六年级奥数第8次课:圆与扇形(教师版)
- 格式:doc
- 大小:543.50 KB
- 文档页数:11
小学六年级奥数教案—11圆与扇形本教程共30讲圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为πR-πr=π(R-r)=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
圆与扇形精选题【例 1】 图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?【解析】 如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米).【巩固】如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是 .或【解析】 我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于222216m ⨯=()().【例 2】 如图中三个圆的半径都是5cm ,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)【解析】 将原图割补成如图,阴影部分正好是一个半圆,面积为255 3.14239.25(cm )⨯⨯÷=【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,221π2S r r =-,所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法,一定要找出图形之间的关系. 【例 3】 请计算图中阴影部分的面积.【解析】 法一:为了求得阴影部分的面积,可以从下图的整体面积中扣掉一个圆的面积,就是要求的面积了.=-要扣掉圆的面积,如果按照下图把圆切成两半后,从两端去扣掉也是一样.如此一来,就会出现一个长方形的面积.O半圆半圆103-=因此,所求的面积为210330cm ⨯=(). 【例 4】 求如图中阴影部分的面积.(圆周率取3.14)44【解析】 可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【解析】 原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为:2211227π738.5447⨯⨯≈⨯⨯=.四分之一大圆内的等腰直角三角形ABC 的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=. 【例 5】 (华校2005~2006年度第一学期期中测试第6题)大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【解析】 环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r -=平方厘米,那么环形的面积为:2222πππ()π50=157R r R r -=-=⨯(平方厘米).【巩固】图中阴影部分的面积是225cm ,求圆环的面积.【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==.【例 6】 (2008年101中学考题)已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a ,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米).【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a ,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【例 1】 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=. 方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=; 则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【例 2】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和.ABP ∆的面积为:()10102225⨯÷÷=;弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【例 3】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯= ∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△ ∴2412.56828.56S =+-=阴影【例 4】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBADCBA【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形 21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)DBADB【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积. 解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分. 则阴影部分的面积为=21π44482⋅⋅-⨯=; 解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积, 所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【例 5】 (2008年四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【例 6】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)A【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键.我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米), 再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积, 则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【巩固】求图中阴影部分的面积.【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)C【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了.因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米), 那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米).【例 7】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差. 由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米). 由于AOB ∆是等腰直角三角形,所以220240AB =⨯=. 因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米). 所以,阴影部分的面积等于:15.710 5.7-=(平方厘米).【例 8】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍. 而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形, 则圆的面积为508400⨯=【例 9】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了. 因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7. 半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IABCI【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积圆与扇形精选题11 减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ), BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=. 有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【例 10】 如图,求阴影部分的面积.(π取3)43【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅ =6【例 11】 (2009年十三分入学测试题)图中的长方形的长与宽的比为8:3,求阴影部分的面积.204【解析】 如下图,设半圆的圆心为O ,连接OC .。
圆和扇形021.圆的半径为5cm,圆上的扇形对应的圆心角为120°,求这个扇形的弧长 cm。
(取π=3)2. 2.如下图,直角三角形ABC的两条直角边分别长6和7,分别以B,C为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A是度(π=3)视频描述1. 1.如图,ABCD是边长为a的正方形,以AB、BC、CD、DA分别为直径画半圆,这四个半圆弧所围成的阴影部分的面积.(π取3,答案请用分数表示,如3/2a2)2. 2.已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积= .(π=3.14)3. 3.如下图所示,两个相同的正方形,左图中阴影部分是9个圆,右图中阴影部分是16个圆.哪个图中阴影部分的面积大?为什么?(回答“左大”、“右大”或者“相等”)视频描述1.图中阴影部分的面积是25cm2,求圆环的面积= .2. 2.奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π=3.14)3. 3.已知正方形ABCD的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连接起来得右图.那么,图中阴影部分的总面积等于平方厘米.(π=3.14)视频描述1. 1.三角形ABC是直角三角形,阴影1的面积比阴影2的面积小25cm2,AB=8cm,求BC的长度 cm.(π取3.14)2. 2.如图,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方,AB长40厘米.求BC的长度为厘米。
(π取3.14)3. 3.在图中,两个四分之一圆弧的半径分别是2和4,两个阴影部分的面积差是.(圆周率取3.14)视频描述1. 1.用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?2. 2.如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)3. 3.一个长方形的长为9,宽为6,一个半径为l的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)视频描述1.2. 1.求图中阴影部分的面积.(π取3.14)3. 2.如右图,正方形的边长为5厘米,则图中阴影部分的面积是平方厘米,(π=3.14)4. 3.如图所示,阴影部分的面积为多少?(圆周率取3,回答以分数形式表示,如a/b)视频描述1.2. 1.如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB弦约等于17厘米,半径为10厘米,求阴影部分的面积。
小学数学奥数基础教程圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为πR-πr=π(R-r)=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
六年级奥数几何问题:圆与扇形
考点:组合图形的面积.
