五年级数学寒假提高班第8次课 余数问题
- 格式:doc
- 大小:137.66 KB
- 文档页数:4
五年级奥数:余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
第8讲数论(余数问题)1、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≢r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商;(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商。
余数一定要比除数小。
2、三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
(2)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
(3)同余定理若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m 整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)。
3、弃九法:任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
(思考:有没有求一个整数被11除的余数的快速方法呢?)4、同余同补问题:例1:(1)用某自然数a去除1992,得到商是46,余数是r,求a和r。
(2)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?练习:(1)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数;(2)用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?例2:三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
⼩学五年级逻辑思维学习—余数问题⼩学五年级逻辑思维学习—余数问题知识定位余数问题是数论知识板块中另⼀个内容丰富,题⽬难度较⼤的知识体系,也是各⼤杯赛⼩升初考试必考的奥数知识点,所以学好本讲对于学⽣来说⾮常重要。
许多孩⼦都接触过余数的有关问题,并有不少孩⼦说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三⼤余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应⽤。
知识梳理⼀、带余除法的定义及性质⼀般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上⾯的除法算式为⼀个带余除法算式。
这⾥:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0注:⼀个完美的带余除法讲解模型:如图,这是⼀堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本⼀捆打包,那么b就是除数的⾓⾊,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学⽣清晰的明⽩带余除法算式中4个量的关系。
并且可以看出余数⼀定要⽐除数⼩。
⼆、三⼤余数定理1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和⽐除数⼤时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
=。
例如:23,16除以5的余数分别是3和1,所以(2316)除以5的余数等于313当余数的和⽐除数⼤时,所求的余数等于余数之积再除以c的余数。
小学五年级逻辑思维学习—余数问题知识定位余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识梳理一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0注:一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
⨯=。
例如:23,16除以5的余数分别是3和1,所以(2316)⨯除以5的余数等于313当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
五年级下册数学奥数学案-余数问题苏教版一、导言在五年级下册的数学奥数学案中,余数问题是一个非常重要的内容。
掌握余数问题不仅能够帮助学生巩固对除法的理解,还能够培养学生的逻辑思维和问题解决能力。
在本文档中,我们将针对苏教版五年级下册的数学奥数学案中的余数问题进行详细的介绍和讲解。
二、什么是余数在进行除法运算时,如果除数不能整除被除数,则会产生一个余数。
余数表示了除数除不尽被除数的部分。
在数学中,余数通常用符号“%”表示。
例如,对于除法算式15÷7,我们可以得到商为2,余数为1。
表达成数学式就是15÷7=2,余1。
三、如何计算余数在计算余数时,我们可以使用数学中的除法算法来进行计算。
下面以一个例子来进行说明:例子:计算1234÷19的余数。
首先,我们将除数19写在左边,被除数1234写在左上方,然后从左往右逐位进行计算:19---------1234第一步,我们将19除以1(个位上的数字),得到的商为1,余数为0。
然后将余数0写在个位上。
19---------1234接下来,我们将余数0和2(十位上的数字)组合成为02,然后将02÷19进行计算。
