当前位置:文档之家› 电磁调速(双运放LM358)电动机控制器教学教材

电磁调速(双运放LM358)电动机控制器教学教材

电磁调速(双运放LM358)电动机控制器教学教材
电磁调速(双运放LM358)电动机控制器教学教材

电磁调速电动机控制器

一、电路简介

JD1A-40的电动机调速器,电路如图1所示。所使用的变压器二次只有一个绕组,以二极管D12在图中所处位置水平线以上是调节励磁电流的单向可控硅KZ的触发电路;之下则是触发移相调节控制电路和转速反馈电路等。XP1-XP7是航空插头,一种7芯的接插件,用于连接控制器与AC220V电源、调速电动机的励磁线圈和测速发电机的输出线。

二、电路原理分析

电机调速控制器是通过调节图1中转差离合器励磁线圈的电流来改变电动机转速的,而励磁电流则由单向可控硅KZ进行可控整流控制。KZ的触发电路由三极管V1、光耦IC1等元件组成。这部分电路的直流电源与其它电路不共地,它将电源变压器T的220V与225V之间的电位差经二极管D12整流、电容器C2滤波后供其使用。光耦IC1的①脚接地,即接变压器二次的0端,当其②脚为负电位时,光耦③、④脚内附的光敏三极管导通,三极管V1随之导通,向单向可控硅KZ发出触发信号,KZ导通,电动机转差离合器励磁线圈中有电流流过,其路径是:电源相线L→接插件XP1→开关S→熔断器FU→接插件XP3→励磁线圈→接插件XP4→单向可控硅KZ→接插件XP2→电源零线N。这时我们只要在每个电源周期内准确控制IC1②脚由高电平转换为低电平的时刻,就能调节可控硅KZ的导通角,从而调节励磁电流和电动机的转速。

变压器二次的10V电压经过二极管D11和D10整流、电容器C3和C6滤波、稳压管DW2和DW1稳压,得到+5.1V的V+和-5.1V的V-,作为集成电路LM358的工作电源使用。LM358是双运放电路,其①脚、②脚和③脚内部是一个运放,它的正输入端③脚经电阻R19接地;负输入端②脚接有3路信号:一是由转速调整电位器RP2送来的调速信号;二是测速发电机输出电压经D1~D6整流、再由“反馈量调节”电位器RP3调整后送来的反馈信号;三是输出端①脚经电阻R12、R14、R13送来的负反馈信号,这个负反馈信号使得该运放成为名副其实的反相运算放大器。与此不同的是,由⑤脚、⑥脚、⑦脚内部电路构成的运放因为没有负反馈,所以其放大倍数接近无穷大,实际上已经具有了电压比较器的功能。这个电压比较器正输入端⑤脚经电阻R18接地,负输入端⑥脚接有①脚经电阻R11送来的转速控制信号,以及经电阻R8和R10送来的同步信号,这个同步信号就是半波整流、滤波后的残余纹波。

操作调速电位器RP2,可对受控电动机进行调速。例如,顺时针旋转电位器RP2,相当于图1中RP2的中间头向下移动,②脚电位趋向于负,经运放反相放大后,输出端①脚电位趋向于正;相反情况时,①脚电位趋向于负。

图2和图3是双踪示波器上看到的波形图,位于b1~b5、a1~a4字符覆盖之下的地电位基准线。当调节电位器RP2欲使电动机转速提高时,②脚电位趋向于负,经反相运算放大后①脚

电位趋向于正。这个电压经电阻R11传送到⑥脚。

图2中的近似锯齿波是LM358反相输入端⑥脚波形,它是①脚传送来的调速信号电压与经电阻R8、R10送来的同步信号的复合波形(示波器上已看不到直流分量);矩形波是电压比较器输出端⑦脚的波形。当⑥脚信号波形与地电位基准线相交(相交点即图2中的b1~b5、a1~a4各点)时,⑦脚电位发生反转。例如在a1点,⑥脚的电压即将高于基准线地电位,相当于电压比较器的负输入端⑥脚电位高于正输入端⑤脚,这时比较器的输出端⑦脚由正电位跳变为负电位。此后光耦IC1的①脚②脚内部发光管得电,并经后续电路使单向可控硅受触发导通。比较图2和图3可见,图2中⑥脚信号幅值较大(其最大值与基准地电位线距离较远),LM358⑦脚维持为负的时间较长,准确点说是在一个电源周期中,单向可控硅的触发时刻较早,平均导通电流自然较大,电动机转速较快。图3中⑥脚信号电压较小(其最大值与基准地电位线距离较近),LM358⑦脚维持为负的时间较短,或者说在一个电源周期中,单向可控硅的触发时刻较迟,平均导通电流自然较小,电动机转速较慢。当然可控硅的导通时长并不等于⑦脚维持负电平的时长,因为单向可控硅一旦被触发导通,触发信号即失去控制作用。锯齿波对可控硅导通的控制作用仅在于其上升沿与基准线地电平相交的时刻。

