安徽江南十校2024年高三数学试题联合模拟考试试题
- 格式:doc
- 大小:2.45 MB
- 文档页数:21
安徽省江南十校2024-2025学年高二(上)联考数学试题(12月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={a ⃗ |a ⃗ =(−1,2,1)+λ(1,2,3),λ∈R},N ={b ⃗ |b ⃗ =μ(1,−2,−1)+(1,2,3),μ∈R},则M ∩N =( ) A. {(−2,0,−2)}B. {0,4,4}C. {(0,4,4)}D. ⌀2.条件p:m >0,n >0,条件q:方程mx 2+ny 2=1表示的曲线是椭圆,则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件3.若点P(3,−4)是直线a 1x +b 1y +2=0和a 2x +b 2y +2=0的公共点,则相异两点A(a 1,b 1)和B(a 2,b 2)所确定的直线AB 方程是( ) A. 3x −4y +2=0B. 4x −3y +2=0C. 3x −4y −2=0D. 4x −3y −2=04.六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体结构(正八面体每个面都是正三角形,可以看作是两个棱长均相等的正四棱锥将底面重合的几何体).如图所示,在正八面体P −ABCD −Q 中,G 是△BCQ 的重心,记PA ⃗⃗⃗⃗⃗ =a ⃗ ,PB ⃗⃗⃗⃗⃗ =b ⃗ ,PC⃗⃗⃗⃗⃗ =c ⃗ ,,则PG ⃗⃗⃗⃗⃗ 等于( )A. −13a ⃗ +13b ⃗ +23c ⃗B. 13a ⃗ −13b ⃗ +23c ⃗ C. 13a ⃗ −13b ⃗ −23c ⃗ D. 13a ⃗ +13b ⃗ +23c ⃗ 5.已知m ⃗⃗ =(2,1,1)是直线l 的方向向量,直线l 经过点P(−1,0,1),则点Q(2,4,6)到直线l 的距离为( ) A. 52B. 5√ 22C. 5√ 62D. 3√ 626.已知圆C 的方程为x 2+y 2−2y −1=0,P(a,b)为圆C 上任意一点,则2a+b−5a−2的取值范围为( )A. [−1,2]B. (−∞,−1]∪[2,+∞)C. [1,3]D. (−∞,1]∪[3,+∞)7.焦点为F(1,0)的抛物线y 2=2px(p >0)上有一点P(不与原点重合),它在准线l 上的投影为Q 。
2023年安徽省江南十校高考数学联考试卷1. 已知集合,,则( )A. B.C. D.2. 设i为虚数单位,复数,则z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知平面向量的夹角为,且,则( )A. B. C. D.4. 安徽徽州古城与四川阆中古城、山西平遥古城、云南丽江古城被称为中国四大古城.徽州古城中有一古建筑,其底层部分可近似看作一个正方体已知该正方体中,点E,F分别是棱,的中点,过,E,F三点的平面与平面ABCD的交线为l,则直线l与直线所成角为( )A. B. C. D.5. 为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.( )A. 40B. 24C. 20D. 126. 已知函数,则下列说法正确的是( )A. 点是曲线的对称中心B. 点是曲线的对称中心C. 直线是曲线的对称轴D. 直线是曲线的对称轴7. 在三棱锥中,底面ABC,,,则三棱锥外接球的表面积为( )A. B. C. D.8. 已知,则a,b,c的大小关系为( )A.B. C.D.9. 已知函数,则( )A. 是奇函数B. 的单调递增区间为和C. 的最大值为D.的极值点为10.在平行六面体中,已知,,则( )A. 直线与BD 所成的角为B. 线段的长度为C.直线与所成的角为D. 直线与平面ABCD 所成角的正弦值为11. 已知O 为坐标原点,点,,线段AB 的中点M 在抛物线C :上,连接OB 并延长,与C 交于点N ,则( )A. C 的准线方程为B. 点B 为线段ON 的中点C. 直线AN 与C 相切D. C 在点M 处的切线与直线ON 平行12. 已知函数和及其导函数和的定义域均为R ,若,,且为偶函数,则( )A. B. 函数的图象关于直线对称C. 函数的图象关于直线对称D.13.的展开式中,常数项为______ 用数字作答14. 已知圆C :,直线l :是参数,则直线l 被圆C 截得的弦长的最小值为______ .15. 已知直线l 与椭圆交于M ,N 两点,线段MN 中点P 在直线上,且线段MN 的垂直平分线交x 轴于点,则椭圆E 的离心率是______ .16. 若过点有3条直线与函数的图象相切,则m 的取值范围是______ .17. 在平面直角坐标系Oxy 中,锐角、的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 的交点分别为P ,已知点P 的纵坐标为,点Q 的横坐标为求的值;记的内角A ,B ,C 的对边分别为a ,b ,请从下面两个问题中任选一个作答,如果多选,则按第一个解答计分.①若,且,求周长的最大值.②若,,且,求的面积.18. 已知在递增数列中,,为函数的两个零点,数列是公差为2的等差数列.求数列的通项公式;设数列的前n 项和为,证明:19. 渔船海上外出作业受天气限制,尤其浪高对渔船安全影响最大,二月份是某海域风浪最平静的月份,浪高一般不超过某研究小组从前些年二月份各天的浪高数据中,随机抽取50天数据作为样本,制成频率分布直方图:如图根据海浪高度将海浪划分为如下等级:浪高海浪等级微浪小浪中浪大浪海事管理部门规定:海浪等级在“大浪”及以上禁止渔船出海作业.某渔船出海作业除受浪高限制外,还受其他因素影响,根据以往经验可知:“微浪”情况下出海作业的概率为,“小浪”情况下出海作业的概率为,“中浪”情况下出海作业的概率为,请根据上面频率分布直方图,估计二月份的某天各种海浪等级出现的概率,并求该渔船在这天出海作业的概率;气象预报预计未来三天内会持续“中浪”或“大浪”,根据以往经验可知:若某天是“大浪”,则第二天是“大浪”的概率为,“中浪”的概率为;若某天是“中浪”,则第二天是“大浪”的概率为,“中浪”的概率为现已知某天为“中浪”,记该天的后三天出现“大浪”的天数为X,求X的分布列和数学期望.20. 如图,四棱锥中,为等腰三角形,,,,证明:;若,点M在线段PB上,,求平面DMC与平面PAD夹角的余弦值.21. 我们约定,如果一个椭圆的长轴和短轴分别是另一条双曲线的实轴和虚轴,则称它们互为“姊妺”圆锥曲线.已知椭圆,双曲线是椭圆的“姊妺”圆锥曲线,,分别为,的离心率,且,点M,N分别为椭圆的左、右顶点.求双曲线的方程;设过点的动直线l交双曲线右支于A,B两点,若直线AM,BN的斜率分别为,试探究与的比值是否为定值.若是定值,求出这个定值;若不是定值,请说明理由;求的取值范围.22. 已知函数若在定义域上具有唯一单调性,求k的取值范围;当时,证明:答案和解析1.【答案】C【解析】解:,,,则,,,,,故选:分别将两个集合中的元素表示出来,再求补集,交集.本题考查集合的运算,考查二次不等式的解法,属于基础题.2.【答案】D【解析】解:因为,所以复数对应的点为在第四象限,故选:利用复数的运算性质化简复数z,求出对应的点的坐标,由此即可求解.本题考查了复数的运算性质,涉及到复数的实际意义,属于基础题.3.【答案】C【解析】解:已知平面向量的夹角为,且,则,则,故选:由平面向量数量积的运算,结合平面向量的模的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量的模的运算,属基础题.4.【答案】A【解析】解:如图所示,在平面中,连接与DA交于H,则,在平面中,连接与DC交于G,则,则GH为平面与平面ABCD的交线l,且,而在等边中AC与所成的角为,故l与直线所成角为故选:作出平面与平面ABCD的交线l,再求l与直线所成角.本题考查异面直线所成的角的求法,属基础题.5.【答案】B【解析】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种,故选:根据相邻问题用捆绑法和不相邻问题用插空法即可求解.本题考查了排列组合的应用,属于基础题.6.【答案】C【解析】解:,当,则,此时,则函数关于对称,故A错误,当,则,此时,则函数关于对称,故B错误,当,则,此时,则函数关于对称,故C正确,当,则,此时,则函数关于点对称,故D错误,故选:利用辅助角公式进行化简,然后分别利用对称性进行判断即可.本题主要考查三角函数对称性的判断,根据辅助角公式进行化简是解决本题的关键,是中档题.7.【答案】B【解析】解:在三棱锥中,底面ABC,如图所示:在中,,,利用余弦定理:,解得:,设的外接圆的半径为R,利用正弦定理,解得,过点E作的垂线和AP的垂直平分线交于点O,即点O为三棱锥外接球的球心,设球的半径为r,故;所以故选:首先利用正弦定理和余弦定理求出三棱锥的外接球的半径,进一步利用球的表面积公式求出结果.本题考查的知识要点:正弦定理和余弦定理,求和三棱锥的关系,球的表面积公式,主要考查学生的理解能力和计算能力,属于中档题和易错题.8.【答案】D【解析】解:,,,,设,,所以在上单调递减,因为,所以,所以,,令,,,所以在上单调递增,又,所以,所以,所以,故选:,,,则,设,,求导分析单调性,即可得出b与a的大小关系;,令,,求导分析单调性,即可得出b与c的大小关系,即可得出答案.本题考查函数的单调性,数的大小,属于基础题.9.【答案】AB【解析】解:对于A,因为对,,所以是R上的奇函数,故A正确;对于B,由得或,所以的单调递增区间为和,故B正确;对于C,因为时,,所以无最大值,故C错误;对于D,由得,经检验是函数的极大值点,是函数的极小值点,极值点是实数,故D错误,故选:根据奇偶性的定义可判断A;对函数求导,令可得函数的增区间,即可判断B;根据时,,所以无最大值,即可判断C;由得,检验可得为函数的极值点,即可判断本题主要考查了三次函数的性质,属于基础题.10.【答案】AC【解析】解:在平行六面体中,取,,,,,,,对于A:,,,则,故直线与BD所成的角为,故A正确;对于B:,则,即,故B错误;对于C:,故,即,故直线与所成的角为,故C正确;对于D:在平行六面体中,四边形ABCD是菱形,则,又,,平面,平面,平面,又平面ABCD,则平面平面ABCD,连接AC交BD于点O,过点作于点E,如图所示:平面平面,平面,平面ABCD,直线与平面ABCD所成角为,,则,即,在中,,故D错误,故选:在平行六面体中,取,,,利用空间向量的线性运算,逐一分析选项,即可得出答案.本题考查直线与平面的夹角、异面直线的夹角,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.11.【答案】BCD【解析】解:对A,根据中点公式得,将其代入C:得,则,所以抛物线C:的准线方程为,故A错误;对B,因为,则直线OB的斜率为a,则直线OB的方程为,将其代入C:得,解得或舍去,此时,则,所以B为ON中点,故B正确;对C,C:,即,则,故抛物线C在点N处的切线的斜率为,故切线方程为,令得,所以直线AN为C的切线,故C正确;对D,抛物线C:在处的切线方程的斜率为,而直线ON的斜率为a,则两直线的斜率相等,且两直线显然不可能重合,所以C在点M处的切线与直线ON平行.故选:将代入抛物线得,则得到其准线方程,则可判断A,联立直线OB的方程与抛物线方程即可得到,即可判断B,利用导数求出抛物线C在点N处的切线方程,令,则可判断C,再次利用导数求出抛物线在处的切线斜率,则可判断本题考查了抛物线的性质,属于中档题.12.【答案】ABC【解析】解:对于A,由为偶函数得,即有,则的图象关于直线对称,对两边同时求导得:,令,得,故A正确;对于B,由关于直线对称得,由,得,所以,即的图象关于直线对称,故B正确;对于C,对两边同时求导得,由,得,则,即,所以的图象关于直线对称,故C正确;对于D,由,得,结合C选项可知,,即,所以,所以4是函数的一个周期,由,得4也是函数的一个周期,由,得,所以,故D错误.故选:根据为偶函数,可得,两边求导即可判断A;由关于直线对称得,结合,即可判断B;根据,两边同时求导得,从而可判断C;先求出函数和的周期,再结合函数的对称性即可判断本题考查了复合函数的奇偶性、周期性、对数性及复合函数的求导、导数的对称性及奇偶性,属于中档题.13.【答案】60【解析】解:的展开式的通项公式为,,1,,当,即时,;当时,无解;展开式中的常数项为,故答案为:当前边括号取3时,后边括号取常数项;当前边括号取x时,后边括号取项,无解;由此计算出常数项即可.本题考查二项式展开式的应用,考查学生计算能力,属于基础题.14.【答案】【解析】解:圆C:的圆心坐标为,半径为由直线l:,得,联立,解得直线l过定点,又,点在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时直线l被圆C截得的弦长的最小值为故答案为:由圆的方程求出圆心坐标与半径,由直线方程可得直线过定点,求得,再由垂径定理求得直线l被圆C截得的弦长的最小值.本题考查直线与圆的位置关系,考查了垂径定理的应用,属中档题.15.【答案】【解析】解:根据题意设MN中点,又,直线的斜率为,又,直线MN的斜率为,设,,则,两式相减可得:,,,椭圆E的离心率,故答案为:根据直线垂直的条件,点差法,方程思想,化归转化思想,即可求解.本题考查椭圆的离心率的求解,点差法的应用,方程思想,属中档题.16.【答案】【解析】解:设切点为,则,过点P的切线方程为,代入点P坐标化简为,即这个方程有三个不等根即可,令,求导得到,函数在上单调递减,在上单调递增,在上单调递减,又,当时,,要使方程有三个不等实数根,则,的取值范围是:故答案为:求出函数的导函数,可得函数的最值,即可求得实数m的取值范围.本题考查的是导数的几何意义的应用,将函数的切线条数转化为切点个数问题,最终转化为零点个数问题是解决此题的关键,是中档题.17.【答案】解:因为,是锐角,所以P,Q在第一象限,又因为P,Q在单位圆上,点P的纵坐标为,点Q的横坐标为,所以,所以故选①:由中结论可得,又,,由余弦定理可得,即,,,,当时,等号成立,,即当为等边三角形时,周长最大,最大值为选②:由可知,则,由正弦定理,可得,故,则【解析】先利用三角函数的定义与同角的平方关系求得,,,,再利用余弦的和差公式即可得解;选①:先结合中条件得到,再利用余弦定理与基本不等式推得,从而得解;选②:先结合中条件求得,再利用正弦定理求得a,b,从而利用三角形面积公式即可得解.本题考查了正余弦定理、三角函数的定义以及基本不等式的应用,属于中档题.18.【答案】解:在递增数列中,,为函数的两个零点,可得,,公差,则数列是首项为5,公差为2的等差数列,则,则;证明:,则,因为,所以【解析】令,解方程可得,,再由等差数列的通项公式和数列的恒等式,等差数列的求和公式,计算可得所求通项公式;求得,再由数列的裂项相消求和,结合不等式的性质可得证明.本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查转化思想和运算能力、推理能力,属于中档题.19.【答案】解:记这天浪级是“微浪”为事件,浪级是“小浪”为事件,浪级是“中浪”为事件,浪级是“大浪”为事件,该渔船当天出海作业为事件B ,则由题意可知:,,,所以依题意可知,X 的所有可能取值为0,1,2,3,所以,,,,则X 的分布列为:X 0123P所以【解析】根据频率分布直方图计算频率即可估计二月份的某天各种海浪等级出现的概率;根据全概率公式可求得该渔船在这天出海作业的概率;依题意可知,X 的所有可能取值为0,1,2,3,求出对应的概率,即可得出分布列,根据期望公式求出期望.本题主要考查概率的求法,离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.20.【答案】证明:取AD的中点O,连接OP,OC,如图,因为,则,又,即有,而,于是四边形ABCO为平行四边形,又,则,又,PO,平面POC,所以平面POC,又,因此平面POC,而平面POC,所以;解:因为,,且,AD,平面PAD,则平面PAD,又,则平面PAD,分别以OC,OP,OD所在的直线为x,y,z轴建立空间直角坐标系,如图,又,则,,又,则,所以,,,,,则,,设平面DMC的法向量为,则,令,得,又平面PAD的一个法向量为,则,所以平面DMC与平面PAD夹角的余弦值为【解析】根据给定条件,取AD的中点O,利用线面垂直的判定证明平面POC即可推理作答;以O为原点,建立空间直角坐标系,利用空间向量求解作答.本题考查了线线垂直的证明和二面角的计算,属于中档题.21.【答案】解:由题意可设双曲线:,则,解得,双曲线的方程为;设,,直线AB的方程为,由,消去x得,则,,且,,;设直线AM:,代入双曲线方程并整理得,由于点M为双曲线的左顶点,此方程有一根为,,解得,点A在双曲线的右支上,,解得,即,同理可得,由,,【解析】由题意可设双曲线:,利用,可求b;设,,直线AB的方程为,与双曲线联立方程组可得,,进而计算可得为定值.设直线AM:,代入双曲线方程可得,进而可得,,进而由可得,进而求得的取值范围.本题考查椭圆和双曲线的标准方程与离心率,双曲线的几何性质,直线与双曲线的位置关系,渐近线与双曲线的位置关系,属中档题.22.【答案】解:由题意得的定义域为,,若在定义域上单调递增,则恒成立,即在上恒成立,又,;若在定义域上单调递减,则恒成立,即在上恒成立,而这样的k不存在;综上所述:在定义域上单调递增,且,所以k的取值范围为;证明:要证成立,只需证,只需证,只需证,只需证,当时,,原不等式即证,由知在上单调递增,,,又,则,原不等式成立.【解析】求导后若在定义域上单调递增,则恒成立,若在定义域上单调递减,则恒成立,利用恒成立知识即可求解;,再根据的单调性即可得证.本题考查了导数的综合应用,属于中档题.。
