九年级数学上册第24章圆24.1圆的有关性质24.1.1圆测试题新版新人教版
- 格式:docx
- 大小:811.75 KB
- 文档页数:3
24.1 圆的有关性质24.1.1 圆基础闯关全练拓展训练1. 如图,是以等边三角形ABC一边AB为半径的四分之一圆周,P为上任意一点,若AC=5,则四边形ACBP周长的最大值是( )A.15B.20C.15+5D.15+52.如图,点B,O,O',C,D在一条直线上,BC是半圆O的直径,OD是半圆O'的直径,两半圆相交于点A,连接AB,AO',若∠BAO'=67.2°,则∠AO'C=度.3.如图所示,三圆同心于O,AB=4 cm,CD⊥AB于O,则图中阴影部分的面积为cm2.能力提升全练拓展训练1.在平面直角坐标系中,☉C的圆心坐标为(1,0),半径为1,AB为☉C的直径,若点A的坐标为(a,b),则点B的坐标为( )A.(-a-1,-b)B.(-a+1,-b)C.(-a+2,-b)D.(-a-2,-b)2.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且CD=R,则AC的长为.三年模拟全练拓展训练1.(2016江苏无锡期中,9,★★☆)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN 上,且不与M、N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )22A.变大B.变小C.不变D.不能确定2.(2017江苏淮安盱眙二中月考,18,★★☆)如图,直线y=x+3与坐标轴交于A 、B 两点,☉O 的半径为2,点P 是☉O 上动点,△ABP 面积的最大值为 cm 2.五年中考全练 拓展训练在△ABC 中,∠C 为锐角,分别以AB,AC 为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S 1-S 2=,则S 3-S 4的值是()A. B. C. D.核心素养全练 拓展训练如图,在平面直角坐标系xOy 中,M 点的坐标为(3,0),☉M 的半径为2,过M 点的直线与☉M 的交点分别为A 、B,则△AOB 的面积的最大值为 .24.1.1 圆基础闯关全练 拓展训练1.答案 C 由已知得AC=CB=BP=5,要使四边形ACBP 的周长最大,只要AP 取最大值,AP 的最大值为AD=5,此时四边形ACBP 的周长最大,是15+5,故选C.32.答案 89.6解析 连接OA,∵OA=OB,∴∠BAO=∠B,∴∠AOO'=2∠B. ∵O'A=O'O,∴∠O'AO=∠AOO'=2∠B.∵∠BAO'=∠BAO+∠O'AO=67.2°,∴∠B=22.4°, ∴∠AO'C=∠B+∠BAO'=89.6°.3.答案 π解析 S 阴影=S 大圆=π(4÷2)2=π(cm 2). 能力提升全练 拓展训练1.答案 C 如图,作AD⊥x 轴于D,BE⊥x 轴于E,∵AB 为☉C 的直径,∴CA=CB,而∠ACD=∠BCE, ∴Rt△ACD≌Rt△BCE, ∴AD=BE,DC=CE.∵点A 的坐标为(a,b),☉C 的圆心坐标为(1,0), ∴BE=AD=b,EC=CD=a -1, ∴OE=1-(a-1)=-a+2,∴点B 的坐标为(-a+2,-b),故选C.2.答案R 或R解析 分两种情况:(1)如图1,∵CD⊥AB,∴OD 2=OC 2+CD 2,∵OD=R,CD=R,∴CO=R,∴AC=R.(2)如图2,∵CD⊥AB,∴OD 2=OC 2+CD 2,∵OD=R,CD=R,∴CO=R,∴AC=R.4 4故答案为R 或R.三年模拟全练 拓展训练1.答案 C 连接OP,∵Rt△P AB 中,AB 2=PA 2+PB 2,又∵矩形PAOB 中,OP=AB,∴PA 2+PB 2=AB 2=OP 2.故选C.2.答案 11解析 ∵直线y=x+3与坐标轴交于A 、B 两点,∴A(-4,0),B(0,3),∴OA=4,OB=3.在Rt△AOB 中,由勾股定理得AB=5.∵△PAB 中,AB=5是定值,∴要使△PAB 的面积最大,需☉O 上的点到AB 的距离最大.如图,过点O 作OC⊥AB 于C,CO 的延长线交☉O 于P,此时S △PAB 最大,∵S △AOB=OA·OB=AB·OC,∴OC===,∵☉O 的半径为2,∴CP=OC+OP=,∴S △PAB =AB·CP=×5×=11.五年中考全练 拓展训练答案 D ∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=,∴(S 1-S 2)+(S 3-S 4)=(S 1+S 3)-(S 2+S 4)=π,∵S 1-S 2=,∴S 3-S 4=π,故选D. 核心素养全练 拓展训练答案 6解析∵AB为☉M的直径,☉M的半径为2,∴AB=4,∴当点O到AB的距离最大时,△AOB的面积取得最大值,即当OM⊥AB时,△AOB的面积取得最大值,最大值为×3×4=6.5。
