=︒60,60MAD DAB CAB EAB DAB DAE ∠+∠=∠=︒∠+∠=∠=︒MAD NAE ∴∠=∠MAD NAE ∴=AM AN ∴=60MAN ∠=︒AMN ∴是等边三角形MN AN ∴=由(2)可得45BE =,FEB FAC ∽ 445525EF BF BF AF FC BC BF ∴====+过点A 作AH BC ⊥,则AH =,2CH HB ==,3HF HB BF =+=AF ∴=425EF AF ∴==AE AF EF ∴=-==60,ABE AEN EAB NAE ∠=∠=︒∠=∠∴BEA ENA ∽BE BA EN EA∴= 则BE EA EN BA ⨯=60,ADN ABE AND ENB ∠=∠=︒∠=∠ADN EBN ∴∽AD AN EB EN∴= 即AN EB EN AD ⨯= BE EA AN EB BA AD ⨯⨯∴= EA AD AN AB⨯∴=AE AD =,4AB =2926142500AN ⎝⎭∴== 即92612500MN =12. 解:(1)如图1,过点C 作CD ①x 轴于D ,①在①ABC 中,90ACB ∠=︒,AC =BC=①4AB = ,①点B (4,0),①CD ①AB ,①AD =CD =12AB =12×4=2,①点C 的坐标为(2,2);(2)如图,把①ACM 绕点C 逆时针旋转90°得到①BCM ′,连接M ′N ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,45AM BM CM CM CAM CBM ACM BCM '''==∠=∠=︒∠=∠'、、,,①454590M BN ABC CBN ∠'=∠+∠'=︒+︒=︒ ,①①MCN =45°,①90904545M CN BCN BCM BCN ACM MCN ∠'=∠+∠'=∠+∠=︒-∠=︒-︒=︒ , ①MCN M CN ∠=∠' ,在①MCN 和①M ′CN 中,①CM CM MCN M CN CN CN ''=⎧⎪∠=∠⎨⎪=⎩,①MCN M CN SAS '≌(), ①MN M N =' ,在Rt M NB ' 中,222BM BN M N +='' ,①222AM BN MN += ,1AM =,①3MN BN AB AM +=-=,1BM '= ,设MN x =,则BN =3x -,()22213-x x ∴+=,解得:53x =, 53MN ∴=; (3)AM 2+BN 2=MN 2,证明如下:如图3,把①BCN 绕点C 顺时针旋转90°得到ACN ' ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,135AN BN CN CN CAN CBN '='=∠'=∠=︒,, , ①1354590MAN ∠'=︒-︒=︒,①点N '在y 轴上,①①MCN =45°,①904545MCN ∠'=︒-︒=︒,①MCN MCN ∠=∠' ,在①MCN 和①MCN ′中,①CN CN MCN MCN CM CM =''⎧⎪∠=∠⎨⎪=⎩,①()MCN MCN SAS ≅' ,①MN MN =' ,在Rt AMN ' 中,222AM AN MN +''= ,①222AM BN MN += .13.(1)如图1,①90ACB ∠=︒,AE BD ⊥,①90ACB AEB ∠=∠=︒,又①12∠=∠,①CAE CBD ∠=∠;(2)①补全图形如图2;①EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又①AC CB =,CAE CBD ∠=∠,①ΔΔACM BCE ≌,①CM CE =,ACM BCE ∠=∠,又①90ACB ACM MCB ∠=∠+∠=︒,①90MCE BCE MCB ∠=∠+∠=︒,①ME =,又①射线AE 绕点A 顺时针旋转45︒,后得到AF ,且90AEF ∠=︒,①EF AE AM ME BE ==+=.14.