平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。
2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。
3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。
2023年“江南十校”高一分科诊断摸底联考数学试卷(答案在最后)注意事项:1.本试卷总分为150分,数学考试总时间为120分钟;2.本试卷包括“试题卷”和“答题卷”,请务必在“答题卷”上答题,在“试题卷”上答题无效;3.考生作答时,请将自己的姓名、准考证号填写在答题卷的相应位置.第I 卷选择题部分(共60分)一、选择题:本题共8小题,每题5分,共40分.每小题给出的四个选项中,只有一个选项符合要求.1.下列关系中,正确的是()A.e ∈RB.{}1,2∅∈C.{}01x x ∉>- D.{}{}200x x x x≤⊆>【答案】A 【解析】【分析】根据元素与集合、集合与集合之间关系直接判断即可.【详解】对于A ,e 为无理数,e ∴∈R ,A 正确;对于B ,{}1,2∅⊆,B 错误;对于C ,01>- ,{}01x x ∴∈>-,C 错误;对于D ,由20x >得:0x <或0x >,{}0x x ∴≤不是{}20x x >的子集,D 错误.故选:A.2.设命题p :x ∀∈R ,()()150x x +->,则命题p 的否定是()A.x ∃∈R ,()()150x x +->B.x ∃∈R ,()()150x x +-<C.x ∀∈R ,()()150x x +-≤D.x ∃∈R ,()()150x x +-≤【答案】D 【解析】【分析】根据全称命题的否定是特称命题分析判断.【详解】由题意可知:命题p 的否定是:x ∃∈R ,()()150x x +-≤.故选:D.3.“[]1,2x ∀∈-,220x a -≤”恒成立的一个充分不必要条件是()A.0a ≤B.1a ≤C.3a ≥D.2a ≥【答案】C 【解析】【分析】根据恒成立求解2a ≥,即可根据集合间的关系求解.【详解】若对[]1,2x ∀∈-,220x a -≤恒成立,则()2max2xa ≤,故242a a ≥⇒≥,由于{}3a a ≥是{}2a a ≥的真子集,所以符合题意,选项AB 是既不充分也不必要条件,D 是充要条件,故选:C4.已知实数 a b >, 0c >,则下列不等式一定成立的是()A. a c b ->B.c ca b > C.a bc c > D.a bc c>【答案】D 【解析】【分析】由不等式性质可知A 错误,利用特殊值代入可得BC 不一定成立,根据不等式性质可证明D 正确.【详解】由题意可知0a b ->,但a b c ->不一定成立,即a c b ->不一定成立,A 错误;不妨取1,2,2a b c =-=-=,此时14c c a b =<=,即c c a b >不一定成立,B 错误;当1c =时,显然a b c c =,此时a b c c >不一定成立,C 错误;由0c >可知10c >,又a b >,所以11a b c c ⋅>⋅,即a b c c>;即D 正确.故选:D5.如图是杭州2023年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC面积为2S ,若123l l =,则12S S =()A.9B.8C.4D.3【答案】B 【解析】【分析】由弧长比可得半径比,结合扇形面积公式求解.【详解】设OB r =,OA R =,则123l Rl r==,则3R r =∴1212912OAD OBCl R S S l r ==扇扇,故128S S =.故选:B6.函数()344x xx f x -=-的图象大致为()A.B.C.D.【答案】A 【解析】【分析】根据题意,利用函数奇偶性的定义,得到函数()f x 为偶函数,且()10f >,即可求解.【详解】由函数()344x x x f x -=-,可得()()33()4444x x x xx x f x f x ----===--,所以函数()f x 为偶函数,图象关于y 轴对称,排除C 、D 项;又由()41015f =>,可排除B 项,所以A 符合题意.故选:A.7.已知()121cos60a =-︒,3log 2b =,b c a =,则()A.a b c <<B.b a c <<C.a c b <<D.b<c<a【答案】B 【解析】【分析】利用特殊角的三角函数值,结合对数函数与指数函数的性质即可得解.【详解】因为()1122121cos60122a ⎛⎫=-︒==< ⎪⎝⎭,则322a =>,而33033log 2log 82b <==<,所以01b a <<<,所以1b c a a a =>=,故b a c <<.故选:B.8.已知函数()()12log 41x f x x -=+-,则不等式()()33f x f x <+的解集为()A.3,2⎛⎫-∞ ⎪⎝⎭ B.3,2⎛⎫+∞⎪⎝⎭C.13,42⎛⎫-⎪⎝⎭D.33,42⎛⎫-⎪⎝⎭【答案】C 【解析】【分析】解法1:根据题意,利用对数的运算性质,把不等式化简为()3122341412x x x -+-+<+⋅,令40x t =>,结合一元二次不等式的解法,即可求解;解法2:根据题意,得到()()21log 221xxf x -+=+-,设()()2log 221xx g x -=+-,得到()g x 为偶函数,求得()y f x =关于1x =对称,且在[)1,+∞上单调递增,把不等式转化为3131x x -<+-,即可求解.【详解】解法1:由函数()()12log 41x f x x -=+-,则不等式()()33f x f x <+,即为()()()31222log 413log 413x x x x -++-<+-+,可得()()31222log 41log 4123x x x -++<++-,即()3122341412x x x -+-+<+⋅,令40xt =>,则()3116148t t t +<+,即()()28210t t --<,解得82t <<,即482x<<,解得1342x -<<,所以不等式()()33f x f x <+的解集为13,42⎛⎫- ⎪⎝⎭.解法2:由函数()()12log 41x f x x -=+-,可得()()()221log 411log 221xxxf x x -+=+--=+-,设()()2log 221xxg x -=+-,则()()()2log 221xx g x g x --=+-=,所以函数()g x 为偶函数,即()1y f x =+为偶函数,可得()y f x =关于1x =对称,且在[)1,+∞上单调递增,所以不等式()()33f x f x <+,即为3131x x -<+-,可得2296144x x x x -+<++,即281030x x --<,解得1342x -<<,所以不等式()()33f x f x <+的解集为13,42⎛⎫- ⎪⎝⎭.故选:C.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.下列命题中正确的有()A.()()21mf x m m x =--是幂函数,且在()0,∞+单调递减,则1m =-B.()()22log 2f x x x =-的单调递增区间是()1,+∞C.()211f x ax ax =++的定义域为R ,则[]0,4a ∈D.()f x x =+的值域是(],5-∞【答案】AD 【解析】【分析】A 由幂函数及其单调性求参数;B 由复合函数的单调性和对数函数的性质求增区间;C 根据定义域及二次函数性质求参数范围;D 换元法及二次函数性质求值域.【详解】A :()f x 是幂函数,则211m m --=,得2m =或1m =-,又()f x 在()0,∞+单减,故1m =-,对;B :由复合函数单调性有220x x ->且1x ≥,所以单增区间是()2,+∞,错;C :定义域为R ,则0a =或204Δ40a a a a ≠⎧⇒≤<⎨=-<⎩,错;D :令0t =,则()22()24155f x y t t t ==-++=--+≤,对.故选:AD10.下列选项中,结果为正数的有()A.sin1cos1+B.sin2cos2+C.sin3cos3+D.sin4cos4+【答案】AB 【解析】【分析】根据角的象限,分别求得其取值范围,结合正弦值与余弦的值关系,逐项判定,即可求解.【详解】由π012<<,可得sin10,cos10>>,所以sin1cos10+>,所以A 正确由π3π23π24<<<<,可得sin 20,sin 30,cos 20,cos30>><<且sin 2cos 2,sin 3cos3><,所以sin2cos20+>,sin3cos30+<,所以B 正确,C 错误;由3ππ42<<,可得sin40,cos40<<,所以sin4cos40+<,所以D 错误.故选:AB.11.已知正数a ,b 满足2ab a b =++,则()A.a b +的最小值为2+B.ab 的最小值为1+C.11a b+1 D.3a b +的最小值为10【答案】ACD 【解析】【分析】利用基本不等式求解即可.【详解】因为,a b 为正数,A 项,()()2224802a b ab a b a b a b +⎛⎫=++≤⇒+-+-≥ ⎪⎝⎭2a b ⇒+≥+2a b +≤-,当1a b ==+时取等,故A 正确;B 项,22ab a b =++≥+⇒20ab -≥,1≥1≤-,即(21ab ≥+,当且仅当1a b ==+时取等,故B 错误;C 项,1122111a b ab a b ab ab ab +-+===-≥-=,当且仅当1a b ==+时取等,故C 正确;D 项,()()()()234211313392a b ab a b a b a b +-⎛⎫=++⇒--=⇒--=≤ ⎪⎝⎭,解得310a b +≥(负值舍去),当且仅当4a =,2b =时取等,故D 正确.故选:ACD .12.高斯是德国的著名数学家、物理学家、天文学家和大地测量学家.他被认为是历史上最重要的数学家之一,有“数学王子”的美誉.高斯函数[]y x =,[]x 表示不超过x 的最大整数,如[]3.53=,[]2.73-=-,则()A.()[]f x x x =-的值域是[)0,1B.方程[][][]2023xy x y =+有无数组解C.()[]f x x x =是单调函数D.方程[]220x x --=有3个根【答案】ABD 【解析】【分析】根据高斯函数的定义,即可结合选项逐一求解.【详解】因为[]x 表示不超过x 的最大整数,设01t ≤<,则[]x x t =+,则()[][0f x x x t =-=∈,1),即()f x 的值域为[0,1),故A 正确.当2023x α=+,2023y β=+,01,01αβ<<<<且1αβ+=时,[]()()()22220232023202320232023202320232023,xy αβαβαβαβ⎡⎤⎡⎤⎡⎤=++=+++=++=+⎣⎦⎣⎦⎣⎦[][][][]2202320232023x y αβ=++=,所以[][][]2023xy x y =+,故B 正确;当()0,1x ∈时,此时()0f x =,故C 错误;[]22x x x -=≤22012x x x ⇒--≤⇒-≤≤,当[)[]1,0,1x x ∈-=-,则[]2211x x x -==-⇒=-,当[)[]0,1,0x x ∈=,则[]220x x x -==⇒=,当[)[]1,2,1x x ∈=,则[]221x x x -==⇒=,当2x =时,[]2222x x x -==⇒=,故D 正确,故选:ABD第II 卷非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.函数()2y f x =+的定义域是[]2,3,则()21y f x =-的定义域是__________.【答案】5,32⎡⎤⎢⎥⎣⎦【解析】【分析】利用复合函数定义域求解.【详解】因为函数()2y f x =+的定义域是[]2,3,即23x ≤≤,所以425x ≤+≤,若求函数()21y f x =-的定义域,则有4215x ≤-≤,解得532x ≤≤,所以()21f x -的定义域为5,32⎡⎤⎢⎥⎣⎦.故答案为:5,32⎡⎤⎢⎥⎣⎦.14.已知()12xf x +=,则()2log 2024f =______.【答案】1012【解析】【分析】根据题意,令21log 2024x +=,求得x ,代入计算,即可得到结果.【详解】令21log 2024x +=,则22log 20241log 1012x =-=,所以()2log 10122log 202421012f ==故答案为:101215.若21(0)x kx b k ≥++>对x ∈R 恒成立,则bk的最大值为______.【答案】1-【解析】【分析】构造函数,根据恒成立得到214k b ≤--,14b k k k ⎛⎫≤-+ ⎪⎝⎭,利用均值不等式计算最值得到答案.【详解】令()()210f x x kx b k =--->,()210x kx b k ≥++>对x ∈R 恒成立,则()2min1024k k f x f b ⎛⎫==---≥ ⎪⎝⎭,即得214k b ≤--,故21144k b k k k k +⎛⎫≤-=-+ ⎪⎝⎭,又0k >,故114k k +≥=(当且仅当2k =时取等),所以bk的最大值为1-.故答案为:1-.16.已知()21,0ln ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩若()()220f x af x -+=有六个根,则实数a 的取值范围是______.【答案】()【解析】【分析】令()f x t =,则()22g t t at =-+,作出函数()f x 的图象,转化为()0g t =在(]1,2上有两解,列出不等式组,即可求解.