测速发电机的输出电压经D1~D6整流生成的反馈信号,可使转速调节更加快捷灵敏。

电位器RP1可以用来校准转速表的示值,使其与实际转速相一致。

三、维修技巧

在维修调速控制器时通常没有电动机可用于维修实验,所以维修人员在脱机情况下检修应具有一定的操作技巧。下面予以简单介绍。

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (2) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (3) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) .. 7 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13) 附录2 (13)

电磁调速(双运放LM358)电动机控制器

电磁调速电动机控制器 一、电路简介 JD1A-40的电动机调速器,电路如图1所示。所使用的变压器二次只有一个绕组,以二极管D12在图中所处位置水平线以上是调节励磁电流的单向可控硅KZ的触发电路;之下则是触发移相调节控制电路和转速反馈电路等。XP1-XP7是航空插头,一种7芯的接插件,用于连接控制器与AC220V电源、调速电动机的励磁线圈和测速发电机的输出线。 二、电路原理分析 电机调速控制器是通过调节图1中转差离合器励磁线圈的电流来改变电动机转速的,而励磁电流则由单向可控硅KZ进行可控整流控制。KZ的触发电路由三极管V1、光耦IC1等元件组成。这部分电路的直流电源与其它电路不共地,它将电源变压器T的220V与225V之间的电位差经二极管D12整流、电容器C2滤波后供其使用。光耦IC1的①脚接地,即接变压器二次的0端,当其②脚为负电位时,光耦③、④脚内附的光敏三极管导通,三极管V1随之导通,向单向可控硅KZ发出触发信号,KZ导通,电动机转差离合器励磁线圈中有电流流过,其路径是:电源相线L→接插件XP1→开关S→熔断器FU→接插件XP3→励磁线圈→接插件XP4→单向可控硅KZ→接插件XP2→电源零线N。这时我们只要在每个电源周期内准确控制IC1②脚由高电平转换为低电平的时刻,就能调节可控硅KZ的导通角,从而调节励磁电流和电动机的转速。 变压器二次的10V电压经过二极管D11和D10整流、电容器C3和C6滤波、稳压管DW2和DW1稳压,得到+5.1V的V+和-5.1V的V-,作为集成电路LM358的工作电源使用。LM358是双运放电路,其①脚、②脚和③脚内部是一个运放,它的正输入端③脚经电阻R19接地;负输入端②脚接有3路信号:一是由转速调整电位器RP2送来的调速信号;二是测速发电机输出电压经D1~D6整流、再由“反馈量调节”电位器RP3调整后送来的反馈信号;三是输出端①脚经电阻R12、R14、R13送来的负反馈信号,这个负反馈信号使得该运放成为名副其实的反相运算放大器。与此不同的是,由⑤脚、⑥脚、⑦脚内部电路构成的运放因为没有负反馈,所以其放大倍数接近无穷大,实际上已经具有了电压比较器的功能。这个电压比较器正输入端⑤脚经电阻R18接地,负输入端⑥脚接有①脚经电阻R11送来的转速控制信号,以及经电阻R8和R10送来的同步信号,这个同步信号就是半波整流、滤波后的残余纹波。 操作调速电位器RP2,可对受控电动机进行调速。例如,顺时针旋转电位器RP2,相当于图1中RP2的中间头向下移动,②脚电位趋向于负,经运放反相放大后,输出端①脚电位趋向于正;相反情况时,①脚电位趋向于负。

电磁调速电动机工作原理

电磁调速电动机工作原理 电磁调速电动机工作原理 2010-06-04 09:06:54| 分类:电机|标签:|字号大中小订阅

=1 _________ & 1- 原动机2-工作气隙3-主轴4-输岀轴5■磁极6-电枢 电磁滑差离合器的机械特性可近似地用下列经验公式表示: n=nO-KT2/l4f 式中:n0 —离合器主动部分(鼠 笼电动机)的转速;n —离合器从动部分(磁极)的转速;If —励磁电流;K —与离合器结构有关的系数; T —离合器的电磁转矩。当稳定运行时,负载转矩与离合器的电磁转矩相等。由上述公式可知:( 1)当负 载一定时,励磁电流If 的大小决定从动部分转速的高低, 励磁电流愈大,转速愈高;反之,励磁电流愈小, 转速就愈低。根据这一特性,可以利用电气控制电路非常方便地调节从动部分的转速。( 2)当励磁电流 一定时,从动部分转速将随着负载转矩增加而急剧降低,并且这种下降在弱励磁电流的情况下更加严重, 如图2-20a 所示,它具有较软的机械特性,这种软的机械特性在许多情况下,不能满足生产机械的要求。 为了获得范围较广,平滑而稳定的的调速特性,通常采用速度负反馈的措施,使电磁滑差离合器具有如图 2- 20b 所示的硬机械特性。 图2 — 20电磁调速异步电动机机械特性曲线图 2— 21为带有速度负反馈的电磁调速异步电动机原理框图。 它是利用测速发电机把离合器的输岀速度 n 换成交流电压U -,再经整流器变成直流电压 U -。将U -送 入比较元件,与给定直流励磁电压 Uf 进行比较。得电压差厶Uf — U -。所以输入离合器的励磁电流 If 不是 正比于励磁电压 Uf ,而是正比于电压△ U 。由于U ?(U ―)的大小与转速 n 有关,n 增大,U ?(U -) 变大。n 减小,U ?(U ―)变小。因此,在给定直流励磁电压 Uf 有变情况下,输入的励磁电流 If 的大小 n 11 D

