简述CR与DR分解
- 格式:ppt
- 大小:1008.50 KB
- 文档页数:23
DR与CR的对比一.D R与CR的参数比较
4、摄影系统(X线发生+CR系统)
维护和维修不便,不是真正意义
的数字化系统
二.D R与CR的实例比较
1.工作流程比较
2.经济效益比较
每日摄片(平均)胸片:35张其他:15张共计:50张
年摄片总量为(300)工作日15000张
使用DR比CR多赢利:450000元/年
投资一台DR机,医院正常情况不到一年时间内就可以收回成本,接下来就是盈利了!
三.CR 的优缺点有什么?
优点:
1.图像经后处理可间接实现数字化;
2. CR利用原有拍片机,且不需对原有机器进行结构上的改动。
缺点:
1. 图像没有DR清晰,不能实现真正意义上的数字读片;
2. IP板需来回倒腾,操作繁琐,医生劳动强度较大;拍片太慢,难以应付大流量的病人;
3. 由于CR的IP板感光灵敏度远不如DR,所以CR正常成像所需的X 线剂量远大于DR,在长期高负荷工作下,超作人员及机器均会受到影响;
4. 国家规定的CR收费标准低于DR;
5. 各大医疗机构纷纷都在购买DR,再购买或使用CR不符合国家远程信息化管理系统的趋势。
综上所述,DR 具有CR 系统无可比拟的许多优点,从提高图像质量及工作效率的角度看,DR 是加快医学影像数字化发展步伐的必然方式。
综合性医院X 线摄影工作量相当大,在实现数字X 线摄影的同时,缩短成像时间、提高工作效率也非常重要。
因此,医院在新投资X 线摄影系统时,应尽可能考虑医学影像数字化的发展方向,应尽量一步到位,配置DR 系统,不要再选择普通X 光机+CR 的组合。
CRDR工作过程CR(Change Request)和DR(Defect Report)是软件开发过程中常见的两个工作流程。
CR是指在软件开发过程中,对已经交付的软件或者正在开发的软件功能、性能、质量等方面的改进请求;DR是指在软件开发过程中,对已经交付的软件或者正在开发的软件中发现的Bug或者其他缺陷的报告。
下面我将详细介绍CR和DR的工作过程。
CR工作过程:1.提出CR:CR可以由客户、用户、测试人员或其他相关人员提出。
提出CR时,需要明确描述需要改进的方面、原因和目标。
2.分析CR:在接到CR后,开发团队需要对CR进行分析,包括评估CR对软件功能、性能等方面的影响,确定CR是否合理和可实施。
3.评估影响:开发团队评估CR的实施对工作量、进度、成本等方面的影响,同时估计实施CR对软件整体质量的提升。
4.制定计划:基于CR的分析和评估结果,开发团队制定CR实施计划,包括资源调配、时间安排、风险评估等。
5.开发和测试:根据CR实施计划,开发团队进行相应的软件开发和测试工作。
在开发和测试过程中,开发团队需要确保CR的实施不会导致其他功能的破坏。
6.验收和发布:当CR的开发和测试工作完成后,需要进行验收和发布。
验收包括验证CR是否按照需求实现,通过功能测试和系统测试等方式进行。
如果CR经过验收合格,可以发布到生产环境。
DR工作过程:1.发现DR:DR可以由开发人员、测试人员或用户发现。
发现DR时,需要准确描述DR的现象、重现步骤和影响。
2.登记DR:开发或测试团队将发现的DR登记到DR跟踪系统中,包括DR的详细描述、截图、日志等相关材料。
3.确认DR:开发或测试团队对登记的DR进行确认。
确认包括验证DR的存在和重现、评估DR的影响和优先级。
4.分析DR:开发团队对已确认的DR进行分析,确定DR的根本原因,包括代码逻辑错误、数据异常、算法不准确等。
5.修复DR:开发团队根据分析结果,进行相应的DR修复工作。
CRDR工作过程资料CR(Change Request)和DR(Defect Report)是软件开发过程中常见的两种工作过程。
CR是指变更请求,即对已有的系统或软件进行修改或添加新功能的请求;DR是指缺陷报告,即发现系统或软件中的缺陷或错误并对其进行记录和修复的报告。
下面将详细介绍CR和DR的工作过程。
一、CR工作过程CR工作过程包括变更请求的提交、评审、批准、实施和验证等阶段。
1.提交变更请求:任何一个项目成员都可以根据项目需求和实际情况,提出CR。
提交者需要详细说明变更请求的原因、目标、影响范围和预期效果等信息。
2.变更请求评审:由项目经理或项目团队成员组成评审小组,对提交的CR进行评审。
评审人员需要综合考虑变更请求的合理性、可行性以及对项目进度和资源的影响进行评估。
3.变更请求批准:在评审小组的评估结果基础上,项目经理或项目负责人决定是否批准变更请求。
如果批准,将制定变更计划并通知相关人员。
4.变更请求实施:根据变更计划,由相应的开发人员进行系统或软件的修改。
开发人员需要及时汇报进展,与其他团队成员进行沟通协调。
5.变更请求验证:在实施完变更后,对系统或软件进行验证,确保变更达到了预期效果,并不会引入新的问题。