【详解】令()f x t =,则()22g t t at =-+,作出函数()f x 的图象,如图所示,设函数()22g t t at =-+的零点分别为12,t t ,由图象知,要使得()()220f x af x -+=有六个根,转化为()0g t =在(]1,2上有两解,则满足()()()2Δ801302620122a g a g a a ⎧=-->⎪=->⎪⎪⎨=-≥⎪⎪<<⎪⎩,解得3a <<,所以实数a的取值范围是().故答案为:().四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知1tan 2α=-,且α为第二象限角(1)求sin α,cos α;(2)求()()sin 3ππsin cos π2ααα-⎛⎫--+ ⎪⎝⎭.【答案】(1)cos 5α=-,sin 5α=(2)14-【解析】【分析】(1)利用同角三角函数的关系,由正切值求正弦值和余弦值;(2)利用诱导公式化简求值.【小问1详解】由sin 1tan cos 2ααα==-得1sin cos 2αα=-,代入22sin cos 1αα+=得24cos 5α=,又α为第二象限角,得25cos 5α==-,sin 5α=【小问2详解】由诱导公式,有()()sin 3πsin sin tan 1πcos cos 2cos 24sin cos π2ααααααααα-====-+⎛⎫--+ ⎪⎝⎭.18.已知集合{}24A x x =-≤≤,集合{}2132B x a x a =-≤≤+(1)若2a =,求A B ⋃和()R A B I ð;(2)若A B ⋂=∅,求实数a 的取值范围.【答案】(1){}28A B x x ⋃=-≤≤,(){}23A B x x ⋂=-≤<R ð(2)45,,32a ⎛⎫⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)根据补集、交集、并集的定义进行求解即可;(2)根据集合交集的运算性质,结合分类讨论思想进行求解即可.【小问1详解】当2a =时,{}38B x x =≤≤,所以{}28A B x x ⋃=-≤≤,{|3B x x =<R ð或}8x >,所以(){}23A B x x ⋂=-≤<R ð.【小问2详解】当B =∅时,即2132a a ->+,即3a <-,满足A B ⋂=∅;当B ≠∅时,即3a ≥-,由A B ⋂=∅得2143a a ->⎧⎨≥-⎩或3223a a +<-⎧⎨≥-⎩,解得52a >或433a -≤<-;综上,45,,32a ⎛⎫⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ .19.已知函数()()3,3x x n f x m n m+=∈+R 是R 上的奇函数(1)求m ,n 的值;(2)判断并证明()f x 在R 上的单调性.【答案】(1)1m =,1n =-(2)()f x 是R 上单调递增函数,证明见解析【解析】【分析】(1)根据题意,由奇函数的定义()()f x f x -=-,代入计算,即可得到结果;(2)根据题意,由函数单调性的定义证明即可.【小问1详解】由()f x 是R 上的奇函数,所以()00f =,得1n =-又()()3113133133x x xx x x f x f x m m m------===-=+++恒成立,所以1m =,即1m =,1n =-【小问2详解】()f x 是R 上的递增函数证明如下:由(1)知,()31213131x x x f x -==-++,在R 上任取1x ,2x ,不妨令12x x >,则()()121222113131x x f x f x ⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭()()12212111332231313131x x x x x x ⎛⎫-⎛⎫ ⎪=-= ⎪ ⎪++++⎝⎭⎝⎭,因为12x x >,所以12330x x ->,所以()()120f x f x ->,所以()f x 是R 上单调递增函数20.某乡镇响应“打造生态旅游”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()243,0270,2521x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约21元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元)(1)写出单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【答案】(1)()()284330,02147030,2521x x x f x x x x x ⎧+-≤≤⎪=⎨-<≤⎪+⎩(2)当施肥量为3千克时,利润最大,最大利润是540元【解析】【分析】(1)用销售额减去成本投入得出利润()f x 的解析式;(2)根据二次函数的单调性和基本不等式求出()f x 的最大值.【小问1详解】由题意可知,()()()284330,022*********,2521x x x f x W x x x x x x ⎧+-≤≤⎪=-=⎨-<≤⎪+⎩,【小问2详解】当02x ≤≤时,()()225698184330842828f x x x x ⎛⎫=+-=-+ ⎪⎝⎭,对称轴5x 28=,则()f x 在50,28⎛⎫ ⎪⎝⎭上单调递减,在5,228⎛⎤ ⎥⎝⎦上单调递增,所以()f x 的最大值为()2528f =,当25x <≤时,()()14707353075015212121x f x x x x x ⎡⎤=-=-++⎢⎥++⎣⎦750540≤-,当()735152121x x =++,即3x =时取等号,有最大值540元,因为528540<,所以当施肥量为3千克时,利润最大,最大利润是540元.21.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,(1)求()0f ,并证明()()2F x f x =+为奇函数;(2)若()f x 是R 上的单调递增函数,且()12f =,解不等式:()()2128f x x f x ++->.【答案】(1)()02f =-,证明见解析(2)()(),12,-∞-+∞ 【解析】【分析】(1)赋值法求出()02f =-,再由奇偶函数定义证明奇偶性即可;(2)根据抽象函数性质化简,再由单调性脱去“f ”,解一元二次不等式即可得解.【小问1详解】令0x y ==,得()02f =-,()()2F x f x =+定义域为R ,关于原点对称,令y x =-,得()()()02f f x f x =+-+,所以()()40f x f x +-+=,即()()0F x F x +-=,所以()()2F x f x =+是奇函数.【小问2详解】因为()()()221212f x x f x f x x ++-=-+-,所以原不等式等价于()2110f x x -+>,又()12f =,所以()26f =,()310f =,即()()213f x x f -+>,又()f x 是R 上的递增函数,所以213x x -+>,解得2x >或1x <-,原不等式的解集为()(),12,-∞-+∞ .22.若()221(0)f x x ax a =-+>在[],m n 上的值域是[],m n 的子集,则称函数()f x 在[],m n 上是封闭的.(1)若()f x 在[]0,2上是封闭的,求实数a 的取值范围;(2)若()f x 在[]0,t 上是封闭的,求实数t 的最大值.【答案】(1)3,14⎡⎤⎢⎥⎣⎦(2)32【解析】【分析】(1)根据新的定义,即求二次函数在[]0,2上的值域,利用分类讨论思想可得结果;(2)根据新的定义,即求二次函数在[]0,t 上的值域,利用分类讨论思想建立不等关系可得结果.【小问1详解】函数()f x 开口向上,对称轴是(),0x a a =>,当02a <<时,()()2min 1f x f a a ==-+,()()(){}max max 0,2f x f f =因为()f x 在[]0,2上是封闭的,则有()()()2012254210f f a f a a ⎧=<⎪=-≤⎨⎪=-+≥⎩,解得314a ≤≤;当2a ≥时,()f x 在[]0,2上为减函数,则有()()0122540f f a ⎧=≤⎪⎨=-≥⎪⎩,解得54a ≤,又2a ≥,故无解;综上,a 的取值范围是3,14⎡⎤⎢⎥⎣⎦【小问2详解】函数()f x 开口向上,对称轴是(),0x a a =>,当0a t <≤时,()()2min 1f x f a a ==-+,()()(){}max max 0,f x f f t =因为()f x 在[]0,t 上是封闭的,则有()()()22012110f t f t t at t f a a ⎧=≤⎪=-+≤⎨⎪=-+≥⎩,解得112101t a t t a ≥⎧⎪⎪+≥+⎨⎪<≤⎪⎩,依题意有112t t +-≤,解得3322t -≤≤,所以312t +≤≤,当a t >时,()f x 在[]0,t 上为减函数,则有()()20110f t f t t at ⎧=≤⎪⎨=-+≥⎪⎩,所以122t a tt<≤+,即11t tt<⇒<(舍去)综上,t的最大值是32 +.。
2025届安徽江南十校高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等比数列{}n a 的前项和为n S ,若2019201680a a +=,则63S S 的值为( ) A .32B .12C .78 D .982.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i3.已知函数()sin(2)f x x ϕ=+,其中(0,)2πϕ∈,若,()6x R f x f π⎛⎫∀∈≤ ⎪⎝⎭恒成立,则函数()f x 的单调递增区间为( ) A .,()36k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦B .2,()33k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()33k k k z ππππ⎡⎤++∈⎢⎥⎣⎦ D .2,()3k k k Z πππ⎡⎤+⎢⎥⎣∈⎦ 4.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2-B .2C .12-D .125.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) AB .3CD .26.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).A .7?S ≥B .21?S ≥C .28?S ≥D .36?S ≥7.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()x e xf x x +=B .()21x f x x-=C .()x e xf x x-=D .()21x f x x +=8.设0.380.3log 0.2,log 4,4a b c ===,则( )A .c b a <<B .a b c <<C .a c b <<D .b a c <<9.函数()sin 2sin 3f x x m x x =++在[,]63ππ上单调递减的充要条件是( )A .3m ≤-B .4m ≤-C .33m ≤-D .4m ≤10.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ). A .432B .576C .696D .96011.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( )A .()f x 的值域是[]0,1B .()f x 是奇函数C .()f x 是周期函数D .()f x 是增函数12.空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面α,β,λ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离与P 到点A 的距离相等,则点P 的轨迹上的点到β的距离的最小值是( ) A .33-B .3C .332- D .32二、填空题:本题共4小题,每小题5分,共20分。
2020年安徽省“江南十校”高三联考数 学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、复数22ii+-(i 为虚数单位)的虚部为( ) A .35 B .45 C .35i D .45i2、设集合{}ln ,1y y x x A ==>,集合{}24x y x B ==-,则()RAB =( )A .∅B .(]0,2C .()2,+∞D .()(),22,-∞-+∞3、设命题:p ()3,1a =,(),2b m =,且//a b ;命题:q 关于x 的函数()255x y m m a =--(0a >且1a ≠)是指数函数,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、运行如图所示的程序框图后,输出的结果是( ) A .0 B .1 C .212+D .12+ 5、设等比数列{}n a 的前n 项和为n S ,且32S =,66S =,则131415a a a ++的值是( ) A .18 B .28 C .32 D .1446、若函数21x y a -=+(0a >且1a ≠)的图象经过定点(),m n P ,且过点()Q 1,m n -的直线l 被圆C:222270x y x y ++--=截得的弦长为32,则直线l 的斜率为( ) A .1-或7- B .7-或43 C .0或43D .0或1- 7、已知点()0,1A 、()2,3B -、()C 1,2-、()D 1,5,则向量C A 在D B 方向上的投影为( ) AB.D. 8、已知函数()1sin 1cos 22f x a x a x ⎛⎫⎛=++ ⎪ ⎪⎝⎝⎭,将()f x 图象向右平移3π个单位长度得到函数()g x 的图象,若对任意R x ∈,都有()4g x g π⎛⎫≤ ⎪⎝⎭成立,则a 的值为( )A .1-B .1C .2-D .29、已知函数()()()()12010x x f x f x x ⎧⎪≥=⎨⎪+<⎩若函数()()g x f x x a =++在R 上恰有两个相异零点,则实数a 的取值范围为( )A .[)1,-+∞B .()1,-+∞C .(),0-∞D .(],1-∞ 10、在正方体1111CD C D AB -A B 中,①经过点A 垂直于平面1D A B 的直线也垂直于平面11D C B ; ②设O 为C A 和D B 的交点,则异面直线1AB 与1C O 所成的角是6π; ③若正方体的棱长为2,则经过棱11D C 、11C B 、1BB中点的正方体的截面面积为④若点P 是正方形CD AB 内(包括边界)的动点,点Q 在对角线1C A 上,且满足1Q C P ⊥A ,Q PA =P ,则点P 的轨迹是线段.以上命题正确的个数为( )A .1B .2C .3D .4 二、填空题(本大题共5小题,每小题5分,共25分.)11、命题:“存在R x ∈0=”的否定是 . 12、()30log 2sin 330213++= .13、若实数x ,y 满足约束条件430260x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则21y x +的取值范围为 .14、在坐标平面内横纵坐标均为整数的点称为格点.现有一只蚂蚁从坐标平面的原点出发,按如下线路沿顺时针方向爬过格点:O →()11,0A →()21,1A -→()30,1A -→()41,1A --→()51,0A -→()61,1A -→()70,1A →()81,1A →()92,1A →⋅⋅⋅→()122,2A -→⋅⋅⋅→()162,2A --→⋅⋅⋅→()202,2A -→⋅⋅⋅→()253,2A →⋅⋅⋅,则蚂蚁在爬行过程中经过的第350个格点350A 坐标为 .15、若曲线C 上任意一点与直线l 上任意一点的距离都大于1,则称曲线C “远离”直线l .