专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。
圆24.1 圆的有关性质同步检测题一.选择题(共13 小题)1.已知⊙O 的半径为2,A 为圆内一定点,AO=1.P 为圆上一动点,以A P 为边作等腰△APG,AP=PG,∠APG=120°,OG 的最大值为()A.1+B.1+2C.2+D. 12.如图,AB,BC 是⊙O 的弦,∠B=60°,点 O 在∠B 内,点 D 为AC上的动点,点 M,N,P分别是A D,D C,C B 的中点.若⊙O 的半径为2,则P N+MN 的长度的最大值是()A.1+B.1+2C.2+2D.3.如图,AB 是⊙O 的直径,AB=10,P 是半径O A 上的一动点,PC⊥AB 交⊙O 于点C,在半径O B 上取点Q,使得O Q=CP,DQ⊥AB 交⊙O 于点D,点C,D 位于A B 两侧,连接C D 交A B 于点F,点P从点A出发沿A O 向终点O运动,在整个运动过程中,△CFP 与△DFQ 的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大4.如图,在⊙O 中,弦A B=6,点C是A B 所对优弧上一点,∠ABC=120°,BC=8,点P 为 AB 上方一点,记△PAB 的面积为 S1,△AOB 的面积为 S2,且 S1=12S2,则 OP+PC的最小值为()A .BCD .105.如图,AB 是⊙O 的直径,点 D ,C 在⊙O 上,∠DOC =90°,AD ,BC =1,则⊙O的半径为()A B .2 C .2D .26.如图,在⊙O 中,AB =2CD ,那么()A . 2CD AB >B .2CD AB <C .=2CD ABD .AB 与2CD 的大小关系无法比较 7.如图,BC 是⊙O 的直径,A ,D 是⊙O 上的两点,连接 A B ,AD ,BD ,若∠ADB =70°, 则∠ABC 的度数是( )A.20°B.70°C.30°D.90°8.如图,点A、B、C 是⊙O 上的点,OA=AB,则∠C 的度数为()A.30°B.45°C.60°D.30°或60°9.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC上的点.若∠BOC =500,则∠D 的度数()A.105°B.115°C.125°D.85°10.如图,四边形A BCD 内接于⊙O,连结O A、OC.若∠AOC=∠ABC,则∠D 的大小为()A.50°B.60°C.80°D.120°11.如图,在⊙O 中∠O=50°,则∠A 的度数为()A.50°B.20°C.30°D.25°12.如图,AB 为⊙O 的直径,弦CD⊥OB 于E,且点E为半径O B 的中点,连结A C,则∠A 的度数为()A.20°B.30°C.45°D.60°13.如图,点A、B、C、D 在⊙O 上,OB∥CD.若∠A=28°,则∠BOD 的大小为()A.152°B.134°C.124°D.114°二.填空题(共9小题)14.如图,在⊙O 中,弦B C,DE 交于点P,延长B D,EC 交于点A,BC=10,BP=2CP,若BDAD=23,则D P 的长为.15.如图,△ABC 内接于半径为AB 为直径,点 M 是弧AC的中点,连结 BM交AC 于点E,AD 平分∠CAB 交B M 于点D.(1)∠ADB=°;(2)当点D恰好为B M 的中点时,BC 的长为.16.如图,四边形A BCD 内接于⊙O,∠BOD=120°,则∠DCE=.17.如图,点A,B,C,D 是⊙O 上的四个点,已知∠BCD=110°,格据推断出∠BAD 的度数为70°,则她判断的依据是点.18.如图,⊙O 的半径为2,点A为⊙O 上一点,如果∠BAC=60°,OD⊥弦B C 于点D,那么O D 的长是.19.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是弧AC上的中点,AC=8,OA=5,连接AD、BD,则△ABD 的面积是.20.已知:如图,在△ABC 中,AB=AC,以A B 为直径作圆交B C 于D,交A C 于E.若∠A=84°,则弧AE的度数为.21.如图,点A,B,C,D 是⊙O 上的四个点,点B是弧A C 的中点,如果∠ABC=70°,那∠ADB=.22.