解:(1)如图:BD 与EC 的数量关系是相等,理由如下:,AB AC AD AE ==,AB AD AC AE ∴-=-,BD EC ∴=;BD 与EC 的位置关系是垂直,理由如下:AB AC ⊥, 又点,D E 分别在,AB AC 上,BD EC ⊥;(2)成立:理由分别如下:如图:根据旋转的性质可得:,,AD AE AB AC BAD CAE ==∠=∠, ()ABD ACE SAS ∴≌,BD EC ∴=,作BD 的延长线交EC 于点F ,交AC 于点G ,如下图:由ABD ACE SAS △≌△()可知,ABD ACE ∠=∠,AGB FGC ∠=∠,AGB FGC ∴∽,90GAB GFC ∴∠=∠=︒,GF CF ∴⊥,即BD EC ⊥;(3)当点D 在线段BE 上时,90BAD BAC DAC DAC ∠=∠-∠=︒-∠,90CAE DAE DAC DAC ∠=∠-∠=︒-∠,BAD CAE ∴∠=∠,又AB AC =,AD AE =,()BAD CAE SAS ∴∆≅∆,180135ADB AEC ADE ∴∠=∠=︒-∠=︒,451354590BEC AEC ∴∠=∠-︒=︒-︒=︒;(4)由题意知,点D 的轨迹在以A 为圆心,AD 为半径的圆, 在ABD ∆中,当AB 为底时,点D 到AB 的距离最大时,ABD ∆的面积最大, 故如图所示,当AD AB ⊥时,ABD ∆的面积最大,∴旋转角为90︒或270︒,故答案为:90︒或270︒.15.解:(1)在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,AB ∴=在Rt ①BDE 中,BF =1,BD =2,BE ∴=121tan ,tan 242ED AC EBD ABC BD BC ∴∠==∠=== EBD ABC ∴∠=∠EBD ABD ABC ABD ∴∠-∠=∠-∠ABE CBD ∴∠=∠24AB BE BC BD ===∴①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,分两种情况讨论: ①90AED ∠=︒,如图,在Rt ①AFB 中,222AB BF AF =+21(2)20AE ∴++=2(2)19AE ∴+=2AE ∴=①ABE ①①CBDAE CD ∴=CD ∴= ①如图,90AFB ∠=︒在Rt ①AFB 中,22220119AF AB BF =-=-=AF ∴=2AE AF EF ∴=+=EBD ABC ∠=∠90EBF ABC ∴∠+∠=︒EBF ABC FBC DBF FBC ∴∠+∠+∠=∠++∠24AB BE BC BD ===∴①ABE ①①CBDAE CD ∴=CD ∴=综上所述,CD =CD =(3)如图,延长EF 至点G ,使得EF =FG ,连接BG ,此时①BEG 是等腰三角形, 当G B A 、、三点共线,此时FM 最大//BD GEG DBA ∴∠=∠9090180DBA FBD GBF G FBD GBF ∴∠+∠+∠=∠+∠+∠=︒+︒=︒, 此时,G B A 、、三点共线,F M 、分别是BE 、AE 的中点,FM ∴是①EGA 的中位线,111==()222FM AG AB BG ∴+==16.解:(1)如图①中,(5,0)A ,(0,3)B ,5OA ∴=,3OB =,四边形AOBC 是矩形,3AC OB ∴==,5OA BC ==,90OBC C ∠=∠=︒,矩形ADEF 是由矩形AOBC 旋转得到,5AD AO ∴==,在Rt ADC 中,4CD ,1BD BC CD ∴=-=,(1,3)D ∴.(2)①如图①中,由四边形ADEF 是矩形,得到90ADE ∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由(①)可知,AD AO =,又AB AB =,90AOB ∠=︒,()Rt ADB Rt AOB HL ∴≌.①如图①中,由ADB AOB ∆≅∆,得到BAD BAO ∠=∠,又在矩形AOBC 中,//OA BC ,CBA OAB ∴∠=∠,BAD CBA ∴∠=∠,BH AH ∴=,设AH BH m ==,则5HC BC BH m =-=-,在Rt AHC 中,222AH HC AC =+,2223(5)m m ∴=+-,175m ∴=, 175BH ∴=, 17(5H ∴,3). (3)如图①中,当点D 在线段BK 上时,DEK ∆的面积最小,最小值113(522DE DK ==⨯⨯=当点D 在BA 的延长线上时,①D E K ''的面积最大,最大面积113(522D E KD =⨯''⨯'=⨯⨯=. 17.