验证过程可能包括功能测试、性能测试、兼容性测试等。
二、DR工作过程DR工作过程包括缺陷报告的发现、记录、分析、修复和验证等阶段。
1.缺陷报告发现:在软件测试过程中,测试人员会发现软件中的缺陷或错误。
测试人员需要详细记录缺陷的现象、复现步骤、环境信息等,并及时向开发人员汇报。
2.缺陷报告记录:测试人员将发现的缺陷信息记录在缺陷跟踪系统中,包括缺陷的编号、标题、描述、优先级、状态等。
这些信息有助于开发人员进行分析和修复。
3.缺陷报告分析:开发人员根据缺陷报告中的信息,分析缺陷的原因和影响范围,以便确定修复的优先级和方法。
他们可能需要与测试人员进行交流,进一步了解缺陷的细节。
4.缺陷修复:开发人员根据缺陷报告中的信息,对软件进行修复。
CR、DR的区别一:如何区别CR、DR?CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
CR是数字X线摄影DR是计算机X线摄影1.CRCR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。
CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。
目前的CR系统可提供与屏---片摄影同样的分辨率。
CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X 线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。
X射线基础知识介绍1895年德国物理学家---“伦琴”发现X射线1895-1897年伦琴搞清楚了X射线的产生、传播、穿透力等大部分性质X射线的性质X射线也是电磁波的一种,波长在左右人的肉眼看不见X射线,但X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。
X射线呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。
X射线对动物有机体(其中包括对人体)能产生巨大的生理上的影响,能杀伤生物细胞。
(穿透作用、荧光作用、电离作用、热作用、衍射、反射、折射作用;感光作用、着色作用;生物效用)X射线产生的原理X射线是高速运动的粒子与某种物质相撞击后猝然减速,或与该物质中的内层电子相互作用而产生的。
X射线产生的条件1、有高速运动的电子流2、有适当的障碍物——金属靶(钨或钼),阻止电子的运动,将电子动能转为X射线的能量。
3、电子具有足够的动能。
医用X 射线成像原理医用X射线成像的原理:X射线穿过人体,由于人体组织密度不同,穿过人体后在荧光屏、胶片或数字影像接收器上得到灰度不同的人体组织的影像。
在医学上的用途:可以对人体组织进行动态观察(透视)和照片成像。
X射线机的主要技术参数1 管电压kV:代表X射线的穿透力。
管电压越高,产生的X射线穿透力越强。
2 管电流mA:通过X射线管的电子运动形成的电流。
代表单位时间内X射线总量。
管电流越大,单位时间内X射线量越大。
3 电流时间积:管电流与照射时间的乘积。
代表总的射线量。
医用诊断X射线机的主要用途透视:组织的动态连续观察,相当于摄像。
摄片:瞬间组织的影像记录,相当于拍片。
透视成像方式有三种:1 最传统的是荧光成像(荧光透视),即X射线照在荧光屏上发光,在荧光屏上观察人体的影像是连续的,须在暗室操作。
2 用影像增强电视系统:X射线照在影像增强器上,把不可见光转化为可见光,并放大10000倍左右,用CCD摄影在明室显示屏上观察人体影像,是一种模拟信号。
CR与DR 解析在医学影像领域 X光影像是诊断医疗影像的主要手段。
上世纪 70 年代 CT, 超声波和核医学变成了普及型诊断模式;80年代核磁共振 (MRI)、CR 和数字减影 (DSA) 的成熟进一步推动了医疗影像的数字化;90年代末正电子 (PET) 从研究阶段进入了广泛临床应用。
尽管如此,据统计目前还有 65% 的诊断医疗影像是用常规 X-光机做的。
如何用常规 X-光机做数字影像呢?有三、四种方式。
常用的有:o CR -- 用特殊的 CR 暗盒、“胶片”和“胶片机”来代替常规胶片和洗片机。
o DR -- 干脆不要胶片和胶片机,直接用半导体材料来数字感光,产生数字图像。
o 专用胶片扫描机 -- 把现有的胶片扫描成数字图像。
CR 技术与应用CR 全称 Computed Radiography,是一个 X-光朝数字化发展的一个中间步骤。
想法是用一种特殊胶片来代替常规化学胶片,不用显影和定影能直接读出数字图像来,而且“胶片”能反复重新利用。
配置 CR 后整个 X-光室的技师操作流程与没有 CR 前非常相似。