电磁调速电机控制器接线

电磁调速电动机接线图 电磁调速电动机是由滑差离合器和一般异步电动机结合在一起组成的,在规定的范围内,它能实现均匀连续无极调速。 电磁调速控制器:7芯接线(1、2、3、4、5、6、7) 电磁调速电动机:5端子(励磁线圈:F1、F2、测速发电机:U、V、W) 电磁调速控制器1、2接220V电源相线和零线; 3、4(两根粗的)接励磁线圈F1、F2; 5、6、7接电磁调速电机的测速发电机U、V、W 一般异步电动机:U、V、W通过接触器接电源 R 、S、T。

一、型号含义: 二、使用条件: 1、海拔不超过1000m。 2、周围环境温度;-5℃-+40℃。 3、相对湿度不超过90% (20℃以下时)。 4、振动频率10-15OHz时,其最大振动加速度应不超过0.5g 5、电网电压幅位波动±10%额定值时、保证额定使用。 6、周围介质没有导电尘埃和能腐蚀金属和破坏绝缘的气体。 三、主要技术数据: 3.1手操普通型(见下表) 型号JDIA-11 JDIA-40 JDIA-90 电源电压-220V ±10%频率50-60Hz 员大输出定额直流90V 3.15A 直流90V 5A 直流90V 可控制电机功率0.55~11KW 15 ~ 40KW 45 ~ 90K 测速发电机单相或三相中频电压转速比为≥2V/100min ≤3% 额定转速时的转速变 化率

稳速精度≤1% 四、基本工作原理: 从图1方框图可知,控制器由可控硅主回路、给定电路、触测速负反馈电路等环节组成。 主回路:采用可控硅半波直流电路。由于励磁线圈是一个载,为了让电流连续,因此在励磁线圈前并联一个续6R二级管(C2)。 主回路的保护装置:用熔断器(RD)进行短路保护,用压敏1(Rv)进行交流侧浪涌电压保。 给定电路:4w交流电压由变压器副边经BZ01桥式整流,C2兀型滤波后,以WD2WD1,稳压管加到给定电位器w1,两端。 测速负反馈电路:测速发电机三相(或单相)电压经D6×6后由C3滤波加到反馈电位器W2二端,此直流电压随调速电机的转速性变化,作为速度反馈信号与给定信号相比较,由于它的极性是与给压相反的,它的增加将减少综合信号(等于给定信号反馈信号),即起的作用。使骨差沾实现嵌恒转矩无级调速。

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

电磁调速电机工作原理

电磁调速电机是一种控制简单的交流调速电动机,由Y系列三相异步电动机、涡流离 合器(又称电磁转差离合器或滑差离合器)和测速发电机组成,通常与JZT系列及YGT 系列控制器(或其他控制装置)组成一套具有测速负反馈系统的交流无级调速驱动装置,能在比较宽广的转速范围内进行平滑的无级调速,结构简单,运行稳定,实用可*,维护方便。设备投资少;起动性能好,起动转矩大,起动平滑;控制功率小;调速精度高,调速范围广,无失控区等优点,作为工业恒转矩或递减转矩的负载机械的无级调 速之用,尤其适宜作流量变化较大的泵和风机负载拖动之用,能够获得良好的节能效果。 JZT系列及YGT系列电磁调速电动机(滑差电动机)相配套的控制设备。用于手动操作,能向单台电机离合器的励磁绕组提供可调直流电压,使之实现宽范围无级调速。 为了提高滑差电机的机械特性硬度和抗干扰性能,本控制器采用速度负反馈及电压微 分负反馈电路的反馈系统。 故障排除方法 故障现象故障原因排除方法 1.离合器转速不能调节、仅能告诉运行不能低速运行(失控)(1)滑差空载运行。(2)“速度反馈”调节电位器在极限位置(未加反馈)(1)加上一定的负载(大于10%的额定转矩) (2)转动“反馈电位器”并按五章方法调整。 2.电压电网波动严重影响转速稳定。(1)WB稳压管损坏(1)更换稳压管WB并调 整W5使至电流不致过大或过小,测量WB两端电压18V左右为正常。 3.某一转速运行时、周期性摆动现象严重。(1)励磁线头接反(周期振荡) (2)电容损坏(非周期性振荡)(1)改变接线极性。更换径向磁钢。 (2)更换电容 4.接通电源保险丝熔断。(1)引出线接错 (2)续流二极管ZP接反或击穿 (3)变压器初级短路 (4)压敏电阻Ry被电源过压击穿而短路 (5)KP可控硅损坏短路 (1)检查及整理线路。 (2)检查续流二极管ZP及可控硅KP,若损坏应更换。 (3)检查及修理变压器TB。 (4)更换压敏电阻。 5.接通电源指示灯、转动调速电位器,离合器不转。(1)调速电位器短路 (2)接线开路 (3)晶体管损坏 (4)变压器次级没有电压