解:(1)∵P AB ∆'由PAC ∆绕点A 旋转得到,∴P AB PAC ∆≅∆',∴P AB PAC ∠=∠',P A PA '=,∵60BAC PAC PAB ∠=∠+∠=︒,∴60P AB PAB ∠+∠='︒,即:60P AP ∠='︒,∴旋转角度数为60︒;(2)如图所示,连接P P ',∵60P AP ∠='︒,P A PA '=,∴P AP ∆'为等边三角形,∴6P P PA '==,即点P 与点P '之间的距离为6;(3)在P PB ∆'中,由(1)得:10P B PC ='=,6P P '=,8PB =,∴222P B P P PB ''=+,∴P PB ∆'为直角三角形,∴90P PB ∠='︒,由(1)得60APP ∠='︒,∴150APB P PB APP ∠=∠+='∠'︒,∴APB ∠的度数为150︒.18.( 1 )①OA =4,①A (4,0),把A (4,0)代入34y x b =-+, 得:b =3,过点D 作DH ①AB 于点H ,则DH =DO ,BH =BO ,①当x =0时,y =3,①B (0,3),①OA =4,BO =BH =3,在Rt OAB 中,①5AB ,AD =DO +OA =DH +4, ①1122ABD S AD OB AB DH =⋅⋅=⋅⋅, ①()1143522DH DH ⨯+⨯=⨯⋅, 解得:DH =6,①OD =6,①点D 的坐标为(﹣6,0),(2)过点P 作PE ①OD 于点E ,则△DPE ①①DBO ,①点P 在直线BD 上,且点P 的横坐标为t ,①DE =t +6,①OD =6,OB =3,在Rt OBD △中,BD ==①①DPE ①①DBO , ①DP DE DB DO =,66t +,解得:)6DP t =+, ①PC ①BD , ①①PDC ①①ODB , ①PC DP OB OD=,①)6236t PC +=,①)6PC t =+,①)()1115154566=22884BCD S BD PC t t t =⋅⋅=⨯+=++; (3)作PH 垂直于x 轴于点H ,设射线EP 绕点E 逆时针旋转45°交x 轴于点K ,顺时针旋转45°交x 轴于点G .①①BPC =90°,①BOC =90°①B ,P ,C ,O 四点共圆,①PC PB =,①45PCB PBC ∠=∠=︒,①①POC =①PBC =45°,①90PHO ∠=︒,①45HPO POC ∠=∠=︒,①PH =HO ,①DH =6﹣HO =6﹣PH ,①DHP DOB ∽, ①663PH DO PH BO -==, 得PH =2,①HC =CO =1,①OE =2,①点(0,2)E -,①①KEP =①DBC ,①PEB =①BDC ,①①KEP +①PEB =①DBC +①BDC ,即①KEO =①BCO ,①OE :GK =CO :BO =1:3,①GK =6,①K (﹣6,0),设直线KE 的解析式为:y kx b =+,则62y k b b =-+⎧⎨-=⎩,解得:132k b ⎧=-⎪⎨⎪=-⎩,, ①直线KE 为:y 13=-x ﹣2, 联立方程组:123334y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩解得x =12,y =﹣6,①F 1(12,﹣6),①①KEP +①PEG =90°,①①DEG =90°,①①OEG =①ODE ,①OG :OE =OE :OD =1:3,①OG 23=; ①G (23,0), 设直线EG 的解析式为:y mx n =+, 则20=32m n n⎧+⎪⎨⎪-=⎩,解得:32m n =⎧⎨=-⎩, ①直线EG 的解析式为:y =3x ﹣2, 联立方程组:32334y x y x =-⎧⎪⎨=-+⎪⎩, 解得x 43=,y =2, ①F 2(43,2), 综上所述:F 的坐标为(12,﹣6)或(43,2). 19.证明:(1)①四边形ABCD 是菱形,①ABC =60°, ①AB =BC =AD =CD ,①ADC =①ABC =60°,①①ADC 是等边三角形,①AD =AC =AB =BC ,①①ACB 是等边三角形,①①ACB =①ACD =60°,①①ADC =①EDF =60°,①①ADE =①CDF ,①将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F , ①DE DF =,在①ADE 和①CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩①①ADE ①①CDF (AAS ),①60DCF DAE ∠=∠=︒,①180DCF BCD ∠+∠=︒,①B ,C ,F 三点共线;(2)如图,过点B 作BH ①AC ,交AG 