如图,MN 为⊙O 的直径,MN=10,AB 为⊙O 的弦,已知M N⊥AB 于点P,AB=8,现要作⊙O 的另一条弦C D,使得C D=6 且C D∥AB,则P C 的长度为.三.解答题(共3小题)23.如图,AB 是⊙O 的直径,点C、D 是⊙O 上的点,且O D∥BC,AC 分别与B D、OD 相交于点E、F.(1)求证:点D为弧AC的中点;(2)若C B=6,AB=10,求D F 的长;(3)若⊙O 的半径为5,∠DOA=80°,点P是线段A B 上任意一点,试求出P C+PD 的最小值.24.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC,BC 的交点分别为D,E,且弧DE=弧BE(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求B D 的长.25.如图,AB 为半圆O的直径,CD 是半圆上两点,AC=2BC,F 在B D 上且C F⊥CD,求证:AD=2BF.。
24.1.1 圆测试时间:25分钟一、选择题1.(2018贵州黔东南州期中)如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2.如图所示,点M是☉O上的任意一点,下列结论:①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.其中,正确的有( )A.1个B.2个C.3个D.4个3.如图,矩形PAOB在扇形OMN内,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.变大B.变小C.不变D.不能确定二、填空题4.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.5.如图,在平面直角坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有个.三、解答题6.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.7.已知:如图,AB是☉O的直径,AC是☉O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠DAC的度数.24.1.1 圆一、选择题1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 B 以M为端点的弦有无数条,所以①错误;②正确;③正确;以M为端点的弧有无数条,所以④错误.故选B.3.答案 C 连接OP.在Rt△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.二、填空题4.答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.5.答案12解析设点P(x,y),由题意知x2+y2=100,则方程的整数解是x=6,y=8;x=8,y=6;x=10,y=0;x=6,y=-8;x=8,y=-6;x=0,y=-10;x=-6,y=-8;x=-8,y=-6;x=-10, y=0;x=-6,y=8;x=-8,y=6;x=0,y=10.所以整数点P的坐标可以是(6,8),(8,6),(10,0),(6,-8),(8,-6),(0,-10),(-6,-8),(-8,-6),(-10,0),(-6,8),(-8,6), (0,10).所以,这样的整数点有12个.三、解答题6.证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.7.解析以A为圆心,1为半径画弧,与☉O的交点即为点D,再连接AD.本题有两种情况,图中点D与点D'均符合题意.连接OD,OD'.∵AB是☉O的直径,AB=2,∴OA=OD=1.∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°.当AD与AC在直径AB的同侧时,∠DAC=60°-30°=30°;当AD与AC在直径AB的异侧时,∠D'AC=60°+30°=90°.综上所述:∠DAC的度数为30°或90°.。