得到的商为0,余数为2。
19---------123402最后,我们将余数2和3(百位上的数字)组合成为23,然后将23÷19进行计算。
得到的商为1,余数为4。
19---------1234124所以,1234÷19的商为1,余数为4。
四、余数问题的应用除了进行基本的余数计算,我们还可以将余数问题应用到其他数学问题中。
下面通过一些例子来说明:例子1:小明买糖果小明有27元,他想买一些糖果。
每颗糖果的价钱是3元。
小明想知道他能买多少颗糖果以及还剩下多少钱。
解答:首先,我们可以通过27÷3计算出可以买的整颗糖果的数量,得到的商为9。
然后,我们可以通过27%3计算出剩下的钱,得到的余数为0。
所以,小明能够买到9颗糖果,剩下的钱为0元。
余数问题方法和技巧1.有余数的除法式子是:被除数÷除数=商┅余数(余数<除数)2.有余数除法的相互关系:被除数=商╳除数+余数除数=(被除数-余数)÷商即除数能整除(被除数-余数)3.借助约数和倍数的关系例题1.□÷17=38┅□,问要使余数最大,被除数是多少?2.一个两位数除310的余数是37,求这样的两位数?3.两个数相除,商是22,余数是8,被除数、除数、商、余数之和为866.求这两个数。
4.在有余数除法中,从1—2010各数都被9除,所有余数的和是多少?5.1—2000之间能同时被3、5、7除都余2 的数有多少个?6.一个自然数除以3余2,除以5余4,除以7余5.这个自然数最小是多少?课堂练习:1.□÷24=121┅□,问要使余数最大,被除数是多少?2.237除以一个两位数所得的余数是6,问这样的两位数是多少?3. 两个数相除,商是15,余数是11,被除数、除数、商、余数之和为309.求这两个数。
3.在有余数除法中,从1—1000各数都被7除,所有余数的和是多少?4.1—400之间能同时被2、3、5除都余1 的数有多少个?5.一批学生参加课外活动小组,每5人一组多2 人,每6 人一组多1 人,每7人一组少2 人。
问参加课外活动小组的学生至少有多少人?课外练习:姓名1. 在()÷72=3┅()的式子中,被除数最大是多少?2.除法算式□÷□=20┅8中被除数最小是多少?3.将7、8、16、135这四个数分别填入下面式子使算式成立。
( )÷( )=( )┅( )4.一个数除以23余数是2 ,把被除数扩大4倍,余数是多少?5.个数相除,商是8,余数是16,被除数、除数、商、余数的和为447.求除数是多少?6.小明在计算除法时,把除数12写成21结果得到商是5,余数是10,正确的商和余数是多少?7.一个两位数除以一个一位数,商仍是两位数,余数是8 。
余数问题知识点:﹤1﹥带余除法表示:关键:除数×商=被除数-余数﹤2﹥余数的性质:﹤3﹥同余概念:﹤4﹥同余表示:﹤5﹥同余性质○1、○2、○3、○4﹤6﹥韩信点兵口诀:﹤7﹥应试:○1,○2。
我要上名校示例﹤1﹥两数相除商4余8,被除数、除数、商、余数之和等于415,则被除数是多少?练一练:两数相除商17余13,已知被除数、除数、商、余数之和为2113,则被除数是多少?示例﹤2﹥1257除以一个三位数余数是150,则这个三位数是多少?练一练:1104除以一个两位数余数是31,则这个两位数是多少?示例﹤3﹥一个自然数,用它去除63、91、129得到的三个余数的和是28,这个自然数是多少?练一练:有一个整数用它去除70、110、160所得到的3个余数之和是50,那么这个整数是多少?示例﹤4﹥自然数16520、14903、14177除以m余数相同,m最大是多少?练一练:一个大于1的自然数去除300、243、205时得到相同的余数,则这个自然数是多少?示例﹤5﹥今天是星期六,再过365365天后是星期几?练一练:若今天是星期六,从今天起102001天后的哪一天是星期几?示例﹤6﹥一个数除以3的余数是2,除以5的余数是1,这个数除以15的余数是多少?练一练:被3除余1,被7除余3的最小三位数是多少?示例﹤7﹥篮子里有若干个鸡蛋,每次拿3个,剩1个;每次拿5个,剩2个;每次拿7个剩3个,则篮子里至少有多少个鸡蛋?练一练:有一个数除以3余2,除以5余1,除以7余4,满足条件最小数是多少?示例﹤8﹥甲、乙两个代表团乘车去参观,每辆车可乘36人,两代表团坐满若干辆车后,甲代表团余下的11人与乙代表团余下的成员正好又坐满一辆车,参观完,甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片留念,那么拍完最后一张照片后,照相机里的胶卷还可拍多少张照片?(每个胶卷可拍36张照片)练一练:数119很奇特:当被2除时余数为1,当被3除时余数为2,当被4除时余数为3,当被5除时余数为4,当被6除时余数为5,具备这种性质的三位数还有多少个?示例﹤9﹥如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔,他先试着每隔2孔跳一步,结果只能跳到B孔,他又试着每隔4孔跳一步,也只能跳到B孔,最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?练一练:已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有多少个?示例﹤10﹥一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到一个商是a,又知这个自然数被17除余4,所得商被17除余15,最后得到一个商是a的2倍,求这个自然数。