在下列曲线中,“远离”直线:l 2y x =的曲线有 .(写出所有符合条件的曲线C 的编号)①曲线C:250x y -+=;②曲线C:2924y x x =-+-;③曲线C:()2251x y +-=;④曲线C:1x y e =+; ⑤曲线C:ln 2y x =-.三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知函数()4sin cos 16f x x x π⎛⎫=++ ⎪⎝⎭.()I 求函数()f x 的最小正周期;()II 在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =,3a =,C 3S ∆AB =求22b c +的值.17、(本小题满分12分)某校高三文科(1)班学生参加“江南十校”联考,其数学成绩(已折合成百分制)的频率分布直方图如图所示,其中成绩分布区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,现已知成绩落在[]90,100的有5人.()I 求该校高三文科(1)班参加“江南十校”联考的总人数;()II 根据频率分布直方图,估计该班此次数学成绩的平均分(可用中值代替各组数据的平均值);()III 现要从成绩在[)40,50和[]90,100的学生中共选2人参加某项座谈会,求2人来自于同一分数段的概率.18、(本小题满分12分)已知各项均为正数的数列{}n a 满足22124n n n n n a a a a a ++++=-(n *∈N ),且11a =,24a =.()I 证明:数列{}n a 是等差数列;()II 设121n n n n b a a ++=,{}n b 的前n 项和为n S ,求证:1n S <.19、(本小题满分13分)如图,圆柱1OO 的底面圆半径为2,CD AB 为经过圆柱轴1OO 的截面,点P 在AB 上且13AP =APB ,Q 为D P 上任意一点.()I 求证:Q A ⊥PB ;()II 若直线D P 与面CD AB 所成的角为30,求圆柱1OO 的体积.20、(本小题满分13分)已知函数()()1ln 1a x f x a x x +=-+,其中0a ≥.()I 当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;()II 讨论()f x 在其定义域上的单调性.21、(本小题满分13分)已知椭圆C:22221x y a b +=(0a b >>)经过点31,2⎛⎫⎪⎝⎭,它的左焦点为()F ,0c -,直线1:l y x c =-与椭圆C 交于A ,B 两点,F ∆AB 的周长为3a .()I 求椭圆C 的方程;()II 若点P 是直线2:l 3y x c =-上的一个动点,过点P 作椭圆C 的两条切线PM 、PN ,M 、N 分别为切点,求证:直线MN 过定点,并求出此定点坐标.(注:经过椭圆22221x y a b +=(0a b >>)上一点()00,x y 的椭圆的切线方程为00221x x y y a b +=)参考答案1.B .22(2)342(2)(2)55i i i i i i ++==+--+,故选B 2.C .{}{}0,22A x x B x x =>=-≤≤,{}=2x 2,R C B x x ><-或{}=2,R A C B x x ∴⋂> 故选C3.A .命题:320,6p m m ⨯-==;命题2:55116q m m m --==-由得或,故选A4.A .由程序框图可知,最后输出的215sinsin sin0444p πππ=+++=,故选A 5.C .由等比数列性质可知363961291512,S S S S S S S S S ----,,,也成等比,易求出131415151232a a a S S ++=-=, 故选C6.A .(22),(12)P Q ,,,设2(1),20l y k x kx y k -=--+-=:即,圆C :22(1)(1)9x y ++-=,圆心-1,1C ()到l 的距离d ==2870k k ∴++=,17,k =--或故选A7.D .(11),(32),AC BD =-=∴,,AC 在BD 方向上的投影为13AC BD BD -⨯==13=-,故选D 8. D .1()sin cos cos 22f x a x a x x x =++=sin()2cos()33a x x ππ+++ ()()sin 2cos 3g x f x a x x π∴=-=+,由题意得(g x )图象关于直线4x π=对称, ()(0),22g g a π∴=∴=,故选D9B .()0()g x f x x a =⇔=--,当[)1,0x ∈-时,[)10,1x +∈,()(1)f x f x =+=,故把y =[)0,1上的部分向左平移1个单位得到()f x 在[)1,0-上的图象,再把()f x 在[)1,0-上的图象每次向左平移1个单位连续平移就得到()f x 在R 上的图象,再作出y x a =--的图象,由图象可得1a -<,1a >-,故选B10.D .易证1//A BD 面11B D C 选,∴①正确;11//A B D C ,1OC D ∠就是异面直线1AB 与1OC 所成的角.1,BD OC BD CC ⊥⊥,BD ∴⊥面1OCC ,1BD OC ∴⊥,又11122OD BD C D ==,16OC D π∴∠=,∴②正确;设棱111111,,,,,B D B C BB AB AD DD 的中点分别为,,,,,E F G H M N ,则过点,,E F G 的正方形截面就是正六边形EFGHMN ,26S ==,∴③正确;连结1A P ,易证1AA AP ⊥,又1PQ A C ⊥,11,PA PQ PA PA ==,1111,Rt A PA Rt A PQ A A AQ ∴∆≅∆=,∴Q 为1A C 上定点,又PA PQ =,点P 在线段AQ 的中垂面上,∴点P 在AQ 的中垂面与正方形ABCD 的交线上,∴④正确;故选D11.对任意x R ∈0≠.12.52 原式15sin(30)12322=-++=-+=.13.4,45⎡⎤-⎢⎥⎣⎦21y x +可看作点()1,0P -与点(),x y 连线斜率的2倍,画出可行域,由4260x x y =⎧⎨+-=⎩ 得()4,2A -,由30260x y x y -+=⎧⎨+-=⎩得()1,4B ,2,2,5PA PB k k =-=∴21yx +的取值范围为4,45⎡⎤-⎢⎥⎣⎦. 14.()1,9-以O 为中心,边长为2的正方形上共有格点18a =个,且蚂蚁在其上爬过的最后一个格点为()1,1以O 为中心,边长为4的正方形上共有格点216a =个,且蚂蚁在其上爬过的最后一个格点为()2,2以O 为中心,边长为6的正方形上共有格点324a =个,且蚂蚁在其上爬过的最后一个格点为()3,3………以O 为中心,边长为2n 的正方形上共有格点8n a n =个,且蚂蚁在其上爬过的最后一个格点为(),n n ,由前n 个正方形上格点的总数123n S a a a =+++…81624n a +=+++ (88)83502n n n ++=≥得9n ≥.当9n =时,前9个正方形上格点的总数99(872)3602S +==,且蚂蚁在第9个正方形(边长为18)上爬过的最后一个格点为()3609,9A ,故蚂蚁在爬行过程中经过的第350个格点350A 坐标为()1,9-. 15.②③⑤ 对①:2512d ==,∴不合题意;对②:设直线1:2l y x b =+与曲线29:24C y x x =-+-相切,把2y x b =+代入2924y x x =-+-得2904x b ++=,由90404b ⎛⎫∆=-+= ⎪⎝⎭,得94b =-,此时直线1l 与l的距离91d ==>,符合题意;对③:圆心()0,5C到直线l的距离d ==∴圆C 上的点到l 距离的最小11>,符合题意;对④:设曲线C 上斜率为2的切线的切点为()00,P x y ,'x y e =,00'2,x x x k y e =∴===0ln 2x ∴=,()ln 2,3P ∴,切线:()32ln 2y x -=-,即:232ln 20x y -+-=,∴切线与C的距离d ==,()ln 41,2∈,()3ln 41,2∴-∈,2,1d >∴<,不合题意;对⑤:设切点为()00,P x y ,'1y x=, 0'012,x x k y x =∴===012x ∴=,1,2ln 22P ⎛⎫∴-- ⎪⎝⎭,1,d ∴==>符合题意。
姓名座位号(在此卷上答题无效)绝密★启用前2024年“江南十校”新高三第一次综合素质检测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号框。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2log 2<=x x A ,{}4<=x x B ,=B A A .)4,(-∞B .)4,0(C .)4,4(-D .)0,4(-2.记等差数列{}n a 的前n 项和为n S ,已知863=+a a ,则=8S A .28B .30C .32D .363.已知函数1221)(+-=xx f ,则对任意实数x ,有A .0)()(=+-x f x f B .0)()(=--x f x f C .2)()(=+-x f x f D .2)()(=--x f x f 4.已知βα,都是锐角,71cos =α,1411)cos(-=+βα,求=βcos A .21B .9839C .9859D .98715.已知()nx 21+的展开式中各项系数的和为243,则该展开式中的4x 项的系数为A .5B .16C .40D .806.已知正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心,2为半径作一个球,则球面与正方体的表面相交所得到的曲线的长为A .23πB .25πC .π2D .π7.某次跳水比赛甲、乙、丙、丁、戊5名跳水运动员进入跳水比赛决赛,现采用抽签法决定决赛跳水顺序,在“运动员甲不是第一个出场,运动员乙不是最后一个出场”的前提下,“运动员丙第一个出场”的概率为A .133B .51C .41D .1348.对于0>x ,0ln 12≥-x e xλλ恒成立,则正数λ的范围是A .e1≥λB .e21≥λC .e 2≥λD .e≥λ二、选择题:本题共3小题,每小题6分,共18分。
3.已知向量a,b 满足(1,)(3,1)m +=-=,a b a b .若a b ,则实数m =()A .13-B .13C .3D .3-【解析】由于(1,)(3,1)m +=-=,a b a b ,所以11(2,),(1,)22m m +-==-a b ,又因为a b ,所以112022m m -+⋅+=,解得13m =.【答案】B .4.已知函数π()3sin(2)(||2f x x ϕϕ=+<的图象向右平移π6个单位长度后,得到函数()g x 的图象,若()g x 是偶函数,则ϕ为A .π6B .π6-C .π3D .3π-【解析】将函数()3sin(2)(||0)f x x ϕϕ=+<的图像向右平移6π个单位长度后得到()g x 的图象,则()sin(32)g x x πϕ=-+,因为()g x 是偶函数,所以2023k ππϕπ⨯-+=+,k Z ∈,即56k πϕπ=+,k Z ∈,又||2πϕ<,令1k =-,可得6πϕ=-.【答案】B .5.酒驾严重危害交通安全.为了保障交通安全,交通法规定:机动车驾驶人每100ml 血液中酒精含量达到2079mg ∼为酒后驾车,80mg 及以上为醉酒驾车.若某机动车驾驶员饮酒后,其血液中酒精含量上升到了1.2/mg ml .假设他停止饮酒后,其血液中酒精含量以每小时20%的速度减少,则他能驾驶需要的时间至少为(精确到0.001.参考数据:lg 20.3010≈,lg30.4771≈)A .7.963小时B .8.005小时C .8.022小时D .8.105小时【解析】由已知得:1.20.80.2x ⨯<,所以lg 6lg 2lg313lg 213lg 2x +>=--即0.30100.47710.77818.022130.30100.0970x +>=≈-⨯,所以8.022x >【答案】C6.已知函数()1ln f x x x =-在点(1,1)-处的切线与曲线2(1)2y ax a x =+--只有一个公共点,则实数a 的取值范围为A .{1,9}B .{01,9},C .{1,9}--D .{0,1,9}--【解析】由211'()f x x x =+得'(1)2f =所以切线方程是2(1)123y x x =--=-①若0a =,则曲线为2y x =--,显然切线与该曲线只有一个公共点;②若0a ≠,则223(1)2x ax a x -=+--即2(3)+1=0ax a x +-由2(3)40a a ∆=--=,即21090a a -+=得19a a ==或综上:019a a a ===或或【答案】B7.已知圆228120C x y x +-+=:,点M .过原点的直线与圆C 相交于两个不同的点,,A B 则MA MB + 的取值范围为A .)2-B .(⎤⎦C .()4-D .(6⎤⎦【解析】设AB 的中点为点P ,则2MA MB MP += ,由垂径定理知CP OP ⊥,则可得点P 的轨迹E 为以OC 为直径的圆(圆C 内部的圆弧)其方程为22:(2)4(34)E x y x -+=<≤,则可得点M 到轨迹E 上点P 的距离取值范围为(⎤⎦,从而2MA MB MP += 的取值范围为(6⎤⎦.【答案】D 8.已知数列{}n a 的前n 项和为,n S 数列{}n b 的前n 项和为n T ,且111n n a S n a +=+=,,11n n b a =+,则使得n T M <恒成立的实数M 的最小值为A .1B .32C .76D .2【解析】当1n =时,2112a a =+=当2n ≥时,11n n a S n -=+-所以11(1)n n n n a a S n S n +--=+-+-,即121n n a a +=+所以112(1)n n a a ++=+则{1},2n a n +≥为等比数列,21, 1321,2n n n a n -=⎧=⎨⋅-≥⎩即2n ≥时,2132n na -+=⋅所以2211117117(1)23226326n n n T --=++++=-⨯< ,得76M ≥【答案】C二、多项选择题9.箱线图是用来表示一组或多组数据分布情况资料的统计图,因形似箱子而得名.在箱线图中(如图1),箱体中部的粗实线表示中位数;中间箱体的上下底,分别是数据的上四分位数(75%分位数)和下四分位数(25%分位数);整个箱体的高度为四分位距;位于最下面和最上面的实横线分别表示最小值和最大值(有时候箱子外部会有一些点,它们是数据中的异常值).图2为某地区2023年5月和6月的空气质量指数(AQI)箱线图.AQI 值越小,空气质量越好;AQI 值超过200,说明污染严重.则(第9题图1)(第9题图2)A .该地区2023年5月有严重污染天气.B .该地区2023年6月的AQI 值比5月的AQI 值集中.C .该地区2023年5月的AQI 值比6月的AQI 值集中.D .从整体上看,该地区2023年5月的空气质量略好于6月.【解析】对于A 选项可以从图2所示中5月份有AQI 值超过200的异常值得到判断(也可以通过异常值结合观察5月份的平均值高于中位数辅助判断);对于B ,C 选项,图2中5月份的箱体高度比6月份的箱体高度小,说明5月的AQI 值比6月的AQI 值集中;对于D 选项,虽然5月有严重污染天气,但从图2所示中5月份箱体整体上比6月份箱体偏下且箱体高度小,AQI 值整体集中于较小值,说明从整体上看,该地区2023年5月的空气质量略好于6月.【答案】ACD10.已知抛物线2:2E y px =的焦点为F ,从点F 发出的光线经过抛物线上的点P (原点除外)反射,则反射光线平行于x 轴.