结构力学静定平面桁架
- 格式:ppt
- 大小:3.13 MB
- 文档页数:72
《结构力学》第五章静定平面桁架《结构力学》第五章讲述了静定平面桁架的内容。
静定平面桁架是指在平面内所有节点的约束力和外力之间可以通过力平衡方程求解出来的桁架结构。
本章内容主要包括静定平面桁架的基本概念和原理,以及常见的静定平面桁架的求解方法。
在静定平面桁架中,基本概念和原理非常重要。
首先,了解节点的约束力和外力之间的平衡关系非常重要。
通过平衡方程可以解决约束力和外力之间的关系。
其次,了解节点的自由度也是关键,自由度指节点上的约束力的个数。
在静态平面桁架中,节点的自由度为2,因为节点上只有两个方向的约束力。
然后,了解节点的外部力和内部力之间的关系也是很关键的,通过平衡方程可以解决这些关系。
此外,了解支撑条件、桁架的刚度和材料的性质也是非常重要的。
为了求解静定平面桁架,可以使用力法、位移法或者变形能法。
力法是最常用的一种求解方法,其基本思想是通过平衡条件和节点自由度来解决节点的约束力和外力之间的关系。
具体来说,可以先通过平衡方程得到节点处的约束力之和,然后通过平衡方程再次求解每个节点的约束力。
位移法是通过求解位移来求解约束力和外力之间的关系。
其基本思想是通过平衡方程求解节点的约束力和位移之间的关系,然后通过位移和刚度来求解节点的约束力。
位移法的求解过程比较繁琐,但是可以在复杂情况下准确求解静定平面桁架。
变形能法是一种通过统计力学和能量原理来求解约束力和外力之间的关系的方法。
通过求解系统的总能量和变形能量的变化,可以求解节点的约束力。
变形能法的求解过程相对简单,但是需要对系统的能量进行合理的选择。
在应用静定平面桁架时,需要考虑一些实际问题。
首先,需要考虑桁架的几何形状和荷载情况。
几何形状和荷载情况对桁架的受力和变形有很大影响,因此需要对这些进行准确的描述和分析。
其次,需要考虑桁架的材料性质和刚度。
不同材料和刚度会对桁架的受力和变形产生不同影响。
最后,需要注意桁架的稳定性和安全性。
在设计和使用桁架时,需要遵循一些安全性要求,以确保桁架的结构稳定和使用安全。
§3-2 静定平面桁架1. 教学内容和要求本节主要学习静定平面桁架结构的受力特点和结构特点以及桁架结构的内力计算方法——结点法、截面法、联合法。
通过学习,熟练掌握桁架结构计算的方法,能够判断零杆、计算桁架的轴力。
2. 主要内容1. 桁架的结构特点2. 结点法(1)3. 结点法(2)4. 结点法(3)5. 结点法(4)6. 截面法(1)7. 截面法(2)8. 联合法3. 学习指导桁架内力计算中主要是应用平面力系的平衡方程,因此,应正确理解平衡方程的特点和结构的受力特点,最关键的是利用力系的可解条件,从而使问题可解。
学习中应注重理解方法特点,多做练习、分析,从而达到灵活应用。
4. 参考资料《结构力学教程(Ⅰ)》P39~P493.2.1 静定平面桁架的特点1. 静定平面桁架:由若干直杆在两端铰接组成的静定结构。
桁架在工程实际中得到广泛的应用,但是,结构力学中的桁架与实际有差别,主要进行了以下简化:(1)所有结点都是无摩擦的理想铰;(2)各杆的轴线都是直线并通过铰的中心;(3)荷载和支座反力都作用在结点上。
2. 桁架的受力特点桁架的杆件都在两端受轴向力,因此,桁架中的所有杆件均为二力杆。
3. 桁架的分类简单桁架:由一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-11a)联合桁架:由几个简单桁架,按两刚片法则或三刚片法则所组成的几何不变体。
(图3-11b)复杂桁架:不属于前两种的桁架。
(图3-11c)图3-11a图3-11b图3-11c4.桁架内力计算的方法结点法、截面法、联合法。
3.2.2 结点法结点法:截取桁架的一个结点为脱离体计算桁架内力的方法。
结点上的荷载、反力和杆件内力作用线都汇交于一点,组成了平面汇交力系,因此,结点法是利用平面汇交力系求解内力的。
※结点平衡的特殊情,常见的以下几种情况可使计算简化:图3-12a1图3-12a2图3-12b 1.零杆的判定:(1)不共线的两杆结点,当无荷载作用时,则两杆内力为零(图3-12a1),N1=N2=0。