在整数的除法中,只有能整除与不能整除两种情况,当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数基本关系式:被除数÷除数=商……余数(0≤余数<除数)余数基本恒等式:被除数=除数×商+余数知识梳理1. 一般地,如果是整数,是整数(不为0),若有,也就是,,我们称上面的除法算式为一个带余除法算式。
2.与的和除以c的余数,等于a、b分别除以c的余数之和,当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
3. a与b的乘积除以c的余数,等于a、b分别除以c的余数的积,当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例1一串数1、2、4、7、11、16、22、29、……这串数的组成规律为第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推,那么这串数左起第1992个数除以5的余数是_____。
分析与解:设这串数为a1、a2、a3、…、a1992、…,依题意知a=11a=1+12a=1+1+23a=1+1+2+34a=1+1+2+3+45……a=1+1+2+3+…+1991=1+996×19911992因为996÷5=199……1,1991÷5=398……1,所以996×1991的积除以5余数为1,1+996×1991除以5的余数是2。
因此,这串数左起第1992个数除以5的余数是2。
例2除以13所得的余数是_____。
分析与解:因为222222=2×111111=2×111×1001=2×111×7×11×13 所以222222能被13整除。
又因为2000=6×333+2,=,22÷13=1……9,所以要求的余数是9。
例3有一个自然数,用它分别去除63、90、130都有余数,三个余数的和是25。
五年级数奥--余数问题(详细分析讲解)各种与余数有关的整数问题,其中包括求方幂的末位数字,计算具有规律的多位数除以小整数的余数,以及用逐步试算法找出满足多个余数条件的最小数等.1.分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【分析与解】因为两个数和的余数同余与余数的和.有101,126,173,193除以3的余数依次为2,0,2,1.则101号运动员与126,173,193号运动员依次进行了2,1,0盘比赛,共3盘比赛;126号运动员与101,173,193号运动员依次进行了2,2,l盘比赛,共5盘比赛;173号运动员与101,126,193号运动员依次进行了1,2,0盘比赛,共3盘比赛;193号运动员与101,126,173号运动员依次进行了0,1,0盘比赛,共1盘比赛.所以,打球盘数最多的运动是126号,打了5盘.评注:两个数和的余数,同余与余数的和;两个数差的余数,同余与余数的差;两个数积的余数,同余与余数的积.2.自然数的个位数字是多少?【分析与解】我们先计算的个数数字,再减去1即为所求.(特别的如果是O,那么减去1后的个位数字因为借位为9)将一个数除以10,所得的余数即是这个数的个位数字.而积的余数,同余余数的积.有2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以i0的余数为6;2×2×2×2×2除以i0的余数为除以10的余数为4, 除以10的余数为8, 除以10的余数为6;…………也就是说,n个2相乘所得的积除以10的余数每4个数一循环.因为67÷4=16……3,所以除以10的余数同余与2×2×2,即余数为8,所以除以10的余数为7.即的个位数字为7.评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.3.算式7+7×7+…+ 计算结果的末两位数字是多少?【分析与解】我们只用算出7+7×7+…+7 的和除以100的余数,即为其末两位数字.7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7 ×7 ×7×7除以100的余数等于43×7除以100的余数为1;而除以100的余数等于的余数,即为7,……这样我们就得到一个规律除以100所得的余数,4个数一循环,依次为7,49,43,1.1990÷4=497……2,所以7+7×7+…+7×7×…的和除以100的余数同余.497×(7+49+43+1)+7+49=49756,除以100余56.所以算式7+7×7+…+ 计算结果的末两位数字是56.4.1990…1990除以9的余数是多少?【分析与解】能被9整除的数的特征是其数字和能被9整除,如果这个数的数字和除以9余a,那么再减去a而得到的新数一定能被9整除,因而这个新数加上a后再除以9,所得的余数一定为a,即一个数除以9的余数等于其数字和除以9的余数.的数字和为20×(1+9+9+0)=380,380的数字和又是3+8=11,11除以9的余数为2,所以除以9的余数是2.5.将1,2,3,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?【分析与解】1,2,3,...,30这30个数从左往右依次排列成一个51位数为:123456...910 (15)...19202l...25 (2930)记个位为第l位,十位为第2位,那么:它的奇数位数字和为:0+9+8+7+6+…+l+9+8+7+6+…+1+9+7+5+3+l=115:它的偶数位数字和为:3+ + +8+6+4+2=53;它的奇数位数字和与偶数位数字和的差为115—53:62.而62除以1l的余数为7.