经过点F 且垂直于x 轴的直线交抛物线E 于,B C 两点,经过点P 且垂直于x 轴的直线交x 轴于Q ;抛物线E 在点P 处的切线l 与,x y 轴分别交于点,M N ,则下列说法成立的是A .2PQ BF QF=⋅B .2PQ BC OQ =⋅C .PF MF =D .FN l ⊥【解析】对于A ,B 选项,设点(,)P x y ,而PQ =,而,2p BF p QF x ==-,2p BF QF p x ⋅=-,则A 选项错误,又2,BC p OQ x ==,则B 选项正确;对于C 选项,如下图所示,过点P 作x 轴的平行线RH ,与抛物线E 的准线KH 交于点H ,又题意所给抛物线的光学性质可得SPR MPF ∠=∠,又SPR PMF ∠=∠,所以MPF PMF ∠=∠,从而PF MF =;对于D 选项,因为SPR HPM ∠=∠,所以MPF HPM ∠=∠,即PM 为HPF ∠的角平分线,又由抛物线定义知PH PF =,结合PF MF =,可得菱形MFPH ,而y 轴经过线段FH 中点,从而PM 与y 轴的交点即为点N ,所以FN l ⊥.【答案】BCD11.已知点S,A,B,C 均在半径为5的球面上,ABC ∆是边长为23的等边三角形,SA BC ⊥,32SA=,则三棱锥S-ABC 的体积可以为()A .33B .335C .33D .51【解析】方法一:如图,设三棱锥S -ABC 的外接球球心为O ,ABC ∆的中心为1O ,连接1,,AO SO AO ,延长1AO 交BC 于D ,连接SD ,则D 是BC 中点,所以,BC AD ⊥又BC SA ⊥,所以BC SAD ⊥平面,又因为BC ABC ⊂平面,所以SAD ABC ⊥平面平面,过S 作AD 的垂线,垂足为G ,则SG ABC ⊥平面,在1Rt AOO 中,1541OO =-=,设,AG d SG h ==,过O 作SG 的垂线,垂足为E .若1A O 、在SG 的同侧,则在Rt SAG 中有2218d h +=,在Rt SOE 中有22(2)(1)5d h -+-=,联立得35215h d ⎧=⎪⎪⎨⎪=⎪⎩或33h d =⎧⎨=⎩,所以三棱锥S-ABC 的体积为335或33;若1A O ,在SG 的异侧,同理可解得35215h d ⎧=⎪⎪⎨⎪=⎪⎩或33h d =⎧⎨=⎩,与2d <矛盾(舍去).【答案】BC .方法二:设三棱锥S -ABC 的外接球球心为O ,连接AO 并延长交大圆于F ,过S 作AD 的垂线,垂直为G ,可证得SG ABC⊥面(1)若点S 在直线AF 的上方,设,SAF FAG αβ∠=∠=,则11tan ,tan 32αβ==所以tan tan tan tan()11tan tan SAG αβαβαβ+∠=+==-,4SAG π∠=可得2sin 3232SG AS SAG =⋅∠=⋅=11333ABC V S SG ∴=⋅=(2)若点S 在直线AF 的下方,则11tan ,tan 32αβ==所以tan tan 1tan tan()1tan tan 7SAG βαβααβ-∠=-==+,2sin 10SAG ∠=可得23sin 105SG AS SAG =⋅∠==213ABC V S SG ∴=⋅= BC .【答案】BC .三、填空题12.从0,2,4,6中任意取1个数字,从1,3,5中任意选2个数字,得到没有重复数字的三位数.在所组成的三位数中任选一个,则该数是偶数的概率为.【解析】若0在,则三位数有122312C A =;若0不在,则三位数有12333354C C A =.所以没有重复数字的三位数有66个,其中偶数的个数是124324C A =个,所以在所组成的三位数中任选一个,是偶数的概率是2446611=【答案】411.13.若函数()2f x +为偶函数,()15y g x =+-是奇函数,且()()22f x g x -+=,则()2023=f ______.【解析】由()2f x +为偶函数,得()2(2)f x f x -=+,由()15y g x =+-是奇函数,得()15(1)5g x g x +-=--+,即(2)()10g x g x -+=由()()22f x g x -+=,得()()22f xg x -=+相加得:(2)()6()f x f x -+=- *用2x +代换x 得(2)()6f x f x ++=-从而(4)(2)6f x f x +++=-故()4()f x f x +=所以4是()y f x =的一个周期故()2023=(3)(1)f f f =-结合() *式得(3)(1)3f f =-=-【答案】3-.14.在平面直角坐标系xOy 中,过双曲线2222:1x y E a b -=(00)a b >>,的右焦点F 的直线在第一、第二象限交E 的两渐近线分别于,M N 两点,且OM MN ⊥.若23OM MN ON +-=,则双曲线E 的离心率为.【解析】如图,设,2FOM MON αθ∠=∠=,因为OM MN ⊥,易知FM b =,tan b a α=,所以OM a =;又23OM MN ON a +-=,所以13MN ON a -=-,在直角OMN ∆中,利用勾股定理可得43MN a =,所以4tan 23θ=,求得1tan 2θ=(负值舍去),也即1tan 2tan b a αθ===四、解答题15.已知,,a b c 分别是ABC ∆三个内角,,A B C sin cos A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点,B C 顺时针旋转15,30︒︒,旋转后相交于点D (如图所示),且30DBC ∠=︒,求AD .15.【解析】sin cos A a C b c+=+sin sin cos sin sin C A A C B C+=+又因为sin sin()sin cos cos sin B A C A C A C=+=+sin cos sin sin C A A C C=+······································································(3分)由于sin 0C >cos 1A A =+,即1sin()62A π-=,又5666A πππ-<-<,则66A ππ-=,因此3A π=.······················································(6分)(2)在ABC ∆中,由正弦定理得sin sin BC AC ABC BAC =∠=∠在BDC ∆中,由于45BDC ︒∠=由正弦定理得sin sin BC CD DBC BDC=∠=∠·························································(10分)于是,在ACD ∆中,由余弦定理得:3AD =················(13分)16.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,1,PB AB ==2AD PD ==,60BAD ∠= .(1)求证:平面PAB ⊥平面ABCD ;(2)若二面角P BD A --的大小为120 ,点E 在棱PD 上,且2PE ED =,求直线CE 与平面PBC 所成角的正弦值.【解析】(1)证明:由余弦定理得2212212cos603BD =+-⋅⋅︒=所以222AD AB BD =+,222PD PB BD =+因此AB BD ⊥,PB BD ⊥又因为,,AB PB B AB PB ⋂=⊂平面PAB所以BD ⊥面PAB又因为BD ⊂平面ABCD故平面PAB ⊥平面ABCD ·····················································································(6分)(2)由于AB BD ⊥,PB BD⊥所以二面角P BD A --的平面角为PBA ∠,即PBA ∠0120=·······································(7分)在平面PAB 内过点B 作AB 的垂线,交AP 于F由平面PAB ⊥平面ABCD ,得BF ⊥平面ABCD以B 为坐标原点,,BA BD BF ,为,,x y z 轴正方向建立如图所示的空间直角坐标系B xyz-则13(0,0,0),(0,3,0),(1,3,0)(,0,)22B DC P --,····················································(9分)设平面PBC 的法向量为(,,)n x y z = ,由于(1,3,0),BC =- 13(,0,)22BP =- 则00n BC n BP ⎧⋅=⎪⎨⋅=⎪⎩ ,即3013022x y x z ⎧-+=⎪⎨-+=⎪⎩,令3x =,则1y z ==所以n = ···································································································(11分)设直线CE 与平面PBC 所成角为θ25(,)3636CE CP PE CP PD =+=+=- ||sin |cos ,|||||CE n CE n CE n θ⋅∴=<>=⋅2335=因此直线CE 与平面PBC所成角的正弦值为5.························································(15分)17.某产品的尺寸与标准尺寸的误差绝对值不超过4mm 就视为合格品,否则视为不合格品.假设误差服从正态分布且每件产品是否为合格品相互独立.现随机抽取100件产品,误差的样本均值为0,样本方差为4.用样本估计总体.(1)试估计100件产品中不合格品的件数(精确到1);(2)在(1)的条件下,现出售随机包装的100箱该产品,每箱均有100件产品.收货方对每箱中产品均不放回地随机抽取进行检验且箱与箱之间检验相互独立.每箱按以下规则判断是否接受一箱产品:如果抽检的第1件产品为不合格,则拒绝整箱产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受整箱产品,否则拒绝整箱产品.若整箱产品通过检验后生产方获利1000元;整箱产品被拒绝,则亏损89元,求该100箱产品利润的期望值.附:若随机变量Z 服从正态分布2(,)N μσ,则()0.6827,P Z μσμσ-+≈≤≤(22)0.9545,P Z μσμσ-+≈≤≤(33)0.9973.P Z μσμσ-+≈≤≤【解析】(1)分别用样本均值和样本标准差估计正态分布的参数μ和σ,得产品的尺寸误差2(0,2)X N ,(4)(22)0.9545≤=-+≈P x P Z μσμσ≤≤,因此估计这批产品的合格率为95.45%.因此样本的不合格品率为10.95450.0455-=,所以估计100件产品中有1000.0455 4.555⨯=≈件不合格品.···········································(6分)(2)方法一:设1A =“抽检的第1件产品不合格”,2A =“抽检的第2件产品不合格”,则一箱产品被拒绝的事件为112()A A A ⋃.因此1121121121(())()()()(()P A A A P A P A A P A P A P A A ⋃=+=+59559710010099990=+⨯=.·····················································································(10分)设100箱产品通过检验的箱数为Z ,则893(100,)990Z B .所以100箱利润1000(89)(100)10898900W Z Z Z =+--=-因此平均利润893()(10898900)1089()890010891008900990E W E Z E Z =-=-=⨯⨯-89330=(元).·················································································(15分)方法二:记一个整箱产品被拒绝为事件A ,则295210097()1990C P A C =-=···································(10分)设整箱产品的利润为随机变量ξ,则97(89)990P ξ=-=,97893(1000)1990990P ξ==-=所以97893884367()891000990990990E ξ=-⨯+⨯=设100箱该产品的利润为随机变量X ,则100X ξ=所以()(100)100()89330E X E E ξξ===(元).··························································(15分)18.已知矩形ABCD中,AB BC ==,,,,E F G H 分别是矩形四条边的中点,以矩形中心O 为原点,HF 所在直线为x 轴,EG 所在直线为y 轴,如图建立平面直角坐标系.直线,HF BC 上的动点,R S 满足,()OR OF CS CF λλλ==∈R .(1)求直线ER 与直线GS 交点P 的轨迹方程;(2)当3λ=-时,过点R 的直线m (与x 轴不重合)和点P 的轨迹交于,M N 两点,过点N 作直线:3l x =-的垂线,垂足为点Q .设直线MQ 与x 轴交于点K ,求KMN ∆面积的最大值.【解析】(1)设点P x y (,),0R R x (,),S S y )由OR OF λ=得R x =,即0R ,)由CS CF λ=得1S y )λ=-,即1S ))λ-当0λ≠时,直线ER y x :=-①直线GS y:=+②由①②消去参数λ得213y y x(+-=-即221062x y x()+=≠;当0λ=时,得交点0P(;综上:直线ER与直线GS交点P的轨迹方程:221062x y((,+=不含点···························(6分)(2)当3λ=-时,点20R(,)-,过点R的直线m可设为2x ty t(=-≠代入22162x y+=得22236ty y()-+=即22(3)420t y ty+--=设1112(,),(,)M x y N x y则12122242,33ty y y yt t-+==++由题得2(3,)Q y-则直线1221:(3)3y yMQ y y xx--=++所以令0y=得212111212(3)33ky x y x yxy y y y-+--=-=--·················································································(8分)又因为11121222x ty ty y y y,()=-=-+,代入上式得:122121112211212121()23(2)3232ky y y yy ty y ty y y yxy y y y y y++-----+-===---1212555222y yy y-+==--所以直线MQ过定点5(,0)2K-·······················································································(12分)由于121212115122224KMNS KR y y y y y y∆=-=-+-=-而12y y-=·····································(14分)令21(1)n t n=+≥12y y-=≤当且仅当2n =,也即1t =±等号成立此时4KMN S ∆=所以KMN ∆面积的最大值为4····················································································(17分)19.