医用CR、DR的区别、档次划分及选购技巧
- 格式:doc
- 大小:90.50 KB
- 文档页数:17
CR成像和DR成像的性能比较DR与CR的共同点都是将x线影像信息转化为数字影像信息,其曝光宽容度相对与普通的增感屏,胶片系统体现出某些优势;CR与DR由于采用数字技术,动态范围广,都有很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;CR与DR可以根据临床需要进行各种图像后处理,如各种图像滤波,窗宽位调节,放大漫游,图像拼接以及距离,面积,密度等各种功能,为影像诊断中的细节观察,前后对比,定量分析提供支持。
CR成像和DR成像的性能比较如下:1、成像原理:DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少;CR是一种X线间接转换技术,它利用影像板作为X线检测器,成像环节相对DR较多。
DR和CR将穿透被照射物体后的X线信息转化为数字信息,灰阶由胶片的256级提升至2048级、能在计算机中处理、因而可通过软件和功能实现图像的优化、图像质量大大提高。
DR的核心技术是它的平板(FP)、采用一个带有碘化铯闪烁器的单片非结晶硅面板.将吸收的X光信号转换成可见光信号、再通过低噪声光电二极管阵列吸收可见光.并转换为电信号、然后通过低噪声读出电路将每个像素的数字化信号传送到图像处理器,由计算机将其集成为X线影像,以DOE为评价参数.DR是最高的.因而其图像层次丰富、影像边缘锐利清晰,细微结构表现出色.CR则将信息首先记录在涂有氟化钡的IP板上.再通过扫描装置实现数字化转换,其曝光条件仍由所匹配的X线成像设备所限制.因而图像与DR相比略逊。
CR的图像对比度和噪声的表现也不错.这可能与其摄影时使用较高的mAs有关。
图像质量的提高提升了诊断医师的满意度,大大减少了疾病的漏诊和误诊2.图像分辨率:DR无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定;CR系统由于自身的结构,在受到x线照射时,影像板中的磷粒子使x线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过影像板的深部时产生散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之处主要为时间分辨率较差,不能满足动态器官和结构的显示。
CR与DR有什么区别?在现代医学发展过程中,医学影像学一直占据重要地位,其中DR和CR都属于数字化的X线成像技术,是临床广泛应用的两种影像学检查方式。
CR是一种间接数字化摄片技术,DR是一种数字化摄片技术,DR比CR贵,但两种技术原理都是一样的,主要是借助X 射线穿透人体进行疾病诊断;当射线穿过后,仪器内部通过将光源信号转变为电源信号的方式,在诊断仪器的外界屏幕上形成相应的诊断图像,医生可以通过判别图像的具体情况完成对疾病的诊断。
一、工作原理差异CR成像环节相比多于DR,主要是成像时会使用到X射线的间接转换,利用IP板作为X射线检测器;而DR采用X射线直接转换,直接创建有数字格式的图像,利用硅、硒等作为X射线检测器,成像环节少。
(一)CR工作原理是间接数字化的转换过程,成像过程为:X线-人体-IP板-阅读器-图像采集、诊断、质量控制(计算机)工作站-显示、(激光相机)打印。
(二)DR工作原理是直接数字化的转换过程,成像过程为:X线-人体-图像采集板(FPD)-数字化图像-图像处理-显示、(激光相机)打印。
二、操作流程差异CR与原有的X线机系统配合使用方便,可以对复杂体位的患者拍片摄影;但DR系统属于专机专用,部分产品相对而言贵上许多。
同时,在时间上,使用CR摄影需要6min/人,而采用DR摄影只需要其一半时间不到的2.5min/人;CR操作较复杂,相对DR来说,不仅工作效率低,曝光时间长,而且还增加了摄影成本,影像的分辨率、清晰度以及X线使用剂量也没有优化。
(一)CR操作流程CR的工作流程是登记-拍照-扫描-诊断,出片时间>15min;拍片处理的工作流程为:手工上板-拍片-手工取板-手工装板-扫描-擦板-处理显示-诊断-相机拍片-洗片-晾干。
(二)DR操作流程DR的工作流程是登记-拍照-诊断,出片时间<1min;X线机工作过程:拍片-处理显示-诊断-出干式片。
三、成像原理差异CR比DR存在更多的成像链接,成像主要是通过X射线间接转换,使用IP板作为X射线检测器。
医用“CR、DR的区别”和“DR的档次划分及选购技巧”一:如何区别CR、DR?CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