所以将原来的那个51位数增大4所得到的数123456…910…15…192021…25…2934就是1l倍数,则将123456…910…15…192021…25…2934减去4所得到数除以11的余数为7.即这个51位数除以11的余数是7.评注:如果记个位为第1位,十位为第2位,那么一个数除以11的余数为其奇数位数字和A减去偶数位数字和B的差A-B=C,再用C除以1l所得的余数即是原来那个数的余数.(如果减不开可将偶数位数字和B减去奇数位数字和A,求得B-A=C,再求出C除以1l的余数D,然后将11-D即为原来那个数除以11的余数).如:123456的奇数位数字和为6+4+2=12,偶数位数字和为5+3+1=9,奇数位数字和与偶数位数字和的差为12-9=3,所以123456除以11的余数为3.又如:654321的奇数位数字和为1+3+5=9,偶数位数字和为2+4+6=12,奇数位数字和减不开偶数位数字和,那么先将12-9=3,显然3除以11的余数为3,然后再用11-3=8,这个8即为654321除以11的余数.6.一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?【分析与解】这个数即为,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数.显然有能够被13整除,而1994÷6=332……2,即而是13的倍数,所以除以13的余数即为33除以13的余数为7.有,而,所以除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0.200÷6=33……2,所以除以所得商的第200位为5.除以13的个位即为33除以13的个位,为2.即商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7.7.己知:a= .问:a除以13的余数是几?【分析与解】因为1能被13整除,而1991÷3=663……2.有a= =1×1 +1×1 +1×+1×1 +…+1×1 +19911991所以a除以13的余数等于19911991除以13的余数8.8.有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?【分析与解】我们将这个数加上7,则这个数能被3整除,同时也能被4整除,显然能被12整除,所以原来这个数除以12的余数为12-7=5.9.某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?【分析与解】我们将这个数减去63,则得到的新数能被247整除,也能被248整除,而相邻的两个整数互质,所以得到的新数能被247×248整除,显然能被26整除.于是将新数加上63除以26的余数等于63除以26的余数为11.所以这个自然数被26除余数是11.10.一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?【分析与解】这个自然数可以表达为19m+9,也可以表达为23n+7,则有19m+9=23n+7,即23n-19m=2,将未知数系数与常数对19取模,有4n≡2(mod 19).n最小取10时,才有4n≡2(mod 19).所以原来的那个自然数最小为23×lO+7=237.评注:有时往往需要利用不定方程来清晰的表示余数关系,反过来不定方程往往需要利用余数的性质来求解.11.如图15-l,在一个圆圈上有几十个孔(少于100个).小明像玩跳棋那样从A 孔出发沿着逆时针方向,每隔几个孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好回到4孔.问这个圆圈上共有多少个孔?【分析与解】设这个圆圈有n个孔,那么有n除以3余1,n除以5余1.n 能被7整除.则将n-1是3、5的倍数,即是15的倍数,所以n=15t+1,又因为凡是7的倍数,即15t+1=7A,将系数与常数对7取模,有t+1≡0(mod7),所以t取6或6与7的倍数和.对应孔数为15×6+l=91或91与105的倍数和,满足题意的孔数只有91.即这个圆圈上共有91个孔.12.某住宅区有12家住户,他们的门牌号分别是1,2,3,…,12.他们的依次是12个连续的六位自然数,并且每家的都能被这家的门牌整除.已知这些的首位数字都小于6,并且门牌是9的这一家的也能被13整除,问这一家的是什么数?【分析与解】设这12个连续的自然数为n+1,n+2,n+3,…,n+12,那么有它们依次能被1,2,3,…,12整除,显然有凡能同时被1,2,3,…,12整除.即n为1,2,3,…,12的公倍数.[1,2,3,…,12]=23×32×5×7×11=27720,所以n是27720的倍数,设为27720k.则有第9家的门牌为27720k+9为13的倍数,即27720k+9=13A.将系数与常数对13取模有:4k+9≡0(mod 13),所以后可以取l或1与13的倍的和.有要求n+1,n+2,n+3,…,n+12,为六位数,且首位数字都小于6,所以k只能取14,有7n=27720×14=388080.那么门牌是9的这一家的是388080+9=388089.13.有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【分析与解】设这包牙签有n根,那么加上1根后为n+1根此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,51=23×32×5×7=2520,即n+1是2520的倍数,在满足题下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.14.