分析:(1)阴影部分的周长等于以正方形的边长为直径的圆的周长与以正方形的边长为半径的圆周长四分之一的和.
(2)阴影部分的面积等于以正方形的边长为直径的圆的面积加上,正方形的面积减去以正方形的边长为半径的四分之一圆的面积.解答:解:阴影部分的周长:
3.14×4+2×3.14×4÷4,
=12.56+6.28,
=18.84.
阴暗部分的面积:
3.14×(4÷2)2+(4×4-3.14×42÷4),
=3.14×4+(4×4-3.14×16÷4),
=12.56+(16-12.56),
=12.56+3.44,
=16.
答:阴影部分的周长是18.84,周长是16.
点评:在求不规则图形的面积时,一般要转化成求几个规律图形的面积相加或相减的方法进行计算.。
第二讲 几何之圆与扇形教学目标组合图形的面积计算,除了直线型面积计算“五大模型”,跟圆有关的曲线型面积也是得别重要的组成部分。
其中,尤以结合情境的曲线形面积计算为最常见考点。
教师版答案提示:纸的厚度为:(206)27-÷=(厘米),那么有70.04175÷=圈纸,中心的卷轴到纸用完时大约会转175圈;圆环的面积为:2210391ππ⨯(-)=,因为纸的厚度为0.4毫米,即0.04厘米,所以纸展开后的长度约为:910.0422757143.5ππ÷=≈厘米.利用“加、减”思想解答问题想挑 战 吗 ? 卷筒软纸中的数学右图为一圈“心相印”圈纸的截面图,纸卷直径 为20厘米,中间有一直径为6厘米的卷轴,若纸的 厚度为0.4毫米,问:中心的卷轴到纸用完时大约会 转多少圈?这卷纸展开后大约有多长?(π取3.14)【例1】 如图,一个“月牙”形屏幕在屏幕上随意平行移动(不许发生转动也不越过屏幕边界),已知线段AB 是月牙外半圆弧的直径,长为2厘米。
初始时,A 、B 两点在矩形屏幕的一条边上。
屏幕的长和宽分别为30厘米和20厘米。
问:屏幕上“月牙”擦不到的部分的面积是多少平方厘米?(π取3)分析:由于“月牙”形屏幕在屏幕上只能平行移动(不许发生转动也不越过屏幕边界),所以它擦不到的地方只是屏幕的右上角和右下角两部分,如右下图中斜线所示区域,其面积为0.5平方厘米。
[前铺]如右图所示,等腰直角三角形ABC 的高AD=4厘米,以AD 为直径作圆分别交AB 、AC 与E 、F ,求阴影部分的面积。
(π取3) 分析:连接EF ,那么有BED ABD EOD S S S =-阴影三角形扇形,计算可得阴影部分面积为6平方厘米。
[巩固]一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少?(π取3)分析:圆无法运动到的部分是右下图中角处的阴影部分面积的4倍,114111π⨯⨯-⨯⨯=[拓展]如右图所示,用一块面积为36平方厘米铝板下料,可裁出七个同样大小的圆铝板。
|六年级奥数讲义:圆与扇形1. 利用圆与扇形面积公式进行面积计算.2. 会将不规则图形转化为规则图形进行面积计算.研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积=2r π;扇形的面积=2360nr π⨯; 圆的周长=2r π;扇形的弧长=2360n r π⨯.一、 跟曲线有关的图形元素。
1、 扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n . 比如:扇形的面积=所在圆的面积360n⨯; 扇形中的弧长部分=所在圆的周长360n ⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长)2、弓形:弓形一般不要求周长,主要求面积。
一般来说,弓形面积=扇形面积-三角形面积。
(除了半圆)3、“弯角”:如图:弯角的面积=正方形-扇形4、“谷子”:如图:“谷子”的面积=弓形面积×2二、常用的思想方法:1、转化思想(复杂转化为简单,不熟悉的转化为熟悉的)2、等积变形(割补、平移、旋转等)3、借来还去(加减法)4、外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的“关系”)用平移、旋转、割补法求面积【例 1】如图,在18⨯8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【分析】我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有2|6+6+8=20个,部分有6+6+8=20(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772. [拓展] 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa[分析] 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形 21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【例 2】 如图,阴影部分的面积是多少?224【分析】首先观察阴影部分,我们发现阴影部分形如一个号角,但是我们并没有学习过如何求号角的面积,那么我们要怎么办呢?阴影部分我们找不到出路,那么我们不妨考虑下除了阴影部分之外的部分吧!观察发现,阴影部分左侧是一个扇形,而阴影部分右边的空白部分恰好与左边的扇形构成一个边长为4的正方形,那么阴影部分的面积就等于大的矩形面积减去正方形面积。
【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。