CR是数字X线摄影DR是计算机X线摄影1.CRCR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。
CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。
目前的CR系统可提供与屏---片摄影同样的分辨率。
CR 系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。
CR、DR的工作原理及选择应用一、前言在现代医学科学发展过程中,医学影像学一直起着很重要的作用。
1895年德国科学家伦琴发现了X线后,很快X线技术广泛应用于临床医学的检查,X线检查的数字化发展还是在近二、三十年,随着计算机技术和检测技术的飞跃发展,传统的X线摄影设备逐步被取代,医学影像技术将全面数字化。
二、CR、DR工作原理2.1 CR的工作原理CR(Computed Radiography)也称为间接数字化X线成像技术,主要原理是利用存储荧光体成像,日本富士公司在1981年推出首台用于临床应用的CR,随后美国柯达、德国AGFA公司相继推出自己的CR产品,它采用磷光体结晶构成的成像板(Plated)即IP板吸收X线信息,IP板感光形成潜影,再经过扫描转化成数字化信号进入计算机系统进行图像处理。
IP板外观像1个普通的增感屏,由基板和磷光体材料组成,外层加一层保护,再用暗盒装载保护,可以像普通X线暗盒一样拿去拍片。
IP板在X线曝光后将X线的图像信息存储在晶体中,再把IP板送到读出装显,读出X线图像信息,送入计算机系统。
图像信息经过读出装显读出后,存储在IP板上的信息消失,成像板又可以再重复使用。
优点:(1)CR的曝光剂量与常规X线摄影相比,曝光剂要比常规片要小;(2)摄影条件要求比胶片低,几乎没有“废片”;(3)采用CR时,X线设备不用经过大的改变,其拍片过程与原有的X线胶片摄影没有什么变化;(4)图像后处理功能,可提高影像诊断的准确性及病诊断范围。
2.2 DR的工作原理与CR的渐进型数字化不同,DR(Digital radiography)也叫数字摄影,早期的DR是采用增感屏加光学镜头耦合的CCD(数字化耦合器)来获取数字化X线图像,有一点类似影像增强器加CCD的工作方法,这种技术被认为是第一代的DR技术。
现在普遍应用的DR主要是采用平板探测口(FPD)对X线产生的图像信号进行扫描和直接读出,成像原理是先将X线信号转变为可见光通过光电2极管组成的藻膜层(TFT)进行聚集,由专门的读出电路直接读出送计算机系统进行处理,工作原理。
CR、DR的区别一:如何区别CR、DR?CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
CR是数字X线摄影DR是计算机X线摄影1.CRCR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。
CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。
目前的CR系统可提供与屏---片摄影同样的分辨率。
CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X 线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。
CR与DR 解析在医学影像领域 X光影像是诊断医疗影像的主要手段。
上世纪 70 年代 CT, 超声波和核医学变成了普及型诊断模式;80年代核磁共振 (MRI)、CR 和数字减影 (DSA) 的成熟进一步推动了医疗影像的数字化;90年代末正电子 (PET) 从研究阶段进入了广泛临床应用。
尽管如此,据统计目前还有 65% 的诊断医疗影像是用常规 X-光机做的。
如何用常规 X-光机做数字影像呢?有三、四种方式。
常用的有:o CR -- 用特殊的 CR 暗盒、“胶片”和“胶片机”来代替常规胶片和洗片机。
o DR -- 干脆不要胶片和胶片机,直接用半导体材料来数字感光,产生数字图像。
o 专用胶片扫描机 -- 把现有的胶片扫描成数字图像。
CR 技术与应用CR 全称 Computed Radiography,是一个 X-光朝数字化发展的一个中间步骤。
想法是用一种特殊胶片来代替常规化学胶片,不用显影和定影能直接读出数字图像来,而且“胶片”能反复重新利用。
配置 CR 后整个 X-光室的技师操作流程与没有 CR 前非常相似。
一套 CR 设备包括一台 CR 读片机,最好内含擦片功能;一套 8" x 10"、10" x 12"、14“ x 17“的特殊 CR 暗盒和 IP 板 (即上述 CR “胶片");一台 CR 工作站。