电机调速控制设计

系统设计专题之电机调速控制设计 学院:自动化与电气工程学院 班级: ******** 姓名: ***** 学号: ******* 日期: *******

1CPLD系统简介 1.1CPLD简介 CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL 和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 1.2CPLD系统的基本构架 主要包括有处理器、外围电路及接口和外部设备三大部分其中外围电路一般包括有时钟、复位电路、。程序存储器、数据存储器和电源模块等部件组成。外部设备一般应配有USB、显示器、键盘和其他等设备及接口电路。在一片CPLD 微处理器基础上增加电源电路、时钟电路和存储器电路,就构成了一个CPLD核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1.3CPLD系统的特点 采用32位EPM3032A微处理器和实时操作系统组成的CPLD控制系统,与传统基于单片机的控制系统和基于PC的控制方式相比,具有以下突出优点:性能方面:采用32位RISC结构微处理器,主频从30MHz到1200MHz以上,接近PC机的水平,但体积更小,能够真正地“嵌入”到设备中。 实时性方面:CPLD机控制器内嵌实时操作系统(RTOS),能够完全保证控制系统的强实时性。 人机交互方面:CPLD控制器可支持大屏幕的液晶显示器,提供功能强大的图形用户界面,这些方面的性能也接近于PC,优于单片机。 系统升级方面:CPLD控制器可为控制系统专门设计,其功能专一,成本较低,而且开放的用户程序接口(API)保证了系统能够快速升级和更新。 1.4CPLD技术的应用领域 CPLD技术可应用在:工业控制;交通管理;信息家电;家庭智能管理;网络及电子商务;环境监测;机器人等领域。 在工业和服务领域中,大量CPLD技术也已经应用于工业控制、数控机床、智能工具、工业机器人、服务机器人等各个行业,正在逐渐改变着传统的工业生产和服务方式。例如,飞机的电子设备、城市地铁购票系统等都可应用CPLD系统来实现。

电磁调速电动机,教案

电机技术与控制—教案 任课教师:罗钟祁 2010年9月

教师课时授课计划

教师课时授课计划

教师课时授课计划

项目一电磁调速电动机 (一)`教学组织 1.检查学生出勤及着装情况 2.安全训导 (二)授课内容 一、电磁调速电动机 电磁调速电动机也称滑差电动机,国外则称VS电动机(VaryingS peedMotor)、AS电动机(AdjustbleSpeedMotor)或EC电动机(EddyCurrendMotor)。是一种交流恒转矩调速电动机,通过晶闸管控制可实现交流无极调速。适用于恒转矩负载的各种机械设备,在矿山、冶金、纺织、化工、造纸、印染、水泥等部门得到广泛应用。当用于变负荷的风机、水泵时以转速控制代替传统的节流控制,可取得显著的节能效果。 1 电磁调速电动机的规格型号 (1)YCT系列电磁调速电动机 目前我国生产的YCT系列电磁调速电动机是全国统一设计的,取代JZT系列电动机的更新产品,是目前我国推广的节能产品之一。 产品型号含义 Y C T □□□-4 □ 交流异步━━┛┃┃──┬─┃┗━拖动电动机功率挡(A或B)电磁━━━━┛┃┃┗━━━━拖动电动机极数 调速━━━━━┛┗━━━━━━中心高 (2)YDCT系列換极式电磁调速电动机 YDCT系列电磁调速电动机是YCT系列电磁调速电动机的派生产品。它用YD系列4/6极双速三相异步电动机作为拖动电动机,与JZT6、JZT7型換极式调速电动机控制器配套使用、可实现宽范围无级调速,并且随着转速的变化,交流异步电动机能自动进行4极和6极切換。 (3)YCTD系列低电阻电枢电磁调速电动机 YCTD系列电磁调速电动机是风机、泵类专用的电磁调速电动机、由于JZT 和YCT系列电磁调速电动机的电磁转差离合器均采用实心钢电枢结构,涡流电阻率高,因此转差率大,电动机运行效率较低。近年来,我国根据国外电磁调速电动机的发展趋势和英国J.DA VIES教授提出的“低电阻端环电枢”和“电枢分

电磁调速电动机(修改)