学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。
谢谢使用!!!】圆与扇形一、考点、热点回顾五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的周长、面积计算公式:半圆的周长、面积计算公式:扇形的周长、面积:a 2 s r360扇形的面积"尺盏.a360如无特殊说明,圆周率都取n =3.14。
例1、如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)2r360典型例题:分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为n R- n r =n( R-r )= 3.14 X 1.22 ~ 3.83 (米)。
即外道的起点在内道起点前面 3.83米。
例2、有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360 °,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5X 6 + 5X 3.14 = 45.7 (厘米)。
例3、左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
2015年小学奥数几何专题——圆与扇形1.下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?2.如图,在18 8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?3.在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为多少平方厘米?4.如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)5.图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?6.如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米? (π取3)7.如图中三个圆的半径都是5cm,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)8.计算图中阴影部分的面积(单位:分米)。
A9.请计算图中阴影部分的面积.10.求图中阴影部分的面积.12CB11.求如图中阴影部分的面积.(圆周率取3.14)12.求下列各图中阴影部分的面积.(1)1010(2)ba13.如图,ABCD 是正方形,且1FA AD DE ===,求阴影部分的面积.(取π3=)14.如图,长方形ABCD 的长是8cm ,则阴影部分的面积是多少2cm .(π 3.14=)15.如图所示,在半径为4cm 的图中有两条互相垂直的线段,阴影部分面积A 与其它部分面积B 之差(大减小)是多少2cm .16.求右图中阴影部分的面积.(π取3)17.如图,边长为3的两个正方形BDKE 、正方形DCFK 并排放置,以BC 为边向内侧作等边三角形,分别以B 、C 为圆心,BK 、CK 为半径画弧.求阴影部分面积.(π 3.14=)E18.如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是多少? DCBA19.如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)20.如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?21.有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)22.如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14)23.如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.24.如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)25.用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?26.如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.27.如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)28.如下图所示,AB是半圆的直径,O是圆心,AC CD DB==,M是CD的中点,H 是弦CD的中点.若N是OB上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是多少平方厘米.29.如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)30.如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)EAF31.如图,ABC是等腰直角三角形,D是半圆周的中点,BC是半圆的直径.已知==,那么阴影部分的面积是多少?(圆周率取3.14)AB BC10D32.图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为多少?