IP 板是用一种含有微量元素铕(Eu2+)的钡氟溴化合物结晶(BaFX:Eu2+,X=CI.Br.I)制成的特殊胶片,接受透过人体的X线,使IP感光,形成潜影。
CR 读片机用激光激发 IP 板发出辉尽性荧光,由自动跟踪的集光器收集,复经光电转换器转换成电信号,放大后,由模拟/数字转换器转换成数字化影像信息。
IP可重复使用达2-3万次。
CR 读片机取代常规胶片的洗片机。
有单槽、双槽、多槽和 10 槽配置。
多槽的里面也只有一套读片和擦片系统,只是多了机械装置来自动提取各个槽里的 CR IP 板来读取。
CR与DR的比较分析及其合理购置曹军(贵阳医学院附属医院放射科,贵阳 550004)[摘要] 文章介绍了CR与DR两种数字化成像方式的基本概念和原理特点,并从CR、DR的技术指标及临床应用进行了比较,指出了它们之间的优劣差别, 对不同条件医院设备购置具有指导意义。
[关键词]CR ;DR 数字化影像[Abstract] This article introduces the basic concept and principles of CR and DR. To comparatively analyze the technical data, clinical application,the respective advantages and disadvantages of two digital imaging techniques. And supply a reference for equipment purchase in different hospital.[Key words] CR; DR; digital radiography一、序言:在现代医学科学发展过程中,数字化医学影像设备,将逐步取代传统的X线摄影技术,医学影像技术将全面实现数字化, 关于放射科普通X线检查数字化成像领域,近年来一直存在两种看法, 一种看法认为目前处理能力更大的直接数字化放射成像(DR)系统由于工作效率高,而有望取代计算机放射成像(CR)系统;另一种看法则认为性价比更高的CR才是更为实际的选择,原因是DR系统过高的价格会增加病人的负担,且我国大多数中小型医院受检者量并不大,因此很难发挥DR在提高工作效率上的益处。
到底CR和DR中哪一方能在这场角逐中取胜?笔者:认为CR和DR会像自行车与汽车在不同场合发挥作用而共存。
二、数字化设备的分类:1、CR的工作原理CR(Computed Radiography)也称为计算机X线成像技术,原理是利用存储荧光体记录成像,日本富士公司在1981年推出首台用于临床应用的CR,随后德国AGFA公司、美国柯达等公司相继推出自己的CR产品,它采用荧光体结晶构成的成像板(Imaging Plated)即IP,使穿透人体后的X线信息形成潜影存储于成像板上,再经过激光扫描仪转换成数字化信号送入计算机系统进行图像处理。
放射医学技术医学影像设备知识CR一、CR系统的构成及功能(一)CR的分类以使用模式分有通用型和专用型;以阅读方式分有单面阅读和双面阅读型。
1.通用型CR 是将IP置于与屏-胶系统类似的暗盒内,曝光后在阅读器进行读取。
其暗盒规格与屏胶系统相同,适用于原有X线机和使用屏-胶暗盒进行的所有检查项目。
2.专用型CR 有胸部专用和摄影床专用两种。
其阅读器被组合在滤线器摄影床或立位摄影架内。
IP经过X线曝光后,被自动传送,依次进行读取、擦除处理,然后重复使用。
其特点是不需要手工操作,工作效率高,但功能单一。
双面阅读型CR其IP采用透明支持层,两面设有读取器件,受激光激发时,双面同时采集,提高了输出信噪比,DQE值比普通IP增加了30%~40%,相应降低了曝光量。
(二)CR的构成和功能现以通用型为例介绍CR系统的构成。
CR按设备功能主要分为影像读取装置、控制台、后处理工作站、存储装置和成像板(IP)组成。
1.影像读取装置其功能是通过激光扫描和光电转换读取IP的潜影信息,形成图像数据,向工作站输出图像数据,对IP 进行擦除处理。
其构成主要由IP拾取器、激光扫描器、光电倍增管、A/D转换器和擦除灯组成。
工作过程:暗盒进入阅读器,机械手取出其中带有潜影的IP,自动将IP送入激光扫描区,潜影经过激光扫描被激励后,以蓝-紫光的形式释放出存储的能量。
IP的荧光体被二次光激发发光(PSL)产生荧光的强弱与第一次激发时所接收的能量精确地成正比(即呈线性关系)。
该荧光体被二次激发的光被高效光导器采集并导入光电倍增管内,转换成为相应强弱的电信号,继而被馈入模/数(A/D)转换器转换成数字信号。