一套 CR 设备包括一台 CR 读片机,最好内含擦片功能;一套 8" x 10"、10" x 12"、14“ x 17“的特殊 CR 暗盒和 IP 板 (即上述 CR “胶片");一台 CR 工作站。
IP 板是用一种含有微量元素铕(Eu2+)的钡氟溴化合物结晶(BaFX:Eu2+,X=CI.Br.I)制成的特殊胶片,接受透过人体的X线,使IP感光,形成潜影。
CR 读片机用激光激发 IP 板发出辉尽性荧光,由自动跟踪的集光器收集,复经光电转换器转换成电信号,放大后,由模拟/数字转换器转换成数字化影像信息。
IP可重复使用达2-3万次。
CR 读片机取代常规胶片的洗片机。
有单槽、双槽、多槽和 10 槽配置。
多槽的里面也只有一套读片和擦片系统,只是多了机械装置来自动提取各个槽里的 CR IP 板来读取。
第十章 CR和DR成像理论第一节 CR计算机X线摄影(简称CR),是光激励存储荧光体(Photostimulable Storage Phosphor,PSP)成像。
CR利用IP取代传统的屏/片体系,进行病人影像的高敏感性记录。
尽管看上去与传统的增感屏很相似,但其功能有很大的差异,它在光激励荧光体中记录X线影像,并使其影像信息以电信号方式提取出来,是实现常规X线摄影数字化的最早成像技术。
一、成像原理(一)工作流程1、信息采集(acquisition of information)传统的X线摄影都是以X线胶片为探测器,接受一次性曝光后,经冲洗形成影像,但所获得的影像始终是一种模拟影像。
CR系统实现了用成像板来接受X线的模拟信息,然后经过模/数转换来实现影像的数字化。
对IP的曝光过程就是信息采集。
2、信息转换(transformation of information)是指存储在IP上的模拟信息转化为数字信息的过程。
CR的信息转换部分主要由激光阅读仪、光电倍增管和模/数转换器组成。
IP在X线下受到第一次激发时储存连续的模拟信息,在激光阅读仪中进行激光扫描时受到第二次激发,而产生荧光(荧光的强弱与第一次激发时的能量精确地成比例,呈线性正相关),该荧光经高效光导器采集和导向,进入光电倍增管转换为相应强弱的电信号,然后进行增幅放大、模数转换成为数字信号。
3、信息处理(processing of information)是指使用不同的相关技术根据诊断的需要对影像实施的处理,从而达到影像质量的最优化。
CR的常用处理技术包括有谐调处理技术、空间频率处理技术和减影处理技术。
4、信息的存储与输出(archving and output of information)在CR系统中,IP被扫描后所获得的信息可以同时进行存储和打印。
影像信息一般被存储在光盘中,随刻录随读取。
一张存储量为2G的光盘(有A、B两面),在压缩比为1:20的前提下,若每幅影像平均所占据的存储空间是4M,那么,每张盘可以存图像5000幅。
CR、DR的区别一:如何区别CR、DR?CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。
DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。
在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。
CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。
降低病人受照剂量,更安全。
CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。
CR是数字X线摄影DR是计算机X线摄影1.CRCR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。
CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。
目前的CR系统可提供与屏---片摄影同样的分辨率。
CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X 线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。
DR)直接数字化X射线摄影DR(Digital Radiography),即直接数字化X射线摄影系统,是由电子暗盒、扫描控制器、系统控制器、影像监示器等组成,是直接将X线光子通过电子暗盒转换为数字化图像,是一种广义上的直接数字化X线摄影。
而狭义上的直接数字化摄影即DDR(DirectDigit Radiography),通常指采用平板探测器的影像直接转换技术的数字放射摄影,是真正意义上的直接数字化X射线摄影系统。