电机技术与控制—教案 项目一电磁调速电动机 (一)`教学组织 1.检查学生出勤及着装情况

2.安全训导 (二)授课内容 一、电磁调速电动机 电磁调速电动机也称滑差电动机,国外则称VS电动机(VaryingS peedMotor)、AS电动机(AdjustbleSpeedMotor)或EC电动机(EddyCurrendMotor)。是一种交流恒转矩调速电动机,通过晶闸管控制可实现交流无极调速。适用于恒转矩负载的各种机械设备,在矿山、冶金、纺织、化工、造纸、印染、水泥等部门得到广泛应用。当用于变负荷的风机、水泵时以转速控制代替传统的节流控制,可取得显著的节能效果。 1 电磁调速电动机的规格型号 (1)YCT系列电磁调速电动机 目前我国生产的YCT系列电磁调速电动机是全国统一设计的,取代JZT系列电动机的更新产品,是目前我国推广的节能产品之一。 产品型号含义 Y C T □□□-4 □ 交流异步━━┛┃┃──┬─┃┗━拖动电动机功率挡(A或B)电磁━━━━┛┃┃┗━━━━拖动电动机极数 调速━━━━━┛┗━━━━━━中心高 (2)YDCT系列換极式电磁调速电动机 YDCT系列电磁调速电动机是YCT系列电磁调速电动机的派生产品。它用YD系列4/6极双速三相异步电动机作为拖动电动机,与JZT6、JZT7型換极式调速电动机控制器配套使用、可实现宽范围无级调速,并且随着转速的变化,交流异步电动机能自动进行4极和6极切換。 (3)YCTD系列低电阻电枢电磁调速电动机 YCTD系列电磁调速电动机是风机、泵类专用的电磁调速电动机、由于JZT 和YCT系列电磁调速电动机的电磁转差离合器均采用实心钢电枢结构,涡流电阻率高,因此转差率大,电动机运行效率较低。近年来,我国根据国外电磁调速电动机的发展趋势和英国J.DA VIES教授提出的“低电阻端环电枢”和“电枢分层”理论,在YCT系列基础上,采用低电阻端环技术研制成功了YCTD系列风机、泵类专用电磁调速电动机。该系列产品最高输出转速高达原动机额定转速的95%左右,与YCT系列相比,效率提高10%以上,因而使调速节能和使用效果

电磁调速电动机工作原理

电磁调速电动机工作原理 2010-06-04 09:06:54| 分类:电机| 标签:|字号大中小订阅 电磁调速异步电动机又称滑差电机,它是一种恒转矩交流无级变速电动机。由于它具有调速范围广、速度调节开滑、起动转矩大、控制功率小、有速度负反馈的自动调节系统时机械特性硬度高等一系列优点,因此在印刷机及骑马订书机、无线装订高频烘干联动机中都得到广泛应用。如801型对开立式停回转凸版印刷机、JS2101型对开双面胶印机,J2105型对开单色胶印机、J2108型对开单色胶印机、PZ4880-01A 型对开四色胶印机等印刷机械采用这种电动机就更能符合印刷工艺要求。烘版机采用这种电动机调速后,能有效地控制胶膜厚度,操作十分方便。骑马订书机采用这种电动机调速,能够根据书刊的要求相应地调节转速而提高书刊装订质量。 带有速度负反馈的电磁调速异步电动机的主要缺点是:在空载或轻载(小于10%额定转矩)时,由于反馈不足,会造成失控现象;在调速时,随着转速降低,离合器的输出功率和效率也相应地按比例下降。所以此电机适用于长期高速运转和短时间低速运转。为适应印刷机低速运转的需要,在采用电磁调速异步电动机作主驱动的印刷机中往往再配装一台三相异步电动机作为低速电机使用。 现将该电动机工作情况作简要介绍 一、电磁调速异步电动机结构与工作原理 电磁调速异步电动机是由普通鼠笼式异步电动机、电磁滑差离合器和电气控制装置三部分组成。异步电机作为原动机使用,当它旋转时带动离合器的电枢一起旋转,电气控制装置是提供滑差离合器励磁线圈励磁电流的装置。这里主要介绍电磁滑差离合器,图2-19是其结构示意图。它包括电枢、磁极和励磁线圈三部分。电枢为铸钢制成的圆筒形结构,它与鼠笼式异步电动机的转轴相连接,俗称主动部分;磁极做成爪形结构,装在负载轴上,俗称从动部分。主动部分和从动部分在机械上无任何联系。当励磁线圈通过电流时产生磁场,爪形结构便形成很多对磁极。此时若电枢被鼠笼式异步电动机拖着旋转,那么它便切割磁场相互作用,产生转矩,于是从动部分的磁极便跟着主动部分电枢一起旋转,前者的转速低于后者,因为只有当电枢与磁场存在着相对运动时,电枢才能切割磁力线。磁极随电枢旋转的原理与普通异步电动机转子跟着定子绕组的旋转磁场运动的原理没有本质区别,所不同的是:异步电动机的旋转磁场由定子绕组中的三相交流电产生,而电磁滑差离合器的磁场则由励磁线圈中的直流电流产生,并由于电枢旋转才起到旋转磁场的作用。 图2-19 电磁滑差离合器基本结构示意图