2.控制台登记患者的基本信息,选择检查部位、图像扫描方式(auto、semi或fix选项)、图像预览、图像预处理等功能。
有的控制台带有打印功能。
3.后处理工作站带有专业处理图像软件和高分辨率专业显示器(分辨率一般在2-5M之间)。
进行影像的谐调处理、空间频率处理、测量、黑白翻转、打印等多种处理功能。
医用“CR、DR的区别”和“DR的档次划分及选购技巧”一:如何区别CR、DR?CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
CR是数字X线摄影DR是计算机X线摄影1.CRCR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。
CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。
目前的CR系统可提供与屏---片摄影同样的分辨率。
CR 系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。
2.DRDR是在X线电视系统的基础上,利用计算机数字化处理,使模拟视频信号经过采样、模/数转换(analog to digit,A/D)后直接进入计算机中进行存储、分析和保存。
X线数字图像的空间分辨率高、动态范围大,其影像可以观察对比度低于1%、直径大于2MM的物体,在病人身上测量到的表面X线剂量只有常规摄影的1/10。
量子检出率(detective quantum efficicncy;DQE)可达60%以上。
X线信息数字化后可用计算机进行处理。
通过改善影像的细节、降低图像噪声、灰阶、对比度调整、影像放大、数字减影等,显示出未经处理的影像中所看不到的特征信息。
借助于人工智能等技术对影像作定量分析和特征提取,可进行计算机辅助诊断。
数字X线摄影包括硒鼓方式、直接数字X线摄影(direct digital radiography;DDR)、电荷耦合器件(charge coupled device;CCD)摄像机阵列方式等多种方式。
数字图像具有较高分辨率,图像锐利度好,细节显示清楚;放射剂量小,曝光宽容度大,并可根据临床需要进行各种图像后处理等优点,还可实现放射科无胶片化,科室之间、医院之间网络化,便于教学与会诊。
直接数字化放射摄影(Digital Radiography,简称DR),是上世纪九十年代发展起来的X线摄影新技术,具有更快的成像速度、更便捷的操作、更高的成像分辨率等显著优点,成为数字X线摄影技术的主导方向,并得到世界各国的临床机构和影像学专家认可。
近年来随着技术及设备的日益成熟,DR在世界范围内得以迅速推广和普及应用,逐渐成为医院的必备设备之一。
临床界和工程界专家普遍认为,DR设备将成为高水平数字化影像设备的终极产品。
DR主要由X-线发生器(球管)、探测器(影像板/采样器)、采集工作站(采像处理计算机/后处理工作站)、机械装置等四部分组成;DR之所以称为“直接数字化放射摄影”的实质就是不用中间介质直接拍出数字X-光像;其工作过程是:X线穿过人体(备查部位)投射到探测器上,然后探测器将X线影像信息直接转化为数字影像信息并同步传输到采集工作站上,最后利用工作站的医用专业软件进行图像的后处理。
DR系统能够有效降低临床医生的劳动强度,提高劳动效率,加快患者流通速度;相对于普通的屏/胶系统来说,采用数字技术的DR,具有动态范围广、曝光宽容度宽的特点,因而允许摄影中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;由于直接数字化的结果,拍摄的X光片信息量大大丰富,可以根据临床需要进行各种图像后处理,如各种图像滤波、窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持,改变了以往X 光平片固定影像的局限性,提供了大量临床诊断信息;由于其大尺寸、多像素成像板的贡献,大大提高了X光胶片的清晰度及细节分辨率,成像综合水平远远超过普通X光平片;同时有助于实现普通X线摄影图像的数字化存储和远距离调阅、交流等方便应用。
依据探测器的构成材料和工作原理,DR主要分为三大技术:CCD、一线扫描、非晶体平板(非晶硒、非晶硅+碘化铯/非晶硅+氧化钆)。
一、CCD:由于物理局限性,专家们普遍认为大面积平板采像CCD 技术不胜任,而且CCD 设备在图像质量上较非晶硅/硒平板设备有一定差距,但是相对有价格优势;世界上还有几个厂家用此技术如Swissray。
二、一线扫描:也称一维线扫描技术,由俄罗斯科学院核物理研究所发明,也就是国内中兴航天在生产的DR;有受照剂量低、设备造价相对平板技术更低廉的优点,但也存在成像时间长(数秒)、空间分辨率低(刚推出时是1mm/lp)以及X线使用效率低的致命缺陷;成像质量较差而且病人会接受大量不必要的辐射。