有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【分析与解】设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.63÷M=A……a90÷M=B……b130÷M=C……ca+b+c=25,则(63+90+130)-(a+b+c)=(A+B+C)×M,即283-25=258=(A+B+C)×M.所以M是258的约数.258=2×3×43,显然当除数M为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不满足.而当除数M为43×2,43×3,43×2×3时,它除63的余数均是63,所以也不满足.那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.15.一个数去除551,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【分析与解】这个数A除55l,745,1133,1327,所得的余数相同,所以有551,745,1133,1327两两做差而得到的数一定是除数A的倍数.1327-1133=194,1133-745=388,745-551=194,1327-745=582,1327-551=77 6,1133-551=582.这些数都是A的倍数,所以A是它们的公约数,而它们的最大公约数(194,388,194,582,776,582)=194.所以,这个数最大可能为194.。
第八讲同余寒假班我们已经学习了余数问题,那一讲我们掌握了一些有关余数的基本性质,并解决了一些简单余数问题,本讲则是在此基础之上的进一步拓展与提高,因此本讲首先是基本性质应用的复习(例1、3、5),其次将是解决一些较复杂的综合余数问题(例2、4、6)。
一、基本性质的复习1、带余数除法算式:a÷b=q……r(a、b、q、r均为整数)从中我们应该得到:(1)b>r 除数大于余数(2)a-r=b×q 被除数减去余数则会出现整除关系,则带余数问题就可以转化为整数问题。
2、余数的性质:(1)可加性:和的余数等于余数的和。
即:两数和除以m的余数等于这两个数分别除以m的余数和。
例:7÷3=2……1 5÷3=1……2,则(7+5)÷3的余数就等于(1+2)÷3的余数0。
(2)可减性:差的余数等于余数的差。
即:两数差除以m的余数等于这两个数分别除以m的余数差。
例:17÷3=5……2 5÷3=1……2,则(17-5)÷3的余数就等于(2-2)÷3的余数0。
(3)可乘性:积的余数等于余数的积。
即:两数积除以m的余数等于这两个数分别除以m的余数积。
例:64÷7=9……1 45÷7=6……3,则(64×45)÷3的余数就等于(1×3)÷7的余数3。
二、同余式在生活中,若两个自然数a和b都除以同一个除数m时,余数相同该如何表示呢?在代数中我们称之为同余。
即:a与b同余于模m。
意思就是自然数a和b关于m来说是余数相同的。
用同余式表达为:a≡b(modm).注:若a与b同余于模m,则a与b的差一定被m整除。
(余数的可减性)三、例题讲解例1、分析:此题实际上是带余数除法算式的一个应用。
“1013除以一个两位数余数为12”,说明1013减去12以后就会被这个两位数整除,则这个两位数应该是1013-12=1001的因数,且是大于12的两位因数。
1 余数问题
月 日 姓 名
【知识要点】
1.如果a 被b 除得余数是r,那么a -r 能被b 整除。
如:42÷5=8……2,(42-2)能被5整除。
2.如果两个整数a 与c 被b 除所得的余数相同,那么a
-c 能被b 整除。
如⎩⎨⎧=÷=÷2
653228542 ,(42-32)能被5整除。
3.设a 与c 被b 除的余数分别是1r 、2r ,那么a 、c 的和(差、积)被b 除的余数与1r 、2r 的和(差、积)被b 除的余数相同,如42÷4=10……2,71÷4=17……3,(42+71)÷4与(2+3)÷4的余数相同,都余1。
【典型例题】
例1 王兰在计算有余数的除法时,把被除数137抄成173,结果商比原来多了3,而余数正好相同,请你算一算,这道题的除数是多少?余数又是多少?
例2 8496×5460+1894除以5的余数。
2 例
3 1616×324×456×2634的积被13除所得的余数是多少?
例4 有列数如下:4、5、9、14、23……问:这列数的第1999个数除以3,余数是几?
随堂小测
姓 名 成 绩
1.小刚在一次计算除法时,把被除数171错写成117,结果商少了3,而余数恰好相同,这题中的除数是几?
2. 376×4657+7322除以6的余数。
M05B009 3.473×309×1999被7除的余数是几?
4.有一列数如下:2、2、4、6、10、16……这列数的
第100个数除以6的余数。
课后作业
姓名家长签名成绩
1.小周在计算有余数的除法时,把被除数44错写成56,
结果商比原商多2,但余数恰好相同,那么该题余数是多少?
2.求418×814×1616的乘积除以13所得的余数
3
M05B009 3.4321×3153+1894除以8的余数。
4.有一列数如下:2、3、5、8、13、21……这列数的第99个数除以3的余数。
快乐驿站
张太太特别喜欢小狗,但是她自己不会训练,这次丈夫出国的时候,她特意让丈夫把刚出生一个月的小狗带到美国找高级马戏团训练.四个月后,丈夫把小狗带回家,并告诉她小狗在那边表现的很好,训练员说过,这只小狗可以做人吩咐它做的很多复杂的动作.但是,无论张太太怎么命令她,小狗就是无动于衷,更别提什么有难度的动作了.张太太很奇怪,你知道问题在那里吗?
4。