(π 3.14=)33.如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?34.奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)35.已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于多少平方厘米.(π 3.14=)36.如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)37.在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和多少是平方厘米?38.如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFE DCB AS图1S 2S 1G HF E DCBA39.如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A40.如图所示,阴影部分的面积为多少?(圆周率取3)41.已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=) O342.一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少.(π取3)43.已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B44.如图,等腰直角三角形ABC的腰为10;以A为圆心,EF为圆弧,组成扇形AEF;两个阴影部分的面积相等.求扇形所在的圆面积.45.如图,直角三角形ABC中,AB是圆的直径,且20AB=,阴影甲的面积比阴影乙的面积大7,求BC长.(π 3.14=)46.图中的长方形的长与宽的比为8:3,求阴影部分的面积.47.如图,求阴影部分的面积.(π取3)48.如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?6849.大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)50.已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是多少.(π取3.14)51.图中大正方形边长为6,将其每条边进行三等分,连出四条虚线,再将虚线的中点连出一个正方形(如图),在这个正方形中画出一个最大的圆,则圆的面积是多少?(π 3.14)52.如下图所示,两个相同的正方形,左图中阴影部分是9个圆,右图中阴影部分是16个圆.哪个图中阴影部分的面积大?为什么?53.如图,在33⨯方格表中,分别以A 、E 、F 为圆心,半径为3、2、1,圆心角都是90°的三段圆弧与正方形ABCD 的边界围成了两个带形,那么这两个带形的面积之比12:?S S =CD 1D 212C54.如图中,正方形的边长是5cm ,两个顶点正好在圆心上,求图形的总面积是多少?(圆周率取3.14)55.如下图,AB 与CD 是两条垂直的直径,圆O 的半径为15厘米,AEB 是以C 为圆心,AC 为半径的圆弧,求阴影部分面积.EOD CBA56.如图,AB 与CD 是两条垂直的直径,圆O 的半径为15,是以C 为圆心,AC 为半径的圆弧.求阴影部分面积.57.如下图所示,曲线PRSQ 和ROS 是两个半圆.RS 平行于PQ .如果大半圆的半径是1米,那么阴影部分是多少平方米?(π取3.14)58.在右图所示的正方形ABCD 中,对角线AC 长2厘米.扇形ADC 是以D 为圆心,以AD 为半径的圆的一部分. 求阴影部分的面积.D A321AB CD59.某仿古钱币直径为4厘米,钱币内孔边缘恰好是圆心在钱币外缘均匀分布的等弧(如图).求钱币在桌面上能覆盖的面积为多少?60.传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如右图).那么,阴影部分的面积是多少平方米.96312123699631261.如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB 弦约等于17厘米,半径为10厘米,求阴影部分的面积.O 2O 1BA62.下图中,3AB ,阴影部分的面积是DA63.如图,ABCD是平行四边形,8cmAD=,10cmAB=,30DAB∠=︒,高4cmCH=,弧BE、DF分别以AB、CD为半径,弧DM、BN分别以AD、CB为半径,则阴影部分的面积为多少?(精确到0.01)FA64.如图所示,两条线段相互垂直,全长为30厘米.圆紧贴直线从一端滚动到另一端(没有离开也没有滑动).在圆周上设一个定点P,点P从圆开始滚动时是接触直线的,当圆停止滚动时也接触到直线,而在圆滚动的全部过程中点P是不接触直线的.那么,圆的半径是多少厘米?(设圆周率为3.14,除不尽时,请四舍五入保留小数点后两位.如有多种答案请全部写出)P65.将一块边长为12厘米的有缺损的正方形铁皮(如图)剪成一块无缺损的正方形铁皮,求剪成的正方形铁皮的面积的最大值.B′CD′CC图1 图2 图366.正三角形ABC的边长是6厘米,在一条直线上将它翻滚几次,使A点再次落在这条直线上,那么A点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留π)67.