三、非晶平板:非晶硒/非晶硅;主要由非晶硒层(a-Se)/非晶硅层(a-Si)加薄膜半导体阵列(TFT)构成。
1.a-Si (非晶硅平板探测器) -- 两步数字转换技术,X-光子先变成可见光然后用光电管探测而转化为数字信号。
主流厂商包括飞利浦、西门子、GE等。
因为涂层技术不同又分为非晶硅+碘化铯平板和非晶硅+氧化钆平板。
2.a-Se (非晶硒平板探测器) -- 一种所谓直接探测技术,X-光子在硒涂料层变成电信号被探测而直接转化为数字信号。
目前世界上只有美国Hologic公司拥有此技术的核心,柯达,国内友通等厂家的DR就使用这种探测器。
DR的技术进步是紧紧与影像板技术的发展相联系的。
平板的技术发展体现在两个方面:尺寸的大小及动态反应时间。
碘化铯/非晶硅型平板在这两方面都具有其他技术不可比拟的优势,是目前最成熟最主流的技术,目前世界上主要领先厂家都用这种技术。
*碘化铯/非晶硅( CsI ) + a-Si + TFT :X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光子发射,可见光激发光电二极管产生电流,这电流就在光电二极管自身的电容上积分形成储存电荷;每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比;成像速度、影像质量、工作效率等综合水平教高。
*氧化钆/非晶硅(Gd2O2S) + a-Si + TFT :工作过程与上相似,只是碘化铯被氧化钆取代;由于技术原因其原始图像为12 Bit/4096灰阶,A/D转换为14Bit;工艺成本较低,但综合技术水平比碘化铯板差。
*非晶硒a-Se+TFT:入射的X 射线光子在硒层中产生电子空穴对,在外加偏压电场作用下,电子和空穴对向相反的方向移动形成电流,电流在薄膜晶体管中积分成为储存电荷;每一个晶体管的储存电荷量对应于入射的X 射线光子的能量与数量;工艺成本较低,但对入射X 线吸收不佳,成像速度及稳定性等综合技术水平较非晶硅平板差。
各类探测器参数比较:注:目前,世界相关专家普遍认可成熟的非晶硅+碘化铯平板探测器技术;Trixell公司生产的平板探测器,因其稳定优秀的成像特质和良好的环境适应性成为DR设备的首选;由于采用世界最佳的平板探测器技术,辅以高质量球管和出色机械性能,加上功能强大的专业级后处理工作站,飞利浦/西门子成为世界公认的DR系统顶级品牌。
1、探测器:对于直接数字化X射线摄影技术来讲,决定其图像质量不仅仅是平板所采用的技术类型,同时还有平板的DQE、采集矩阵、采集灰阶、空间分辨率、最小像素尺寸等重要因素,每个因素都很重要;在相同的图像尺寸时,采集矩阵越大,像素尺寸越小,图像分辨率越高,细小组织结构才能更好显示。
(1)材料/技术类型:碘化铯/非晶硅为主流;其中以Trixell平板为最佳。
(2)有效尺寸:主流为17×17in或14×17in;17×17in可满足99%的病人包扩体胖病人,可一次暴光成像;而14×17in有23%的病人不能满足,需二次曝光,增加病人射线损伤, 增加技术人员工作强度。
(3)像素矩阵:主流为2.5K×3K或3K×3K。
(4)像素尺寸:143μm/200μm;像素尺寸大小直接影响图像细腻度。
(5)空间分辨率:决定因素是探测器的尺寸和量子噪声,这从物理意义上是决定因素(当然从软件上可以内插算法得到更小的像素数,但这不是真实的像的信号,是推算的结果);此外,射线的质量是一个不可忽视的因数。
所有平板中Trixell平板尺寸最大,量子噪声最小。
(6)灰阶:主流是14 Bit/16,384灰阶,只有Canon等少数公司的探测板为原始图像为12 Bit/4096灰阶,A/D转换为14Bit。
(7)探测量子效率(DQE):是输入信号转导成输出信号的效率,高探测量子效率是潜在剂量降低的基础。
数字平板探测板都具有的特性是相对于屏-片X线摄影都有较高的DQE。
同等放射剂量下,非晶硒的DQE比非晶硅的低;非晶硅探测板在剂量降低上优于非晶硒探测板。
(8)外接装置:是否需要水冷装置或其他装置2、球管:射线质量和寿命;以OPTIMUS 65 SRO 33100为最佳。
(1)焦点(2)热容量(3)高速旋转、阳级转速(4)束光器3、高压发生器:(1)功率、频率(2)输出范围(3)KV 调节(4)最短曝光时间4、控制台:(1)自动曝光控制、解剖部位摄影:一般都有。
(2)工作站屏幕:19in为主流;17in逐渐淘汰。
(3)操作系统:个人电脑级Windows系统或专业服务器级UNIX系统;对电脑稍有了解的人都明白,后者比前者有不可比拟的稳定性、高处理能力。