的延长线于点H ,①BH ①AC ,①①H =①GAE ,①ABH +①BAC =180°,①①ABH =120°=①ACF ,①点G 为BE 的中点,①BG =GE ,在①AGE 和①HGB 中,H GAE AGE BGH BG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AGE ①①HGB (AAS ),由(1)得AE CF =,①AE =BH =CF ,AG =GH =12AH ,在①ABH 和①ACF 中,AB AC ABH ACF BH CF =⎧⎪∠=∠⎨⎪=⎩,①①ABH ①①ACF (SAS ),①AF =AH ,①AF =2AG .20.(1)如图①CDF 即为旋转之后的图形;(2)证明:由旋转旋转可知:①CAB ①①CFD ,①①CDF =①CBA ,①F =①CAB ,CA =CF ,①①CBA +①CDA =180°,①①CDF +①CDA =180°,①A 、D 、F 三点共线,①AC =CF ,①①F =①CAD ,①①CAB =①CAD ;(3)过点E 作EM ①AF 于点M ,过点C 作CN ①BD 于点N , ①①ABE =①AME =90°,在①ABE 和①AME 中,EAB EAM ABE AME AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ①①AME (AAS ),①AM =AB =3,BE =ME ,①①ABD =90°,AB =3,BD =4,①5AD ==,①DM =2,设BE EM x ==,则4DN x =-,①()222x 24x +=-,解得 1.5x =,①BE =1.5,DE =2.5, ①12113::225S S BE CN DE CN =⋅⋅=.。
五年级数学下册《旋转后的图形》练习题及答案解析学校:___________姓名:___________班级:______________一、作图题1.画一画。
(1)上图①是轴对称图形的一半。
请以虚线为对称轴,画出它的另一半。
(2)在方格中以线段AB为底边画一个直角三角形。
(3)将画好的三角形向上平移4格。
2.在下面的方格纸上分别画一个三角形,和一个梯形,要求他们的面积都是平行四边形A的面积的一半。
(作图用铅笔)3.画一画。
(1)画出图(1)的对称图形。
(2)将图(2)向右平移4格。
4.下面是边长为1厘米的格子图,请在图上合适位置画一个高3厘米的等腰直角三角形再将它向右平移5格并用实线画出来。
5.画出下面每个图形的另一半,使它成为一个轴对称图形。
6.观察图形,给风车的风叶涂上相应的颜色。
7.把平移后能和图1重合的图形涂上颜色。
8.按要求画一画。
①图形A向下平移4格得到图形B。
①图形A绕点O顺时针旋转90°得到图形C。
①图形A按2①1放大后得到图形D。
9.以直线a为对称轴,画出给定图形的轴对称图形。
10.按要求画图。
把图①绕点O逆时针旋转90°得到图形①。
把图①绕点O顺时针旋转90°得到图形①。
把图①绕点O逆时针旋转90°得到图形①。
11.(1)将下图中三角形先向右平移5格,再向下平移6格。
(2)将下图中梯形沿A点逆时针旋转90度。
二、解答题12.如图,一个三角形与一个平行四边形等底等高,已知平行四边形的面积比三角形的面积大5平方米,这两个图形的面积和是多少平方米?13.先填空,再画平移后的图形。
参考答案与解析:1.见详解【分析】(1)补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
(2)利用三角板,画一条与AB垂直的线段,且A为端点,①A=90°;最后将两条相互垂直的线段的端点,用第三条线段连接起来,就画好了直角三角形。
图1
A
O
图2
C 1
A 1
A
【前言】
从2013年旋转作图分值为7分,重要性加强了。
这个题的特点是:人人都能动手做,得满分的确不多。
变化是:加入了尺规作图的相关知识,这是课本上所没有的,要加强训练。
主要考什么:图形的平移、对称、旋转(三大变换)作图,加入点的轨迹,引入计算,常见考察弧长与扇形面积的问题,考察图形的变化规律问题。
确保本题满分条件:耐心(慢慢画)+细心(仔细看) 【2013元调】
△AB C为等边三角形,点O是边A B的延长线上一点(如图1),以点O 为中心,将△ABC 按顺时针方向旋转一定角度得到
111A B C
(1)若旋转后的图形如图2所示,将
111A B C 以点