草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见如图).问:这只羊能够活动的范围有多大?(圆周率取3.14)68.如图是一个直径为3cm的半圆,让这个半圆以A点为轴沿逆时针方向旋转60︒,此时B点移动到'B点,求阴影部分的面积.(图中长度单位为cm,圆周率按3计算).69.如图所示,直角三角形ABC的斜边AB长为10厘米,60∠=︒,此时BC长5ABC厘米.以点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.(π取3)E70.如图,ABCD是一个长为4,宽为3,对角线长为5的正方形,它绕C点按顺时针方向旋转90︒,分别求出四边扫过图形的面积.71.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?72.如图,15枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位置.问:这枚硬币自身转动了多少圈?73.一枚半径为1cm 的圆形硬币相互紧靠着平放在桌面上,让一枚硬币沿着它们的外轮廓滚过后回到原来的位置,那么与原A 点重合的点是______.硬币自己转动______,硬币圆心的运动轨迹周长为_______.74.先做一个边长为2cm 的等边三角形,再以三个顶点为圆心,2cm 为半径作弧,形成曲边三角形(如左图).再准备两个这样的图形,把一个固定住(右图中的阴影),另一个围绕着它滚动,如右图那样,从顶点相接的状态下开始滚动.请问此图形滚动时经过的面积是多少平方厘米?(π 3.14=)CBA 22275.下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?76.在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?77.如图,在一个边长为4的正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积.78.如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是 .79.如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)80.如图,阴影部分的面积是多少?2481.如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.82.求图中阴影部分的面积(单位:cm).283.一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?84.如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.85.如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)86.如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)DBA87.在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)88.求图中阴影部分的面积.89.如右图,正方形的边长为5厘米,则图中阴影部分的面积是多少平方厘米,(π 3.14)90.图中阴影部分的面积是多少.(π取3.14)391.三角形ABC是直角三角形,阴影I的面积比阴影II的面积小225cm,8cmAB ,求BC的长度.AII IB C92.如图,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB长40厘米.求BC的长度?(π取3.14)93.图中阴影部分的面积是225cm,求圆环的面积.94.图中小圆的面积是30平方厘米,则大圆的面积是多少平方厘米.(π取3.14)95.一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm,请问阴影部分的面积为多少平方厘米?(取22π7 =)96.图中是一个钟表的圆面,图中阴影部分甲与阴影部分乙的面积之比是多少?9397.传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如左下图).那么,阴影部分的面积是多少平方米?398.如图,已知三角形GHI是边长为26厘米的正三角形,圆O的半径为15厘米.90AOB COD EOF∠=∠=∠=︒.求阴影部分的面积.GG99.直角三角形ABC 放在一条直线上,斜边AC 长20厘米,直角边BC 长10厘米.如下图所示,三角形由位置Ⅰ绕A 点转动,到达位置Ⅱ,此时B ,C 点分别到达1B ,1C 点;再绕1B 点转动,到达位置Ⅲ,此时A ,1C 点分别到达2A ,2C 点.求C 点经1C 到2C 走过的路径的长.100.如图,一条直线上放着一个长和宽分别为4cm 和3cm 的长方形Ⅰ.它的对角线长恰好是5cm .让这个长方形绕顶点B 顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,点A 到达点E 的位置.求点A 走过的路程的长.ⅣⅢⅡⅠEDCBA101.一只狗被拴在底座为边长3m 的等边三角形建筑物的墙角上(如图),绳长是4m ,求狗所能到的地方的总面积.(圆周率按3.14计算)102.如右图,以OA 为斜边的直角三角形的面积是24平方厘米,斜边长10厘米,将它以O 点为中心旋转90︒,问:三角形扫过的面积是多少?