结构力学-第三章-静定桁架
- 格式:pptx
- 大小:2.98 MB
- 文档页数:71
§3-2 静定平面桁架1. 教学内容和要求本节主要学习静定平面桁架结构的受力特点和结构特点以及桁架结构的内力计算方法——结点法、截面法、联合法。
通过学习,熟练掌握桁架结构计算的方法,能够判断零杆、计算桁架的轴力。
2. 主要内容1. 桁架的结构特点2. 结点法(1)3. 结点法(2)4. 结点法(3)5. 结点法(4)6. 截面法(1)7. 截面法(2)8. 联合法3. 学习指导桁架内力计算中主要是应用平面力系的平衡方程,因此,应正确理解平衡方程的特点和结构的受力特点,最关键的是利用力系的可解条件,从而使问题可解。
学习中应注重理解方法特点,多做练习、分析,从而达到灵活应用。
4. 参考资料《结构力学教程(Ⅰ)》P39~P493.2.1 静定平面桁架的特点1. 静定平面桁架:由若干直杆在两端铰接组成的静定结构。
桁架在工程实际中得到广泛的应用,但是,结构力学中的桁架与实际有差别,主要进行了以下简化:(1)所有结点都是无摩擦的理想铰;(2)各杆的轴线都是直线并通过铰的中心;(3)荷载和支座反力都作用在结点上。
2. 桁架的受力特点桁架的杆件都在两端受轴向力,因此,桁架中的所有杆件均为二力杆。
3. 桁架的分类简单桁架:由一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。
(图3-11a)联合桁架:由几个简单桁架,按两刚片法则或三刚片法则所组成的几何不变体。
(图3-11b)复杂桁架:不属于前两种的桁架。
(图3-11c)图3-11a图3-11b图3-11c4.桁架内力计算的方法结点法、截面法、联合法。
3.2.2 结点法结点法:截取桁架的一个结点为脱离体计算桁架内力的方法。
结点上的荷载、反力和杆件内力作用线都汇交于一点,组成了平面汇交力系,因此,结点法是利用平面汇交力系求解内力的。
※结点平衡的特殊情,常见的以下几种情况可使计算简化:图3-12a1图3-12a2图3-12b 1.零杆的判定:(1)不共线的两杆结点,当无荷载作用时,则两杆内力为零(图3-12a1),N1=N2=0。
第三章静定结构的内力与变形3-1判断如图所各桁架的零力杆并计算各杆内力。
P(a)(a)解:(1)272210=×−×+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。
对于结点1:N 1-2PN 1-33001P N =×−2121PN 221=−0233121=+×−−N N PN 331−=−对于结点3:N 3-43N 3-1PN N 31343−==−−对于结点4:N 4-64N 4-3PN N 33464−==−−对于结点2:N 2-52N 2-1PN N 21252==−−对于结点5:N 5-75N 5-2PN N 22575==−−杆件1-21-32-32-42-53-45-45-65-74-6内力P2P3−0P2P3−0P2P3−(b)(b)解:(1)082313=×−+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。
对于结点5:P5N 5-8PN −=−85对于结点8:N 7-88N 5-8Fθ5528785=+×−−N N PN 55287=−对于结点7:N 7-47N 7-8PN 55247=−对于结点4:N 3-44N 7-4PN N 5524743==−−对于结点3:N 1-33N 3-4PN N 5524331==−−杆件1-31-21-52-32-43-44-54-65-86-76-87-84-7内力P5520P5520P −0P 552P552(c)(c)解:(1)026228=×−×+=f 故该桁架为无多余约束的几何不变结构。
(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。
对于结点1:N 1-61N 1-3Pθ5561=+×−P N PN 561−=−05526131=×+−−N N PN 231=−对于结点3:3N 3-1N 3-5PN N 21353==−−杆件1-21-31-62-32-43-43-54-6内力P2P 5−0P20(e)(d )解:(1)02112316=×−×+=f 故该结构为无多余约束的几何不变结构。