O 为中心,按顺时针方向再次旋转同样的角度得到
222A B C ,在图2中用尺规作出222A B C ,请保留作图痕迹,不要求写作法:
(2)若将△A BC按顺时针方向旋转到
111A B C 的旋转角度为α
(0°<α<360°)
且AC ∥11B C ,直接写出旋转角度α的值为_____________ 分析:
(1)关键在于尺规作图得到同样的旋转角度 ①以O 为圆心,OA 为半径作圆;
②以1A 为圆心,1AA 为半径作圆,交圆O 于点2A ,连接2OA ,从而得到了相同的旋转角,
原因是△1AOA ≌△12A OA (SSS);
③以O 为圆心,OB 为半径作圆,与2OA 的交点就是2B ;
④分别以2B 、2A 为圆心,22A B 的长为半径作弧,二弧的交点就是2C (2)很容易得到答案60度,很容易漏掉240度 得到
111A B C 后,构造中心对称,得到222A B C 肯定也是符合条件的。
【2013四调】
如图,在9×7的小正方形网格中,△AB C的顶点A 、B 、C 在网格的格点上,将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′,将△ABC 按一定规律顺次旋转,第1次,将△A BC 绕点B 顺时针旋转90°得到△11A BC ,第2次,再将△11A BC 绕点1A 顺时针旋转90°得到△112A B C ,第3次,将△112A B C 绕点2C 顺时针旋转90°得到△222A B C ,第4次,将△222A B C 绕点2B 顺时针旋转90°得到△323A B C ,依次旋转下去。
(1)在网格画出△A′B′C′和△222A B C ;
(2)请直接写出至少在第几次旋转后所得的三角形刚好是△A′B′C′; 8次
B 2
2
C 2
B 1
C 1
B
C
A
O A
B
C
分析:
题目很长,一个不小心就画错
首先要能正确的画出△222A B C 最后如何重合,要继续耐心继续画完。
【2013五调】
如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点式网格线的交点)和点1A
(1)将△ABC 绕点A 顺时针旋转90°,画出相应的△11AB C ; (2)将△11AB C 沿射线1AA 平移到△122A B C 处,画出△122A B C ; (3)点C在两次变换过程中所经过的路径长为__________
+
【2013中考】
如图,在平面直角坐标系中,R t△ABC 的三个顶点分别是A(-3,2),B(0,4),C (0,2)。
(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△11A B C ;平移△ABC,若A 的对应点2
A 的坐标为(0,-4),画出平移后对应的△222A
B
C ;
(2)若将△11A B C 绕某一点旋转可以得到△222A B C ,请直接写出旋转中心的坐标; (3)在x 轴上有一点P,使得P A+PB 的值最小,请直接写出点P 的坐标;
分析:
第(1)问较简单
第(2)问“将△11A B C 绕某一点旋转可以得到△222A B C ”,要求的是“旋转中心的坐标” 并没有指出是旋转180度(中心对称),所以不能认为直接连接12A A 、12B B 交点即为旋转中心 实际上这个题目恰好是中心对称,因此很多同学的错误被掩藏起来了。
正确的做法是:
根据求中点的公式,求出12A A 、12B B 的中点坐标,发现恰好为同一个点,于是可以判
别为中心对称。
对于没有旋转角不是180度(非中心对称),要找出旋转中心的话,那么就是找对应点连线的垂直平分线的交点。
学习了圆后,对这点应该有更深刻的认识。
本题旋转中心坐标(2
3
,1-) 第(3)问
来自课本的一个知识:轴对称求二线段之和的最小值,结合一次函数,点P 的坐标(-2,0); 由本题可以看出:课本基础知识的重要性,不要是是而非,那样容易出错。
【题组训练】
1、(2008元调)数学课上,小芳把一个菱形通过两次旋转且每次旋转120°后得到了如图1所示的图案。
在直角坐标系中(如图2),若菱形ABC O中,∠AOC =60°,A (–2,0) 。
(1)完成图2;
(2)写出每次..旋转后点A 、B、C 对应点...的坐标;
2、(2009元调)在如下的方形点阵中有Rt △A BC 和点O,将△AB C以点O 为旋转中心逆时针分别旋转
90°,180°,270°,请画出旋转后的图形.