(π取3)103.如图,直角三角形ABC中,B∠为直角,且2∆BC=厘米,4AC=厘米,则在将ABC 绕C点顺时针旋转120︒的过程中,AB边扫过图形的面积为多少.(π 3.14=)AB104.如果半径为25厘米的小铁环沿着半径为50厘米的大铁环的外侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?105.如图所示,大圆周长是小圆周长的n(1n>)倍,当小圆在大圆内侧(外侧)作无滑动的滚动一圈后又回到原来的位置,小圆绕自己的圆心转动了几周?106.12个相同的硬币可以排成下面的4种正多边形(圆心的连线).用一个同样大小的硬币,分别沿着四个正多边形的外圈无滑动地滚动一周.问:在哪个图中这枚硬币自身转动的圈数最多,最多转动了多少圈?参考答案1.36【解析】割补法.如右图,格线部分的面积是36平方厘米.2.37 72【解析】我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有6+6+8=20个,部分有6+6+8=20(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772.3.2【解析】采用割补法.如果将阴影半圆中的2个弓形移到下面的等腰直角三角形中,那么就形成两个相同的等腰直角三角形,所以阴影部分的面积等于两个等腰直角三角形的面积和,即正方形面积的一半,所以阴影部分的面积等于21222⨯=平方厘米.4.7.14【解析】把中间正方形里面的4个小阴影向外平移,得到如右图所示的图形,可见,阴影部分的面积等于四个正方形面积与四个90︒的扇形的面积之和,所以,221444441π14π7.14S S S S S =⨯+⨯=⨯+=⨯+⨯=+=圆阴影圆.5.8【解析】如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米). 6.19 【解析】本题直接计算不方便,可以利用分割移动凑成规则图形来求解. 如右上图,连接顶角上的4个圆心,可得到一个边长为4的正方形.可以看出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还剩下4个14圆,合起来恰好是一个圆,所以花瓣图形的面积为224π119+⨯=(平方厘米).在求不规则图形的面积时,我们一般要对原图进行切割、移动、补齐,使原图变成一个规则的图形,从而利用面积公式进行求解.这个切割、移动、补齐的过程实际上是整个解题过程的关键,我们需要多多练习,这样才能快速找到切割拼补的方法。
六秋第8讲 圆与扇形(三)
一、教学目标
圆的周长 = 直径×圆周率,用字母表示为:C = πd ,或C=2πr
圆的面积S=πr ² 或 S= 14 πd 2 扇形弧长计算公式是L=
2360⨯n πr=⨯180n πr,扇形面积计算公式是S=⨯360
n πr 2
二、例题精选 【例1】 如下图,等边三角形边长是10厘米,那么阴影部分的周长是厘米?(π取3.14)
【巩固1】求图形中阴影部分的面积(单位:厘米)。
【例2】 如图所示,图中圆的直径AB 是4厘米,平行四边形ABCD 的面积是7平方厘米,∠ABC =30度,求阴影
部分的面积(得数保留两位小数)。
【巩固2】求图中阴影部分的面积(单位:厘米)。
【例3】 求图中阴影部分的面积(单位:厘米)。
【巩固3】如图所示,求图中阴影部分的面积。
【例4】如图所示,求图中阴影部分的面积(单位:厘米)。
【巩固4】在正方形ABCD中,AC=6厘米。
求阴影部分的面积。
【例5】如图所示,一枚硬币沿着长方形的外围滚动。
已知长方形的长为10cm,宽为5cm,硬币的直径为1cm,求硬币滚动一圈所经过的面积。
【例6】三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B长40厘米, BC长多少厘米?。
六年级第八讲圆和扇形(二)日期___________________ 姓名_________________ 学练提要1.一条线段绕着它的固定端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭曲线就是圆2.扇形是圆的一部分,它是由圆心角的两条半径和圆心角的一个对弧围成的图形。
扇形大小由半径和弧所对的圆心角大小所决定。
3.常用计算公式①C=2πr②S=πr2③S扇=360nπr2解答圆的有关问题时要注意弄清半径,直径,周长和面积的关系,重视各个公式的配合使用。
例4,下图中三角形ABC是边长为6厘米的正三角形,求阴影部分面积?试一试,计算下图阴影部分的面积。
(单位:厘米),保留两位小数。
例5,一个圆心角是45°的扇形,其中等腰直角三角形的腰长是4厘米,求阴影部分的面积是多少平方厘米?试一试,计算下图中阴影部分的面积。
单位:厘米例6,计算下图阴影部分的面积。
单位:厘米试一试,下图中:AD=DB=CD=8厘米,求阴影部分的面积。
练习题A组8.如下图,阴影部分的面积是4平方厘米,等腰直角三角形的直角边等于圆的直径,求等腰直角三角形的面积为多少平方厘米?(保留一位小数)B组2.下图中三角形是等腰直角三角形,阴影部分的面积是多少?3.如图所示,圆的周长是12.56厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是多少厘米?(π=3.14)4.图中扇形的半径OA=OB=4厘米,AC垂直OB于C,那么图中阴影部分的面积是多少平方厘米?(π=3.14)5.图中正方形周长是24厘米,图形的总面积是多少平方厘米?6.图中的正方形的边长是3厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是多少平方厘米?。