电机调速控制

一、直流电机调速方法 (1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢 电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内 无级平滑调速的系统来说,这种方法最好。I a 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2)改变电动机主磁通Φ。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。 I f 变化时间遇到的时间常数同I a 变化遇到的相比要大得多,响应速度较慢, 但所需电源容景小。 (3)改变电枢回路电阻R。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大暈电能。 二、异步电机调速方法 三相异步电动机转速公式为:n60f p1s。 从上式可见,改变供电频率f、电动机的极对数P及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种: (1)高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。 (2)有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中; (3)电磁离合器的调速方法,能量损耗在离合器线圈中;

电磁调速电动机调速

电磁调速电动机调速 电磁调速电动机由恒速笼型电动机和靠励磁电流调速的电磁离合器组成。笼型电动机作为主动机,带动电磁离合器,为主动部分;其从动部分与负载连接,且与主动部分只有磁路联系而无机械联系。通过控制励磁电流改变磁路磁通,使离合器产生可控涡流转矩,实现调速目的。 电磁调速电动机又称滑差电机或VS电机,国内已成系列,功率范围0.4~500 kW。 该调速方法的优点:结构及控制线路简单,加工方便,运行可靠,价格便宜,易于维修及对电网无谐波影响。在闭环控制时,调速范围大于10:1,调速精度约2%。适用于中小功率电动机。缺点是:本身低速效率低,高速特性软(但对风机的负载特性影响不大),输出最大转速只有空载转速n0的80%~90%,损失较大。 变极对数调速 当电网频率保持50Hz恒定时,根据n0=60f/P,只要改变极对数P,即可方便地得到3000r/min、1500r/min…,等不同的同步转速。由于没有附加转差功率损耗,所以这是一种高效型的调速方法。由于P都是正整数,因此调速不能做到连续平滑,只能是有级调速该法属于高效型调速方法,其优点主要是控制简单、初投资少、维护方便、可分段启动和减速,节能效果好。双速电动机驱动风机的节电效果见表3。缺点是只能有级调速,改造时原电动机需要被多速电动机所取代。 变频调速 由于同步转速与电源频率f1成正比,所以只要能连续改变f1就可以实现无级调速。变频调速不存在人为地附加转差损失,故该法已成为现代交流调速的基础和主力,也是风机比较理想且有发展前途的调速方法。变频器可分成交流→直流→交流(简称交-直-交)变频器和交流→交流(简称交-交)变频器两大类。前者又称带直流环节的间接式变频器;后者又称直接式变频器简言之,以改变异步电动机定子端输入电源的频率来改变电动机转速的方式称为变频调速。 在风机上经常使用的变频调速装置主要有交-直-交式中的电压型、电流型及脉冲宽度调制型(PWM)3种。 变频调速的优点是效率高,不存在因调频而带来的附加转差损耗;调速范围宽,一般可达20:1;调速精度高,易实现无级调速。启动又相当于分级启动,所以启、制动能耗少主要缺点是变频器复杂,不仅初投资大,而且要求使用维护及管理技术水平高

单片机对电机的调速控制电路

单片机对直流电机的调速控制电路 刘新阳李静晶摘要: 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。在所设计的这个电路中,用PWM对直流电机转速做精确控制。电路中用到的电机驱动芯片L298N是SGS公司的产品,内部包含4通道逻辑驱动电路,是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。 关键字: PWM 单片机L298 直流电机 一、引言 提到电机转速控制一般大家都会想到调节电机的供电电压,但调节电压会使电机的转矩发生很大的变化。在实际生活中,很多时候我们希望能在电机转速得到控制的前提下保持电机的转矩,怎样克服这个问题呢,在查询了很多资料和进行了大量实验后我认为使用电机的PWM控制可以很好的解决这一问题。 二、设计原理 在电机控制中我采用了脉宽调制PWM,脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池本身就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组

可能的取值范围之内。而模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。例如使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并像连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%。 这样利用PWM对电机的控制,就可以在不改变电机转矩前提下对电机进行调速控制了。 三、电路 电路中用到的单片机和电机驱动芯片L298N都用到5V电源,而电机使用的是12V电压,所以我用7805做稳压芯片,如图1。输入端和输出端的电容起到去耦作用。

jda-40电磁调速电机控制器说明书

JD1A-40电磁调速电机控制器 产 品 使 用 说 明 书 江苏省泰州市耐特调速电机有限公司

JDIA-40型电磁调速电动机控制器是原机械工业部全国联合统一设计产品,用于电磁调速电动机(滑差电机)的调速控制。实现恒转矩无级调速,当负载为风机和泵类时,节电效果显著,可达10%~30%,是我国目前推广的节能产品之一。 1、型号含义: 2、使用条件: 2.1、海拔不超过1000m 。 2.2、周围环境温度;-5℃-+40℃。 2.3、相对湿度不超过90%(20℃以下时)。 2.4、振动频率10-15OHz 时,其最大振动加速度应不超过0.5g 。 2.5、电网电压幅位波动±10%额定值时、保证额定使用。 2.6、周围介质没有导电尘埃和能腐蚀金属和破坏绝缘的气体。 3、主要技术数据: 3.1调速范围: 电源为50Hz 时:1250~125转/分60Hz 时:1500~150转/分 3.2转速变化率(机械特性硬度)≤2.5% 100%100%%10X 额定最高速度负载下是转速—负载下的转速转速变化率= 3.3稳速精度:≤1% 3.4最大输出:直流90V 3.5控制电机功率:0.55~40KW 3.6测速发动机三相2V ≤3.5V/100r .p.m 。 4.基本工作原理:

JD1A—40电磁调速电动机控制装置是由速度调节器、移相触发器、可控硅整流电路及速度负反馈等环节所组成。 图1为装置原理方框图。图2为装置的电气原理图。图3为装置的移相触发各点波形图。从图1-图4可知,二种线路的工作原理都是相同的。速度指令信号电压和调速负反馈信号电压比较后,其差值信号被送入速度调节器(或前置放大器)进行放大,放大后的信号电压与锯齿波叠加,控制了晶体管的导通时刻,产生了随着差值信号电压改变而移动的脉冲,从而控制了可控硅的开放角,使滑差离合器的激磁电流得到了控制,即滑差离合器的转速随着激磁电流的改变而改变。由于速度负反馈的作用,使电磁调速电动机实现恒转矩无极调速。 从图2-图3可知,JD1A—40型的速度指令信号电压是由装在控制箱面板上的速度操作电位器产生的。 5.结构、安装接线说明与注意事项: 5,1控制器的结构为塑料密封结构。具有IP5X的防尘等级,可用于面板嵌入式或墙挂式安装,底部进线,接线如图5,其外形尺寸安装方法如图4图6所示。 5.2安装使用前,须用500伏兆欧表检查控制器绝缘电阻,其阻值不应低于1兆欧,如达不到要求须进行干燥,干燥温度不应超过45℃,以免损坏元件。 5.3在拖动电机未起动情况下,不要单独操作控制器,以免控制器或烧毁调速电动机激磁线圈。 6.调整与试运行: 6.1检查熔断丝规格及转速表指针是否在零位。接线是否正确。 6.2接通电动机电源、检查旋转方向是否与被托动机械一致 6.3试车时。先起动异步电动机,再接通控制器电源,指示灯亮,旋动调速旋钮,此时转速表上读数逐渐上升,根据需要可将转速调至某一数值稳定下来。6.4转速表指示值校正,按顺时针方向转动给定电位器W1与任意位置,用机械转速表或其他仪表检查调速电机的实际转速与转速表指示值,不一样时调校表电位器W3。 6.5按顺时针方向转动给定电位器W2至最大时,调节反馈电位器W2使转速表符合表1的规定。

JD1A电磁调速电动机控制器资料

JD1A电磁调速电动机控制器资料(使用说明书) 默认分类2010-03-03 12:49:22 阅读105 评论0 字号:大中小 电气型号2009-09-12 09:15:39 阅读461 评论0 字号:大中小 资料图片: JD1A电磁调速电动机控制器是原机械工业部全国联合(统一)设计产品,用于电磁调速电动机(滑差电机)的调速控制,实现恒转矩无级调速。 2. 正常工作条件 2.1 海拔不超过1000m; 2.2 周围环境温度:-10℃~ +40℃; 2.3 相对湿度不超过90%(20℃以下时); 2.4 振动频率10~15Hz时,其最大振动加速度应不超过0.5g; 2.5 周围空气中没有导电尘埃和能腐蚀金属和破坏绝缘的气体。

4.结构、安装接线与注意事项 4.1 控制器为塑料密封结构,具有IP5X的防尘等级,可用于面板嵌入式墙挂式安装,底部进线,接线如下图(如果测速发电机为单相发电机,只有两个线头,请接插头的第6、第7脚、空第5脚)。

4.2接线 控制器外接线7条,是用P型插头与电机相连接,插头正面有标号,①、②为控制器电源220V,①为相线(火线)必须接至接触器下端(防止停电又来电时瞬间电压把控制器击坏)。②为零线。③、④接至电机前端励磁绕组F1、F2。⑤、⑥、⑦接至电机前端测速发电机上U、V、W。 4.3先检查接线是否正确,确认后启动电机,再接通控制器电源,指示灯亮旋动调速旋钮,此时转速 表上读数逐渐上升,根据需要转速稳定下来。 4.4关机 先把调速旋钮调回零位,关掉控制器电源(注意:必须关掉电源,以免损坏),再关掉电机。 5、调整与试运行 5.1转速表指示值校正。顺时针方向转动给定电位器RP1于任意位置,用机械转速或其它仪表检查 调速电机的实际转速,若实际转速与转速表指示值不一致,调速校表电位器RP3。 5.2顺时针方向转动给定电位器RP1至最大,调节反馈电位器RP2,使转速电机铭牌所标上限转速 一致。(一般1200转/分~1320转/分) 6、维护及修理 6.1周围环境保持清洁,防止油污水份及潮气进入控制器内部,如发现印刷电路板插脚沾污,则须及 时用酒精擦洗,以免接触不良,影响工作。 6.2在停放时间较长或必要时,应测量控制器的绝缘电阻,阻值不低于1兆 欧。 6.3故障原因及修理