?? DR与CR的共同点都是将X线影像信息转化为数字影像信息,其曝光宽容度相对于普通的增感屏-胶片系统体现出某些优势:CR和DR由于采用数字技术,动态范围广,都有很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;CR和DR可以根据临床需要进行各种图像后处理,如各种图像滤波,窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度检测等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持。
对两者的性能比较如下:1.成像原理:DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少;CR是一种X线间接转换技术,它利用图像板作为X线检测器,成像环节相对于DR 较多。
2.图像分辨率:DR系统无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定;CR系统由于自身的结构,在受到X线照射时,图像板中的磷粒子使X线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过图像板的深部时产生着散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之处主要为时间分辨率较差,不能满足动态器官和结构的显示。
3.DR是今后的发展方向,但就目前而言,DR电子暗盒的结构14 in×17 in(1 in=2.54 cm)由4块⒎5 in ×8 in 所组成,每块的接缝处由于工艺的限制不能做得没缝,且一旦其中一块损坏必将导致4块全部更换,不但费用昂贵,还需改装已有的X线机设备,而CR相对费用较低,且多台X线机可同时使用,无需改变现有设备。
CR和DR成像技术前言在射线无损检测中,数字化X射线照相检测(Digital Radiography,简称DR)已经越来越多地获得应用。
数字化X射线照相检测技术基本上有三种分类方式:1.按读出方式分类读出方式是指从X射线曝光到图像的显示过程,可以分为直接读出(Direct Readout)方式和非直接读出(Nondirect Readout)方式。
直接读出方式是指从X射线曝光到图像显示的全过程自动完成,经过X射线曝光后,即可在显示器上观察到图像。
这一技术称为DDR,其中D的含义即为直接读出(Direct Readout)。
非直接读出方式需要首先使用成像板(Imaging Plate,简称IP板)进行X射线曝光,然后将IP 板插入读出器(Reader)扫描,再在显示器上显示,这一技术称为CR(Computed Radiography)。
2.按转换方式分类可以分为直接转换方式(Direct Convert)和间接转换方式(Indirect Covert)。
直接转换方式采用的器件在经过X射线曝光后,X射线光子直接转换为电信号。
间接转换方式的器件则先要将X射线光子转变为可见光,然后再由可见光转换为电信号。
这两种转换方式的技术所采用的器件有平板检测器(Flat Pannel Detector,简称FPD),也有采用其他器件和结构的。
当然两种方式所采用的FPD结构是不同的。
3.按工作方式分类数字化射线检测技术分为数字化透视(Digital Fluorography,简称DF或DSI,DSF,工业上又称实时成像Real-time Image)和数字化照相(Digital Radiography,简称DR)两类。
数字化透视有用影像增强器(I.I.)加摄像机采集信号和用平板检测器(FPD)采集信号两类。
数字化照相则分为直接转换方式(DDR,Direct Digital Radiography)和间接转换方式(IDR,Indirect Digital Radiography)。
CR、DR的工作原理及选择应用一、前言在现代医学科学发展过程中,医学影像学一直起着很重要的作用。
1895年德国科学家伦琴发现了X线后,很快X线技术广泛应用于临床医学的检查,X线检查的数字化发展还是在近二、三十年,随着计算机技术和检测技术的飞跃发展,传统的X线摄影设备逐步被取代,医学影像技术将全面数字化。
二、CR、DR工作原理2.1 CR的工作原理CR(Computed Radiography)也称为间接数字化X线成像技术,主要原理是利用存储荧光体成像,日本富士公司在1981年推出首台用于临床应用的CR,随后美国柯达、德国AGFA公司相继推出自己的CR产品,它采用磷光体结晶构成的成像板(Plated)即IP板吸收X线信息,IP板感光形成潜影,再经过扫描转化成数字化信号进入计算机系统进行图像处理。
IP板外观像1个普通的增感屏,由基板和磷光体材料组成,外层加一层保护,再用暗盒装载保护,可以像普通X 线暗盒一样拿去拍片。
IP板在X线曝光后将X线的图像信息存储在晶体中,再把IP板送到读出装显,读出X线图像信息,送入计算机系统。