小学六年级奥数教案一11圆与扇形本教程共30讲圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=n r2,圆的周长=2 n r,扇形的面积二冗暑.扇形的弧长3b U本书中如无特殊说明,圆周率都取n =3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为n R- n r = n (R-r)=3.14 X 1.22 〜3.83 (米)。
即外道的起点在内道起点前面3.83米例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?A B分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360 °,所以BC弧所对的圆心角是60°, 6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5X 6+ 5X 3.14 = 45.7 (厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+ n r2X 2=102+ 3.14 X 50"257 (厘米2)。
【我生命中最最最重要的朋友们,请你们仔细听老师讲而且随着
老师的思想走。
学业的成功重在于考点的不停过滤,相信我赠予你们
的是你们学业成功的过滤器。
感谢使用!!!】
圆与扇形
一、考点、热门回首
五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的有关问
题,这一讲学习与圆有关的周长、面积等问题。
圆的周长、面积计算公式:
c d 或 c 2 r s r 2
半圆的周长、面积计算公式:
c r
d s 1 r 2
2
扇形的周长、面积:
c a
d 2r s a r 2
360 360
如无特别说明,圆周率都取π=3.14 。
二、典型例题:
例 1、以下列图所示,200 米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知
每条跑道宽 1.22 米,那么外道的起点在内道起点前方多少米?(精准到0.01 米)
剖析与解:半径越大,周长越长,因此外道的弯道比内道的弯道长,要保证内、外道的人跑
的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
固然弯道的各个半径都不知道,但是两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r ,则两个弯道的长度之差为
πR- π r =π( R-r )= 3.14 ×1.22 ≈ 3.83 (米)。
即外道的起点在内道起点前方 3.83 米。
例 2、有七根直径 5 厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下列图),此
时橡皮筋的长度是多少厘米?
剖析与解:由右上图知,绳长等于 6 个线段 AB 与 6 个 BC弧长之和。
将图中与BC弧近似的6 个弧所对的圆心角平移拼补,获得 6 个角的和是 360°,因此 BC弧所对的圆心角是 60°,
6 个 BC弧等于直径 5 厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳
长=5× 6+ 5
×3.14 = 45.7 (厘米)。
例 3 、左下列图中四个圆的半径都是 5 厘米,求暗影部分的面积。
剖析与解:直接套用公式,正方形中间的暗影部分的面积不太好计算。
简单看出,正方形中的空白部分是 4 个四分之一圆,利用五年级学过的割补法,能够获得右上图。
右上图的暗影部分的面积与原图同样,等于一个正方形与 4 个半圆(即 2 个圆)的面积之和,为( 2r )2 +π r 2× 2=102+3.14 × 50≈ 257(厘米2)。
例 4 、草场上有一个长 20 米、宽 10 米的封闭着的羊圈,在羊圈的一角用长30 米的绳索拴
剖析与解:如右上图所示,羊活动的范围能够分为A, B,C 三部分,因此羊活动的范围是
例 5、右图中暗影部分的面积是 2.28 厘米2,求扇形的半径。
剖析与解:暗影部分是扇形与等腰直角三角形相差的部分。
因此,扇形的半径是 4 厘米。
例 6、右图中的圆是以O为圆心、径是10 厘米的圆,求暗影部分的面积。
剖析与解:解本题的基本思路是:
从这个基本思路能够看出:要想获得暗影部分S1的面积,就一定想方法求出S2和 S3的面积。
S3 的面积又要用下列图的基本思路求:
此刻就能够求出S3的面积,从而求出暗影部分的面积了。
S3=S4 -S5=50π -100 (厘米2),
S1=S2-S 3=50π - ( 50π -100 ) =100(厘米2)。
三、习题稳固
1、直角三角形 ABC放在一条直线上,斜边 AC长 20 厘米,直角边 BC长 10 厘米。
以下列图所示,三角形由地点Ⅰ绕 A 点转动,抵达地点Ⅱ,此时 B, C 点分别抵达 B1, C1点;再绕 B1点转动,抵达地点Ⅲ,此时 A,C1点分别抵达 A2, C2点。
求 C 点经 C1到 C2走过的路径的长。
2、下页左上图中每个小圆的半径是 1 厘米,暗影部分的周长是多少厘米?