相异步电动机的几种调速控制

三相异步电动机的几种调速控制 收藏此信息添加:佚名来源: 根据异步电动机的转差率S表达式: 可知交流电动机转速公式如下: 式中n---电动机的转速,r/min; p---电动机极对数; f1---供电电源频率,Hz; s---异步电动机的转差率。 由上式分析,通过改变定子电压频率f1、极对数p以及转差率s都可以实现交流异步电动机的速度调节,具体可以归纳为变极调速、变转差率调速和变频调速三大类,而变转差率调速又包括调压调速、转子串电阻调速、串级调速等,它们都属于转差功率消耗型的调速方法。 一、变极调速

1、变极调速的方法 变换异步电动机绕组极数从而改变同步转速进行调速的方式称为变极调速。其转速只能按阶跃方式变化,不能连续变化。变极调速的基本原理是:如果电网频率不变,电动机的同步转速与它的极对数成反比。因此,变更电动机绕组的结线方式,使其在不同的极对数下运行,其同步转速便会随之改变。异步电动机的极对数是由定子绕组的联接方式来决定,这样就可以通过改换定子绕组的联接来改变异步电动机的极对数。变更极对数的调速方法一般仅适用于笼型异步电动机。双速电动机、三速电动机是变极调速中最常用的两种形式。 2.双速电动机的控制线路 双速电动机的定子绕组的联接方式常有两种:一种是绕组从三角形改成双星形,如下图(a)所示的连接方式转换成如图(c)所示的连接方式,另一种是绕组从单星形改成双星形,如图(b)所示的连接方式转换成如图(c)所示的连接方式,这两种接法都能使电动机产生的磁极对数减少一半即电动机的转速提高一倍。 双速电动机的定子绕组的接线图

下图是双速电动机三角形变双星形的控制原理图,当按下起动按钮SB2,主电路接触器KMl的主触头闭合,电动机三角形连接,电动机以低速运转;同时KA的常开触头闭合使时间继电器线圈带电,经过一段时间(时间继电器的整定时间),KMl的主触头断开,KM2、KM3的主触头闭合,电动机的定子绕组由三角形变双星形,电动机以高速运转。 双速电动机的控制原理图 线路工作原理分析:

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η的大小。通过改变η的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路

电磁调速电机规格参数

YCT (卧式)系列电磁调速电机详细信息 ?产品描述: YCT(卧式)/ YCTL(立式)系列电磁调速电动机是机械工业部组织的Y系列异步电动机的主要派生系列。电磁调速电动机由拖动电机(Y系列电动机)、电磁转差离合器和控制器三部份组成,可用于恒转距负载场合,特别适宜在递减转矩负载中使用(例如离心式水泵和风机),有较明显的节能效果。 YCT/ YCTL系列电磁调速电动机能在规定的调速范围内均匀地、连续地无级调速、并能输出额定转矩,电机在运行中当负载转矩变动时可通过控制器的速度负反馈系统自动调节离合器的励磁电流,使输出转速基本上保持不变。本系列电机有全国统一的技术条件,并且外形安装尺寸、拖动电机及其它易损件全国各地生产厂均为统一,可以互换。 ?规格与主要技术参数:

?安装尺寸与外形尺寸: 型号 安装尺寸外形尺寸 A W B W C D E F G H K AB AD HD L YCT112-4A -4B 19 15.5 112 12 273 155 285 520 YCT132-4A -4B 216 241 4 65 YCT160-4A -4B 254 267 45 28 60 8 24 16 650 YCT180-4A ---- 279 3 430 690 YCT200-4A -4B 3 1 230 475 805 845 YCT225-4A -4B 356 4 37 225 19 485 260 531 965 1005 YCT250-4A -4B 4 0 14 42.5 25 0 1100 1140 YCT280-4A ---- 457 5 49 28 5 1230 YCT315-4A -4B 5 1400 YCT355-4A -4B -4C 610 630 108 65 75 75 140 18 20 20 58 67.5 67.5 355 28 780 410 415 415 765 1550 1620 1670 YCT4 8 32 8 0

伺服电机驱动控制器

目录 一、伺服驱动概述 (1) 二、本产品特性 (2) 三、电路原理图及PCB版图 (4) 四、电路功能模块分析 (4) 五、焊接(附元件清单) (14) 六、编者设计体会 (16)

一.伺服驱动概述 1. 伺服电机的概念 伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。 2.伺服电机分类 普通直流伺服电动机 直流伺服电机 { 低惯量直流伺服电动机 直流力矩电动机 3. 控制系统对伺服电动机的基本要求 宽广的调速范围 机械特性和调节特性均为线性 无“自转”现象 快速响应 控制功率小、重量轻、体积小等。 4. 直流伺服电机的基本特性 (1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M 变化而变化的规律,称直流电机的机械特性 (2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性 (3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性 5. 直流伺服电机的驱动原理 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境

相关主题
文本预览
相关文档 最新文档