已知函数()(),x f x x a e x a R =--∈,()f x '是()f x 的导函数.(1)证明:()f x '在(,)-∞+∞上有唯一零点0x ;(2)设函数221()(1)(1)2x g x x ax e x x =-+-++.①当4,2e a -⎡⎫∈+∞⎪⎢⎣⎭时,求函数()g x 的单调区间;②当4(,2e a -∈-∞时,讨论函数()g x 零点的个数.【解析】(1)()=(1)1xf x x a e '-+-由()0f x '=得,110x x a e -+-=令1()1xh x x a e =-+-,则1()10x h x e '=+>所以()h x 为R 上的增函数又11(1)0a h a e --=-<若0a ≥,由于11a a +>-且11(1)20a h a e ++=->若0a <,由于1a a ->-且11()12(120a ah a a a e e ---=--=-->综上:存在唯一零点0(,)x ∈-∞+∞,使得0()0h x =即()f x '在(,)-∞+∞上有唯一零点0x .···································································(5分)(2)()(1)(1)(1)x g x x x a e x '=+-+-+1(1)(1)x x x x a e e =+-+-①由(1)知,1()1xh x x a e =-+-有唯一零点0x 且为增函数,所以()0g x '=的根为01,x -.又434(1)022e e h a e e ---=--≤--=-<,则01x >-所以由()0g x '>得01x x x <->或;由()0g x '>得01x x -<<所以函数()g x 的递增区间是0(,1),(,)x -∞-+∞;递减区间是0(1,)x -······································(9分)②由(0)0g =得0是函数()g x 的一个零点.(ⅰ)若42e e a --<<,由①同理可得01x >-当(,1)x ∈-∞-时,()0g x '>,则()g x 单调递增当0(1,)x x ∈-时,()0g x '<,则()g x 单调递减当0(,)x x ∈+∞时,()0g x '>,则()g x 单调递增又因为24()=(1)02a e g x g e+--=<极大值所以()g x 仅有一个零点0;(ⅱ)若a e =-,则(1)110h e e -=-++-=,即01x =-则()0g x '≥,所以(,)()x g x ∈-∞+∞时,单调递增.所以()g x 仅有一个零点0;(ⅲ)若a e <-,则(1)0h a e -=-->,所以01x <-当0(,)x x ∈-∞时,()0g x '>,则()g x 单调递增当0(,1)x x ∈-时,()0g x '<,则()g x 单调递减当(1,)x ∈-+∞时,()0g x '>,则()g x 单调递增所以022000001()=()(1)(1)2x g x g x x ax e x x =-+-++极大值02200001(1)(1)2x x ex e x x <++-++因为01x <-,所以22001111(1)(1)10222x x ++>-+-+=>当20010x ex ++<时,02200001(1)(1)02x x ex e x x ++-++<当20010x ex ++>时,0222200000000111(1)(1)(1)(1)22x x ex e x x x ex x x e ++-++<++-++2200000111(1)1(1)02222e x ex x x x <++---=--<所以()g x 仅有一个零点0.综上:当4(,2e a -∈-∞时,函数()g x 仅有一个零点0.·····················································(17分)。
2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数2(1)(1)(z a a i i =-+-为虚数单位,)a l >,则z 在复平面内的对应点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(5分)已知集合{|34}A x x x =<+,2(|870}B x x x =-+<,则(A B =I ) A .(1,2)-B .(2,7)C .(2,)+∞D .(1,2)3.(5分)某装饰公司制作一种扇形板状装饰品,其圆心角为120︒,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计).已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米 B .63厘米C .69厘米D .76厘米4.(5分)函数cos ()22x x x x f x -=+在[2π-,]2π上的图象大致为( ) A .B .C .D .5.(5分)若5()()l ax l x ++的展开式中2x ,3y 的系数之和为10-,则实数a 的值为( ) A .3-B .2-C .l -D .16.(5分)已知3log 2a =,3b ln =,0.992c -=,则a ,b ,c 的大小关系为( ) A .b c a >> B .a b c >>C .c a b >>D .c b a >>7.(5分)执行如图的程序框图,则输出S 的值为()A .112-B .2360C .1120D .43608.(5分)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“11+”问题,它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩,若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )A .15B .13C .35D .239.(5分)已知正项等比数列{}n a 的前n 项和为n S ,219S =,3727S =,则12n a a a ⋯的最小值为( ) A .24()27B .34()27C .44()27D .54()2710.(5分)已知点P 是双曲线2222:(0x y C l a a b-=>,0b >,22)c a b =+上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( )A 2B 5C 3D .211.(5分)已知2()12cos ()(0)3f x x πωω=-+>.给出下列判断:①若()l f x l =,2()1f x =-,且12||min x x π-=,则2ω=;②存在(0,2)ω∈,使得()f x 的图象右移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[0,2]π上恰有7个零点,则ω的取值范围为41[24,47]24④若()f x 在[6π-,]4π上单调递增,则ω的取值范围为(0,2]3其中,判断正确的个数为( ) A .1B .2C .3D .412.(5分)如图,在平面四边形ABCD 中,满足AB BC =,CD AD =,且10AB AD +=,8BD =.沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD-体积的最大值为( )A .12B .122C 162D .163二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数2()f x lnx x =+,则曲线()y f x =在点(1,f (1))处的切线方程为 .14.(5分)若0x R ∃∈,2200150x a x -+<为假,则实数a 的取值范围为 .15.(5分)在直角坐标系xOy 中,已知点(0,1)A 和点(3,4)B -,若点C 在AOB ∠的平分线上,且||310OC =u u u r OC u u u r的坐标为 .16.(5分)已知抛物线2:4C y x =,点P 为抛物线C 上一动点,过点P 作圆22:(3)4M x y -+=的切线,切点分别为A ,B ,则线段AB 长度的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin()33c B b C b π=-+. ()l 求角C 的大小;(2)若7c =3a b +=,求AB 边上的高.18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =.PAB ∆为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点. (1)求证://AE 平面PBC ;(2)若平面EBC 与平面PAD 的交线为l ,求二面角P l B --的正弦值.19.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分. (1)设抛掷4次的得分为X ,求变量X 的分布列和数学期望.(2)当游戏得分为(*)n x N ∈时,游戏停止,记得n 分的概率和为n Q ,112Q =. ①求2Q ;②当*n N ∈时,记112n n n A Q Q +=+,1n n n B Q Q +=-,证明:数列{}n A 为常数列,数列{}n B 为等比数列.20.(12分)已知椭圆2222:1(0))x y E a b a b +=>>的离心率为3,且过点7(,3)4.点P 在第一象限,A 为左顶点.B 为下顶点,PA 交y 轴于点C ,PB 交x 轴于点D . (1)求椭圆E 的标准方程; (2)若//CD AB ,求点P 的坐标.21.(12分)已知函数2()()f x lnx x ax a R =-+∈. (1)若()0f x …恒成立,求a 的取值范围;(2)设函数()f x 的极值点为0x ,当a 变化时,点0(x ,0())f x 构成曲线M .证明:过原点的任意直线y kx =与曲线M 有且仅有一个公共点.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,直线1l 的参数方程为1((1)x mm y k m =-⎧⎨=-⎩为参数),直线2l 的参数方程为(2x nn k y n =⎧⎪⎨=+⎪⎩为参数).若直1l ,2l 的交点为P ,当k 变化时,点P 的轨迹是曲线C .()l 求曲线C 的普通方程;(2)以坐标原点为极点,x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线3l 的极坐标方程为(0)θαρ=…,4tan (0)32παα=<<,点Q 为射线3l 与曲线C 的交点,求点Q 的极径.[选修4-5:不等式选讲]23.已知函数()|1||2|f x x x =-++. ()l 求不等式()3f x x <+的解集;(2)若不等式22()m x x f x --„在R 上恒成立,求实数m 的取值范围.2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数2(1)(1)(z a a i i =-+-为虚数单位,)a l >,则z 在复平面内的对应点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:当1a >时,10a -<,210a ->, z ∴在复平面内的对应点所在的象限为第二象限.故选:B .2.(5分)已知集合{|34}A x x x =<+,2(|870}B x x x =-+<,则(A B =I ) A .(1,2)-B .(2,7)C .(2,)+∞D .(1,2)【解答】解:{|2}A x x =<,{|17}B x x =<<, (1,2)A B ∴=I .故选:D .3.(5分)某装饰公司制作一种扇形板状装饰品,其圆心角为120︒,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计).已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米【解答】解:因为弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小, 可以用弧长近似代替弦长, 所以导线长度为2302020 3.14633ππ⨯==⨯≈(厘米). 故选:B .4.(5分)函数cos ()22x xx x f x -=+在[2π-,]2π上的图象大致为( )A .B .C .D .【解答】解:根据题意,cos ()22x x x x f x -=+,有cos ()()22x xx xf x f x --=-=-+, 则[2π-,]2π上,()f x 为奇函数,其图象关于原点对称,排除AB ,又由在区间(0,)2π上,cos 0x >,20x >,20x ->,则()0f x >,排除D ;故选:C .5.(5分)若5()()l ax l x ++的展开式中2x ,3y 的系数之和为10-,则实数a 的值为( ) A .3-B .2-C .l -D .1【解答】解:因为5()l x +的展开式的通项公式为:15r r r T x +=g ð; 可得展开式中x ,2x ,3x 的系数分别为:15ð,25ð,35ð;故5()()l ax l x ++的展开式中2x 的系数为:2155105a a +=+g 痧;故5()()l ax l x ++的展开式中3x 的系数为:23551010a a +=+g 痧;1051010201510a a a ∴+++=+=-;2a ∴=-.故选:B .6.(5分)已知3log 2a =,3b ln =,0.992c -=,则a ,b ,c 的大小关系为( ) A .b c a >>B .a b c >>C .c a b >>D .c b a >>【解答】解:因为31log 2(0,)2a =∈,31b ln =>,0.9911222c --=>=,故b c a >>. 故选:A . 7.(5分)执行如图的程序框图,则输出S 的值为()A .112-B .2360C .1120D .4360【解答】解:由题意得12131415143155253545560S =-+-+-+-+-=.故选:D .8.(5分)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“11+”问题,它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩,若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )A .15B .13C .35D .23【解答】解:由古典概型的基本事件的等可能性得6拆成两个正整数的和含有5个基本事件,分别为:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),∴拆成的和式中,加数全部为质数的概率为15P =. 故选:A .9.(5分)已知正项等比数列{}n a 的前n 项和为n S ,219S =,3727S =,则12n a a a ⋯的最小值为( ) A .24()27B .34()27C .44()27D .54()27【解答】解:由题意可得,121(1)97(1)27a q a q q ⎧+=⎪⎪⎨⎪++=⎪⎩,解可得,11272a q ⎧=⎪⎨⎪=⎩或11323a q ⎧=⎪⎪⎨⎪=-⎪⎩(舍), 故11227n n a -=g , 当15n 剟时,1n a <,当6n …,1n a >, 则12n a a a ⋯的最小值为5512534()()27a a a a ⋯==. 故选:D .10.