图像信息经过读出装显读出后,存储在IP板上的信息消失,成像板又可以再重复使用。
优点:(1)CR的曝光剂量与常规X线摄影相比,曝光剂要比常规片要小;(2)摄影条件要求比胶片低,几乎没有“废片”;(3)采用CR时,X线设备不用经过大的改变,其拍片过程与原有的X线胶片摄影没有什么变化;(4)图像后处理功能,可提高影像诊断的准确性及病诊断范围。
2.2 DR的工作原理与CR的渐进型数字化不同,DR(Digital radiography)也叫数字摄影,早期的DR是采用增感屏加光学镜头耦合的CCD(数字化耦合器)来获取数字化X 线图像,有一点类似影像增强器加CCD的工作方法,这种技术被认为是第一代的DR技术。
现在普遍应用的DR主要是采用平板探测口(FPD)对X线产生的图像信号进行扫描和直接读出,成像原理是先将X线信号转变为可见光通过光电2极管组成的藻膜层(TFT)进行聚集,由专门的读出电路直接读出送计算机系统进行处理,工作原理。
CR和DR成像技术前言在射线无损检测中,数字化X射线照相检测(Digital Radiography,简称DR)已经越来越多地获得应用。
数字化X射线照相检测技术基本上有三种分类方式:1.按读出方式分类读出方式是指从X射线曝光到图像的显示过程,可以分为直接读出(Direct Readout)方式和非直接读出(Nondirect Readout)方式。
直接读出方式是指从X射线曝光到图像显示的全过程自动完成,经过X射线曝光后,即可在显示器上观察到图像。
这一技术称为DDR,其中D的含义即为直接读出(Direct Readout)。
非直接读出方式需要首先使用成像板(Imaging Plate,简称IP板)进行X射线曝光,然后将IP 板插入读出器(Reader)扫描,再在显示器上显示,这一技术称为CR(Computed Radiography)。
2.按转换方式分类可以分为直接转换方式(Direct Convert)和间接转换方式(Indirect Covert)。
直接转换方式采用的器件在经过X射线曝光后,X射线光子直接转换为电信号。
间接转换方式的器件则先要将X射线光子转变为可见光,然后再由可见光转换为电信号。
这两种转换方式的技术所采用的器件有平板检测器(Flat Pannel Detector,简称FPD),也有采用其他器件和结构的。
当然两种方式所采用的FPD结构是不同的。
3.按工作方式分类数字化射线检测技术分为数字化透视(Digital Fluorography,简称DF或DSI,DSF,工业上又称实时成像Real-time Image)和数字化照相(Digital Radiography,简称DR)两类。
数字化透视有用影像增强器(I.I.)加摄像机采集信号和用平板检测器(FPD)采集信号两类。
数字化照相则分为直接转换方式(DDR,Direct Digital Radiography)和间接转换方式(IDR,Indirect Digital Radiography)。
什么是CR、什么是DR,有何区别?随着医学的不断进步与发展,数字化影像设备被不断应用于临床检查中。
数字摄影包括计算机 X 线摄影系统 (CR) 及数字 X 线摄影系统 (DR),该项检查具有辐射小、性能高、成像快等优点。
CR 系统是利用光激励存储荧光体作为探测器的 X 射线投影成像方法,该系统将影像板作为信息记录载体, 直接进行X 线摄影。
该方法的主要步骤包括影像信息的记录、读取、处理及显示等;DR 系统是利用平板探测器FP来接收 X 线信号,并将其装换位数字信号,进而在图像处理系统下进行处理及显示。
CR 系统与DR 系统都是在传统的 X 线摄影设备上逐渐发展过来的。
1.CR的概念CR是计算机X射线(computed radiography)的英文缩写。
CR是医学影像疾病诊断的一种。
它使用数字化影像,方便接入PACS系统,可结合计算机技术处理图像,提高影像质量。
CR价格相对低廉,一套CR即可实现全院X线设备的数字化。
2.DR的概念DR指在5261计算机控制下直接进行数字化X线摄影的一种4102新技术1653,即采非晶硅平板探测器把穿透人体的X线信息转化为数字信号,并由计算机重建图像及进行一系列的图像后处理.3.CR的特点它在给患者进行X线拍摄时剂量比传统X线摄影的剂量要小。
使影像数字化,方便接入PACS系统。
IP板可以灵活放置,方便不便行动的重病者。
与DR相比价格低廉,一套CR即可实现全院X线设备的数字化。
计算机X线摄影(CR)系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理功能,增加显示信息的层次;可降低X线摄影的辐射剂量,减少辐射损伤,而且只需要一次曝光就能捕捉到多层次的影像信息来满足诊断的要求,在曝光量不足或过量时能在一定程度上较好显示图像,避免因X线摄影参数选择不当而导致重拍,从而减少被检者X线接受剂量。