解:大圆直径是 6 厘米,小圆直径是 2 厘米。
暗影部分周长是 6π +2π× 7=62.8 (厘
米)。
3、一只狗被拴在一个边长为 3 米的等边三角形建筑物的墙角上(见右上图),绳长是 4 米,求狗所能到的地方的总面积。
解:以下页右上图所示,可分为半径为 4 米、圆心角为300°的扇形与两个半径为 1 米、圆心角为 120°的扇形。
面积为
解:设∠ CAB为 n 度,半圆ADB的半径为r 。
由题意有
解得 n=60。
5、右上图是一个400 米的跑道,两端是两个半圆,每一半圆的弧长是100 米,中间是一个长方形,长为100 米。
求两个半圆的面积之和与跑道所围成的面积之比。
6、左下列图中,正方形周长是圆环周长的 2 倍,当圆围绕正方形无滑动地转动一周又回到原
来地点时,这个圆环转了几圈?
7、右上图中,圆的半径是 4 厘米,暗影部分的面积是14π厘米2,求图中三角形的面积。
解:圆的面积是 42π =16π(厘米2),空白扇形面积占圆面积的1-
的等腰直角三角形,面积为4×4÷2=8(厘米2)。
四、习题练习
1、以下列图,在大圆中截取一个面积最大的正方形,而后在正方形中截取一个面积最大的圆。
已知正方形的面积为20cm2,求大圆和小圆的面积各是多少平方厘米?
2、有一个等腰直角三角形ABC ,它的直角边AB = 1dm,将 B 点固定,让三角形按顺时针
方向绕 B 点旋转90°,获得右边的图形,求斜边在旋转过程中扫过的面积( 即图中的暗影部分) 。
3、左下列图中,暗影部分的面积是 5.7cm2,△ ABC 的面积是多少平方厘米?(第八届《小学生数学报》数学比赛题 )
C
C
A 45°
B
45°
A B
4、右图中以 O 为圆心的圆,半径是10cm。
以 C 为圆心, AC 为半径画一圆弧,求阴部部分
D
A B
O
C
5、如图,在直角三角形ABC 中,∠ A = 60°,以 A 为圆心,以AC 为半径画弧与AB 订交于 D ,假如图中暗影部分的面积为6π cm2,那么 AB 的长是多少厘米?
6、如图,大圆的直径为4cm,求暗影部分的面积。
7、下列图中的圆半径OA = 9cm,∠ 1=∠ 2= 15°,求暗影部分的面积。
8、如图,把OA8 平分,以 O 为圆心画出 6 个扇形,已知最小的扇形是10cm2,求暗影部分的面积。
9、图中的半圆直径AB 是 3cm,把半圆绕 A 点逆时针旋转60°,求暗影部分的面积。
10、图中 C、 D 把半圆弧三平分,直径 AB =12cm,求暗影部分的面积。
C D
A B
11、图中 ABCD 是平行四边形 ,AD = 8cm,AB = 10cm,∠ DAB = 30°,高 CH = 4cm,弧 BE 、DF 分别以 AB 、CD 为半径,弧 DM 、 BN 分别以 AD 、CB 为半径,暗影部分的面积是多少平方厘米? (2001 年全国奥赛决赛题 )
12、以下图,正方形ABCD 的边长是12cm,已知 DE 与 EC 长度的比是1∶2,求暗影部分的面积。
13、图中 , 暗影部分的面积是50cm2, 求环形的面积。
O C F
A B
D E
14、如图, OA 、 OB 分别是小圆的直径,而且 OA = OB = 6cm,∠ BOA = 90°暗影部分的面积是多少平方厘米? (2001 年全国奥赛初赛题 )
A
15、一个半圆形地区的周长等于它的面积,这个半圆的半径是多少?(2001 年全国奥赛决赛
题)
16、下列图中,平行四边形ABCD 的面积是40cm2,△ COB( 暗影部分 )的面积是多少平方厘米?
A B
D O C
六年级奥数第8次课:圆与扇形(教师版)
10
11 / 1111 / 11。