(5分)已知点P 是双曲线2222:(0x y C l a a b-=>,0b >,c =上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( )ABCD .2【解答】解:双曲线2222:(0x y C l a a b-=>,0b >的两条渐近线的方程为0bx ay ±=,设(,)P x y ,利用点P 到双曲线的两条渐近线的距离之积为22222221||4b x a yc b a -=+, 可得222221||4a b c a b a b =⇒=+, ∴双曲线的离心率c e a ===故选:A .11.(5分)已知2()12cos ()(0)3f x x πωω=-+>.给出下列判断:①若()l f x l =,2()1f x =-,且12||min x x π-=,则2ω=; ②存在(0,2)ω∈,使得()f x 的图象右移6π个单位长度后得到的图象关于y 轴对称;③若()f x 在[0,2]π上恰有7个零点,则ω的取值范围为41[24,47]24④若()f x 在[6π-,]4π上单调递增,则ω的取值范围为(0,2]3其中,判断正确的个数为( ) A .1B .2C .3D .4【解答】解:Q 22()12cos ()cos(2)sin(2)336f x x x x πππωωω=-+=-+=+,∴周期22T ππωω==.①由条件知,周期为2π,∴12w =,故①错误; ②函数图象右移6π个单位长度后得到的函数为sin(2)36x y x ωπω=-+,其图象关于y 轴对称, 则()362k k Z ωππππ-+=+∈,13()k k Z ω∴=--∈,故对任意整数k ,(0,2)ω∉,故②错误; ③由条件,得74221212πππππωωωω--剟,∴41472424ω剟,故③正确; ④由条件,得362262w w ππππππ⎧-+-⎪⎪⎨⎪+⎪⎩…„,∴23ω„,又0ω>,∴203ω<„,故④正确.故选:B .12.(5分)如图,在平面四边形ABCD 中,满足AB BC =,CD AD =,且10AB AD +=,8BD =.沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD-体积的最大值为( )A .12B .122C 162D .163【解答】解:过点P 作PE BD ⊥于E ,连结CE , 由题意知BPD BCD ∆≅∆,CE BD ⊥,且PE CE =,BD ∴⊥平面PCE ,1833P BCD B PCE D PCE PCE PCE V V V S BD S ---∆∆∴=+==g ,∴当PCE S ∆最大时,P BCD V -取得最大值,取PC 的中点F ,则EF PC ⊥,2112PCE S PC EF PE ∆∴==-g ,10PB PD +=Q ,8BD =,∴点P 到以BD 为焦点的椭圆上,PE ∴的最大值为对应短半轴长,PE ∴最大值为22543-=,PCE S ∆∴最大值为22,∴三棱锥P BCD -体积的最大值为162. 故选:C .二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知函数2()f x lnx x =+,则曲线()y f x =在点(1,f (1))处的切线方程为 320x y --= .【解答】解:易知f (1)1=,故切点为(1,1),1()2f x x x'=+, 故f '(1)3=,所以切线方程为13(1)y x -=-, 即320x y --=即为所求. 故答案为:320x y --=.14.(5分)若0x R ∃∈,2200150x a x -+<为假,则实数a 的取值范围为 (-∞,4] .【解答】解:若0x R ∃∈,2200150x a x -+<为假,则其否定命题为真,即x R ∀∈,22150x a x -+…为真, 所以221a x +„对任意实数恒成立;设22()1f x x =+x R ∈;则()24f x ,=,即x =时等号成立,所以实数a 的取值范围是4a „. 故答案为:(-∞,4].15.(5分)在直角坐标系xOy 中,已知点(0,1)A 和点(3,4)B -,若点C 在AOB ∠的平分线上,且||OC =u u u r OC u u u r的坐标为 (3,9)- .【解答】解:由点C 在AOB ∠的平分线上, 所以存在(0,)λ∈+∞,使()(0||||OA OB OC OA OB λλ=+=u u u r u u u ru u u r u u ur u u u r ,31)(5λ+-,43)(55λ=-,9)5λ;又||OC =u u u r所以2239()()9055λλ-+=,解得5λ=,所以向量(3,9)OC =-u u u r . 故答案为:(3,9)-.16.(5分)已知抛物线2:4C y x =,点P 为抛物线C 上一动点,过点P 作圆22:(3)4M x y -+=的切线,切点分别为A ,B ,则线段AB 长度的取值范围为 . 【解答】解:如图:连接PM ,PA ,PB ,易得MA PA ⊥,MB PB ⊥,PM AB ⊥,所以四边形PAMN 的面积为:12PM ,AB g ,另外四边形PAMB 的面积为三角形PAM 面积的两倍,所以1||||||||2PM AB PA MA =g g ,所以2||||||||PA MA AB PM ===g所以当||PM 取得最小值时,||AB 最小,设点(,)P x y ,则||PM =所以1x =时,||PM 取得最小值为:AB 的最小值为:=P 向无穷远处运动时,||AB 的长度趋近于圆的直径,故||AB 的取值范围是4).故答案为:4).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin()33c B b C b π=-+. ()l 求角C 的大小;(2)若7c =3a b +=,求AB 边上的高. 【解答】解:(1)因为sin sin()33c B b C b π=-.由正弦定理可得,sin sin sin sin()3sin 3C B B C B π=-+,因为sin 0B >,所以31sin sin()3sin 32C C C C π=-+-31cos 12C C -=,所以sin()16C π-=, 0C π<<Q ,所以23C π=, (2)由余弦定理可得,2222cos c a b ab C =+-, 所以227a b ab ++=,即2()7a b ab +-=, 所以2ab =,13sin 2ABC S ab C ∆==,设AB 边上的高为h ,则73h =,故21h =. 18.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//AB CD ,24CD AB ==,2AD =.PAB ∆为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点. (1)求证://AE 平面PBC ;(2)若平面EBC 与平面PAD 的交线为l ,求二面角P l B --的正弦值.【解答】解:(1)证明:如图1,取PC 的中点F ,连结EF ,BF ,PE DE =Q ,PF CF =,//EF CD ∴,2CD EF =, //AB CD Q ,2CD AB =,//AB EF ∴,且EF AB =,∴四边形ABFE 为平行四边形,//AE BF ∴,BF ⊂Q 平面PBC ,AE ⊂/平面PBC , //AE ∴平面PBC .(2)解:如图2,取AB 中点O ,CD 中点Q ,连结OQ ,OA OB =Q ,CQ DQ =,PA PB =,PO AB ∴⊥,OQ AB ⊥,Q 平面PAB ⊥平面ABCD ,交线为AB ,PO ∴⊥平面ABCD ,OQ ⊥平面PAB ,AB ∴,OQ ,OP 两两垂直,以点O 为坐标原点,OQ ,OB ,OP 为x ,y ,z 轴,建立空间直角坐标系, 由PA PB ⊥,2AB =,得1OA OB OP ===,2DQ CQ ==, 在等腰梯形ABCD 中,2AB =,4CD =,2AD ,1OQ =,(0O ,0,0),(0A ,1-,0),(0B ,1,0),(1C ,2,0),(0P ,0,1),(1D ,2-,0),1(2E ,1-,1)2, 设平面PAD 的法向量为(m x =r,y ,)z , (0AP =u u u r ,1,1),(1AD =u u u r,1-,0),则00m AP y z m AD x y ⎧=+=⎪⎨=-=⎪⎩u u u r r g u u u r r g ,取1y =,得(1m =r ,1,1)-, 设平面EBC 的法向量(n a =r,b ,)c ,(1BC =u u u r ,1,0),11(,2,)22EB=--u u u r ,则0112022n BC a b n BP a b c ⎧=+=⎪⎨=-+-=⎪⎩u u u r r g u u u r r g ,取1a =,得(1n =r ,1-,5)-, 设二面角P l B --的平面角为θ,则||5|cos |||||9m n m n θ==r rg r r g ,P l B --的正弦值为25214sin 1()9θ=-=.19.(12分)一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分. (1)设抛掷4次的得分为X ,求变量X 的分布列和数学期望.(2)当游戏得分为(*)n x N ∈时,游戏停止,记得n 分的概率和为n Q ,112Q =. ①求2Q ;②当*n N ∈时,记112n n n A Q Q +=+,1n n n B Q Q +=-,证明:数列{}n A 为常数列,数列{}n B 为等比数列.【解答】解:(1)解:变量X 的所有可能取值为4,5,6,7,8, Q 每次抛掷一次硬币,正面向上的概率为12,反面向上的概率为12,411(4)()216P X ∴===,14411(5)()24P X C ===,24413(6)()28P X C ===,34411(7)()24P X C ===,44411(8)()216P X C ===,X ∴的分布列为:(2)①解:得2分只需要抛掷一次正面向上或两次反面向上,概率的和为:22113()224Q =+=,②证明:得n 分分两种情况,第一种为得2n -分后抛掷一次正面向上, 第二种为得1n -分后,抛掷一次反面向上,∴当3n …,且*n N ∈时,121122n n n Q Q Q --=+,1211111111122222n n n n n n n n n A Q Q Q Q Q Q Q A ++++++=+=++=+=,∴数列{}n A 为常数列,12111111112222n n n n n n n n B Q Q Q Q Q Q Q ++++++=-=+-=-+Q111()22n n n Q Q B +=--=-,121311424B P P =-=-=Q , ∴数列{}n B 为等比数列.20.(12分)已知椭圆2222:1(0))x y E a b a b +=>>,且过点3)4.点P 在第一象限,A 为左顶点.B 为下顶点,PA 交y 轴于点C ,PB 交x 轴于点D . (1)求椭圆E 的标准方程; (2)若//CD AB ,求点P 的坐标.【解答】解:(1)由题意可得222227914163a b ca abc ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2241a b ⎧=⎨=⎩,∴椭圆E 的标准方程为:2214x y +=;(2)由(1)知点(2,0)A -,(0,1)B -,由题意可设直线AP 的方程为:1(2)(0)2y k x k =+<<,所以点C 的坐标为(0,2)k ,联立方程22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得:2222(14)161640k x k x k +++-=, 设1(P x ,1)y ,则212164214k x k --=+g ,所以2128214k x k -=-+,所以2122824()1414k ky k k k -=-=++, 所以2282(14k P k --+,2414kk + ), 设D 点的坐标为0(x ,0),因为点P ,B ,D 三点共线,所以BD PB k k =, 即2202411148214kk k x k ++=---+,所以02412k x k -=+,所以24(12k D k -+,0), 因为//CD AB ,所以CD AB k k =,即(21)1212k k k +=--,所以24410k k +-=,解得12k -±=, 又因为102k <<,所以21k -, 所以点P 的坐标为(22).21.(12分)已知函数2()()f x lnx x ax a R =-+∈. (1)若()0f x „恒成立,求a 的取值范围;(2)设函数()f x 的极值点为0x ,当a 变化时,点0(x ,0())f x 构成曲线M .证明:过原点的任意直线y kx =与曲线M 有且仅有一个公共点. 【解答】解:(1)由0x >可得()0f x „恒成立等价为lnxa x x-„恒成立. 设()lnxg x x x=-,22211()1lnx x lnx g x x x --+'=-=,再令2()1h x x lnx =-+, 则1()20h x x x'=+>,则()h x 在(0,)+∞递增,又h (1)0=,则01x <<,()0h x <,1x >,()0h x >,即01x <<时,()0g x '<;1x >时,()0g x '>,可得()g x 在(0,1)递减;在(1,)+∞递增, 即有()g x 在1x =处取得极小值,即最小值g (1)1=,所以1a „;(2)证明:由(1)可得20000()f x lnx x ax =-+, 0()0f x '=,即00120x a x -+=,即0012a x x =-, 所以2000()1f x lnx x =+-,可得曲线M 的方程为21y lnx x =+-,由题意可得对任意实数k ,方程21lnx x kx +-=有唯一解. 设2()1h x lnx x kx =+--,则2121()2x kx h x x k x x-+'=+-=,①当0k „时,()0h x '>恒成立,()h x 在(0,)+∞递增,由h (1)0k =-…,22()1(1)10k k k k k h e k e ke k e e =+--=-+-„, 所以存在0x 满足01k e x 剟时,使得0()0h x =.又因为()h x 在(0,)+∞递增,所以0x x =为唯一解.②当0k >时,且△280k =-„即0k <„()0h x '…恒成立,所以()h x 在(0,)+∞递增, 由h (1)0k =-<,363323()31()0h e e ke e k e =+--=+>,所以存在30(1,)x e ∈,使得0()0h x =.又()h x 在(0,)+∞递增,所以0x x =为唯一解. ③当k >时,()0h x '=有两解1x ,2x ,设12x x <,因为1212x x =,所以12x x <<,当1(0,)x x ∈时,()0h x '>,()h x 递增;当1(x x ∈,2)x 时,()0h x '<,()h x 递减, 当2(x x ∈,)+∞,()0h x '>,()h x 递增,可得()h x 的极大值为21111()1h x lnx x kx =+--, 因为211210x kx -+=,所以2111()20h x lnx x =--<,所以21()()0h x h x <<,22222222()1()10k k k k k h e k e ke e k e k =+--=-+->,令2()x m x e x =-,x >,可得2()210x m x x e '=->g ,所以()0m x m >>,所以存在02(x x ∈,2)k e ,使得0()0h x =, 又因为()h x 在2(x ,)+∞递增,所以0x x =为唯一解.综上可得,过原点的任意直线y kx =与曲线M 有且仅有一个公共点.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,直线1l 的参数方程为1((1)x mm y k m =-⎧⎨=-⎩为参数),直线2l 的参数方程为(2x nn k y n =⎧⎪⎨=+⎪⎩为参数).若直1l ,2l 的交点为P ,当k 变化时,点P 的轨迹是曲线C .()l 求曲线C 的普通方程;(2)以坐标原点为极点,x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线3l 的极坐标方程为(0)θαρ=…,4tan (0)32παα=<<,点Q 为射线3l 与曲线C 的交点,求点Q 的极径.【解答】解:(1)直线1l 的参数方程为1((1)x mm y k m =-⎧⎨=-⎩为参数),转换为直角坐标方程为y kx =-.直线2l 的参数方程为(2x nn k y n =⎧⎪⎨=+⎪⎩为参数),转换为直角坐标方程为2x y k -=. 联立两直线的方程消去参数k 得:22(1)1(0)x y x +-=≠. (2)设点(cos ,sin )Q ραρα由4tan 3α=,可得:43sin ,cos 55αα==.代入曲线C ,得2805ρρ-=,解得85ρ=或0ρ=(舍去),故点Q 的极径为85.[选修4-5:不等式选讲]23.已知函数()|1||2|f x x x =-++. ()l 求不等式()3f x x <+的解集;(2)若不等式22()m x x f x --„在R 上恒成立,求实数m 的取值范围.【解答】解:(1)当2x <-时,()3f x x <+可化为123x x x ---<+,解得43x >-,无解;当21x -剟时,()3f x x <+可化为123x x x -++<+,解得0x >,故01x <„; 当1x >时,()3f x x <+可化为123x x x -++<+,解得2x <,故12x <<. 综上可得,()3f x x <+的解集为(0,2);(2)不等式22()m x x f x --„在R 上恒成立,可得22()m x x f x ++„,即2(2())min m x x f x ++„,由222(1)1y x x x =+=+-的最小值为1-,此时1x =-;由()|1||2||12|3f x x x x x =-++---=…,当且仅当21x -剟时,取得等号, 则2(2())132min x x f x ++=-+=,所以2m „, 即m 的取值范围是(-∞,2].。