3、(2010元调)在平面直角坐标系中有A(0,1),B(-2,0)两点,将线段AB 以O 为旋转中心逆时针分别旋转90°,180°,270°,请画出旋转后的图形.
图2
图
1
O
y
x
B
A
O
4、(2011元调)如图,网格中有△ABC 和点O 。
将△ABC 以O 为旋转中心逆时针分别旋转90°得到△A
1B 1C 1,旋转
180°得到△A 2B 2C 2,请画出旋转后的图形。
5、(2012元调)在网格中有△ABC,将△AB C以C 为旋转中心顺时针旋转90°得到△EDC(其中点A 与点E 对应,点B与点D 对应),再以CE 所在直线为对称轴作△EDC 的轴对称图形△EFC 。
请画出变换后的图形△CE D与△CEF .
A
C
B
O
C
B
A
6、(2013安徽中考)如图,已知A(-3,-3),B(-2,-1),C (-1,-2)是直角坐标平面上三点, (1)请画出△A BC 关于原点O 对称的△111A B C ;
(2)请写出点B 关于y 轴对称的点2B 的坐标,若将点2B 向上平移h 个单位,使其落在△111A B C 的内部,
指出h 的取值范围。
7、(2012武汉)如图,在平面直角坐标系中,点A 、B 的坐标分别为(-1,3)、(-4,1),先将线段AB
沿一确定方向平移得到线段A1B 1,点A的对应点为A1,点B 1的坐标为(0,2),在将线段A 1B 1 绕远点O 顺时针旋转90°得到线段A2B2,点A 1的对应点为点A2. (1)画出线段A1B 1、A 2B2;
(2)直接写出在这两次变换过程中,点A 经过A 1到达A 2的路径长;
x
y
A
C
B
O
x
y –1–2–3–4–51
2
3
4
5
–1
–2–3–4
1
2
34A
B
O
8、△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度。
(1)将△A BC向右移平2个单位长度,作出平移后的△111A B C ,并写出△111A B C 各顶点的坐标; (2)若将△AB C绕点(1 ,0)顺时针旋转180°后得到△222A B C ,并写出△222A B C 各顶点的坐标; (3)观察△111A B C 和△222A B C ,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说
明理由
9、如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△AB C向右平移5个单位长度,画出平移后的△111A B C ; (2)画出△ABC 关于x 轴对称的△222A B C ;
(3)将△A BC绕原点O 旋转180°,画出旋转后的△333A B C ;
(4)在△111A B C 、△222A B C 、△333A B C 中,△ _________ 与△ _________ 成轴对称;
△ _________ 与△ _________ 成中心对称。
(编外)
1、已知:如图,若线段CD是由线段AB经过旋转变换得到的.
尺规作图:找出旋转中心O点.
2、如图,已知四边形ABCD及点O。
求作:四边形A′B′C′D′,使得四边形A′B′C′D′与四边形ABCD关于O点中心对称.
3、如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹
(用3种办法)。