安徽江南十校2024年高三数学试题联合模拟考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数()()2a i i --的实部与虚部相等,其中i 为虚部单位,则实数a =( ) A .3B .13-C .12-D .1-2.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A .21313 B .413C .277D .473.函数2()1cos 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( ) A . B .C .D .4.已知向量()1,2a =,()2,2b =-,(),1c λ=-,若()//2c a b +,则λ=( ) A .2-B .1-C .12-D .125.曲线24x y =在点()2,t 处的切线方程为( )A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+6.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( ) A .2B .3C .2D .37.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()UB A =( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}68.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .239.已知α,β是两平面,l ,m ,n 是三条不同的直线,则不正确命题是( ) A .若m ⊥α,n //α,则m ⊥n B .若m //α,n //α,则m //n C .若l ⊥α,l //β,则α⊥βD .若α//β,l ⊄β,且l //α,则l //β10.一辆邮车从A 地往B 地运送邮件,沿途共有n 地,依次记为1A ,2A ,…n A (1A 为A 地,n A 为B 地).从1A 地出发时,装上发往后面1n -地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达1A ,2A ,…n A 各地装卸完毕后剩余的邮件数记为(1,2,,)k a k n =….则k a 的表达式为( ). A .(1)k n k -+B .(1)k n k --C .()n n k -D .()k n k -11.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定12.陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722+πB .(1022+πC .(1042+πD .(1142+π二、填空题:本题共4小题,每小题5分,共20分。
13.已知半径为R 的圆周上有一定点A ,在圆周上等可能地任意取一点与点A 连接,则所得弦长介于R 3R 之间的概率为__________.14.已知a 、b 为正实数,直线10x y ++=截圆()()224x a y b -+-=所得的弦长为221a ab+的最小值为__________.15.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,过点F 且倾斜角为45°的直线与双曲线C 的两条渐近线顺次交于A ,B 两点若3FB FA =,则C 的离心率为________.16.621ax x ⎛⎫- ⎪⎝⎭展开式中3x 项系数为160,则a 的值为______. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若60BAD ∠=︒,AE EC ⊥,三棱锥E ACD -的体积为863,求菱形ABCD 的边长. 18.(12分)已知函数(1)讨论的单调性; (2)当时,,求的取值范围. 19.(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:根据这9年的数据,对t 和y 作线性相关性检验,求得样本相关系数的绝对值为0.243; 根据后5年的数据,对t 和y 作线性相关性检验,求得样本相关系数的绝对值为0.984. (1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案, 方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测. 从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适? 附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为50%,纸质版本和电子书同时购买的读者比例为10%,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.20.(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从A 市到B 市乘坐高铁或飞机出行的成年人约为50万人次.为了 解乘客出行的满意度,现从中随机抽取100人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机 乘坐高铁 乘坐飞机 乘坐高铁 乘坐飞机 10分(满意) 12 1 20 2 20 1 5分(一般) 2 3 6 2 4 9 0分(不满意)16344(1)在样本中任取1个,求这个出行人恰好不是青年人的概率;(2)在2018年从A 市到B 市乘坐高铁的所有成年人中,随机选取2人次,记其中老年人出行的人次为X .以频率作为概率,求X 的分布列和数学期望;(3)如果甲将要从A 市出发到B 市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由. 21.(12分)已知函数2()cos 2a f x x x =+(a ∈R ),()f x '是()f x 的导数. (1)当1a =时,令()()ln h x f x x x '=-+,()h x '为()h x 的导数.证明:()h x '在区间0,2π⎛⎫⎪⎝⎭存在唯一的极小值点; (2)已知函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 22.(10分)如图,在直角AOB ∆中,2OA OB ==,AOC ∆通过AOB ∆以直线OA 为轴顺时针旋转120︒得到(120BOC ∠=︒).点D 为斜边AB 上一点.点M 为线段BC 上一点,且433MB =.(1)证明:MO ⊥平面AOB ;(2)当直线MD 与平面AOB 所成的角取最大值时,求二面角B CD O --的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B 【解题分析】利用乘法运算化简复数()()2a i i --即可得到答案. 【题目详解】由已知,()()221(2)a i i a a i --=--+,所以212a a -=--,解得13a =-. 故选:B 【题目点拨】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题. 2、D 【解题分析】设AF a '=,则2A F a ''=,小正六边形的边长为2A F a ''=,利用余弦定理可得大正六边形的边长为7AB a ,再利用面积之比可得结论. 【题目详解】由题意,设AF a '=,则2A F a ''=,即小正六边形的边长为2A F a ''=, 所以,3FF a '=,3AF F π'∠=,在AF F '∆中,由余弦定理得2222cos AF AF FF AF FF AF F '''''=+-⋅⋅∠, 即()222323cos3AF a a a a π=+-⋅⋅,解得AF =,所以,大正六边形的边长为AF =,所以,小正六边形的面积为21122222S a a a =⨯⨯+⨯=,大正六边形的面积为2212222S =⨯⨯=, 所以,此点取自小正六边形的概率1247S P S ==. 故选:D.【题目点拨】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题. 3、B 【解题分析】判断函数()f x 的奇偶性,可排除A 、C ,再判断函数()f x 在区间0,2π⎛⎫⎪⎝⎭上函数值与0的大小,即可得出答案. 【题目详解】解:因为21()1cos cos 11x x x e f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭, 所以()()111()cos cos cos 111x x xx x xe e ef x x x x f x e e e --⎛⎫----=-===- ⎪+++⎝⎭, 所以函数()f x 是奇函数,可排除A 、C ; 又当0,2x π⎛⎫∈ ⎪⎝⎭,()0f x <,可排除D ; 故选:B. 【题目点拨】本题考查函数表达式判断函数图像,属于中档题. 4、A 【解题分析】根据向量坐标运算求得2a b +,由平行关系构造方程可求得结果. 【题目详解】()1,2a =,()2,2b =- ()24,2a b ∴+= ()//2c a b + 24λ∴=-,解得:2λ=-故选:A 【题目点拨】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则12210x y x y -=.5、A 【解题分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程. 【题目详解】曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1,求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-, 故选:A. 【题目点拨】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题. 6、A 【解题分析】()11z i i i =-=+,故z =,故选A.7、D 【解题分析】根据集合的混合运算,即可容易求得结果. 【题目详解】{}1,2,3,4,5A B ⋃=,故可得()UB A ={}6.故选:D. 【题目点拨】本题考查集合的混合运算,属基础题. 8、A 【解题分析】根据线面垂直得面面垂直,已知SA ⊥平面ABC ,由AB BC ⊥,可得BC ⊥平面SAB ,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率. 【题目详解】由已知SA ⊥平面ABC ,AB BC ⊥,可得SB BC ⊥,从该三棱锥的4个面中任选2个面共有246C =种不同的选法,而选取的2个表面互相垂直的有3种情况,故所求事件的概率为12.故选:A . 【题目点拨】本题考查古典概型概率,解题关键是求出基本事件的个数. 9、B 【解题分析】根据线面平行、线面垂直和空间角的知识,判断A 选项的正确性.由线面平行有关知识判断B 选项的正确性.根据面面垂直的判定定理,判断C 选项的正确性.根据面面平行的性质判断D 选项的正确性. 【题目详解】A .若//n α,则在α中存在一条直线l ,使得//,,l n m l αα⊥⊂,则m l ⊥,又//l n ,那么m n ⊥,故正确;B .若//,//m n αα,则//m n 或相交或异面,故不正确;C .若l β//,则存在a β⊂,使//l α,又,l a αα⊥∴⊥,则αβ⊥,故正确.D .若//αβ,且//l α,则l β⊂或l β//,又由,//l l ββ⊄∴,故正确. 故选:B 【题目点拨】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题. 10、D 【解题分析】根据题意,分析该邮车到第k 站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案. 【题目详解】解:根据题意,该邮车到第k 站时,一共装上了(21)(1)(2)()2n k kn n n k --⨯-+-+⋯⋯-=件邮件,需要卸下(1)123(1)2k k k ⨯-+++⋯⋯-=件邮件, 则(21)(1)()22k n k k k k a k n k --⨯⨯-=-=-,故选:D . 【题目点拨】本题主要考查数列递推公式的应用,属于中档题. 11、B 【解题分析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得. 【题目详解】根据题意,阴影部分的面积的一半为:()40cos sin 21x x dx π-=-⎰,于是此点取自阴影部分的概率为()()12142141.41122 3.22P ππ---=⨯=>=. 又21112P P =-<,故12P P >. 故选B . 【题目点拨】本题考查了几何概型,定积分的计算以及几何意义,属于中档题. 12、C 【解题分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可, 【题目详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥, 几何体的表面积为:1442223(1042)2ππππ+⨯⨯⨯=+, 故选:C 【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。