第二十四章圆24.1圆的相关性质24. 1.1圆1.以下说法中,结论错误的选项是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分红两条弧,这两条弧可能是等弧2.如图 24-1-5所示,⊙ O中的点A,O,D以及点B,O,C分别在同向来线上,图中弦的条数为 ()图 24-1-5A. 2B. 3C. 4D. 53.如图 24-1-6所示,点 P 是⊙ O内的一点,点P 到⊙ O的最小距离为4 cm,最大距离为 9 cm,则⊙O的直径为 ()图 24-1-6A. 6.5 cm B. 2.5 cmC. 13 cm D. 15 cm4.[2017 ·河北模拟 ] 如图 24-1-7 ,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在 OC双侧分别作矩形OGHI和正方形 ODEF,且点 I , F 在 OC上,点 H, E 在半圆上,可证:IG = . 小云发现连结图中已知点获得两条线段,即可证明= .FD IG FD1请回答:小云所作的两条线段分别是____和 ____;证明 IG= FD的依照是矩形的对角线相等,____和等量代换.5.如图 24-1-8 所示,以O为圆心的两个齐心圆,大圆O的半径OC,OD分别交小圆O于 A,B 两点.求证: AB∥ CD.图 24-1-86.如图 24-1-9所示,在⊙ O中,点D,E分别为半径OA, OB上的点,且AD= BE,点 C为弧 AB上一点,连结CD, CE,CO,∠ AOC=∠ BOC.图 24-1-9求证: CD= CE.27.如图 24-1-10 ,AB,CD为⊙O的两条直径,点E,F 在直径 CD上,且 CE= DF.求证:AF= BE.图 24-1-108.如图 24-1-11 所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O 于点 B,且 AB= OC,求∠ A 的度数.图 24-1-11参照答案【分层作业】1.B 2.A 3.C 4.OH OE 同圆的半径相等5.略6.略7.略8.∠A= 26°.3。
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.4 圆周角同步检测(含解析)(新版)新人教版的全部内容。
24.1.4 圆周角测试时间:30分钟一、选择题1。
(2017黑龙江哈尔滨中考)如图,☉O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B。
35°C。
34° D.44°2。
(2017贵州黔东南州中考)如图,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A。
2 B.—1 C。
D。
43.(2017山东潍坊中考)如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )A.50°B.60°C.80°D.90°4。
如图,AB是☉O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B方向运动(到点B终止运动),设运动时间为t(s),连接EF,当△BEF是直角三角形时,t=( )A。
1 s B。
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
第二十四章 圆24.1 圆的有关性质24.1.1 圆01 基础题知识点1 圆的有关概念圆上各点到定点(圆心)的距离都等于定长(半径);到定点的距离等于定长的点都在同一个圆上.在同圆或等圆中,能够互相重合的弧叫做等弧.如图,在圆O 中,弦有AC ,AB ,半径有OA ,OB ,OC ,直径是AB ,ABC ︵,CAB ︵是优弧,劣弧有AC ︵,BC ︵,半圆是AB ︵,OA =OB =OC .1.下列条件中,能确定一个圆的是(C )A .以点O 为圆心B .以2 cm 长为半径C .以点O 为圆心,以5 cm 长为半径D .经过点A2.下列命题中正确的有(B )①弦是连接圆上任意两点的线段;②半径是弦;③直径是圆中最长的弦;④弧是半圆,半圆是弧. A .1个 B .2个 C .3个 D .4个 3.如图所示,在⊙O 中,弦有AC ,AB ,直径是AB ,优弧有ABC ︵,CAB ︵,劣弧有AC ︵,BC ︵.第3题图 第4题图4.如图,在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为5.知识点2 圆中的半径相等5.如图,AB 是⊙O 的直径,∠C=20°,则∠BOC 的度数是(A )A .40°B .30°C .20°D .10°第5题图 第6题图6.如图,已知AB ,CD 是⊙O 的两条直径,∠A BC =30°,那么∠BAD 等于(D )A .45°B .60°C .90°D .30°7.如图,在△ABC 中,BD ,CE 是两条高,点O 为BC 的中点,连接OD ,OE ,求证:B ,C ,D ,E 四个点在以点O 为圆心的同一个圆上.证明:∵BD,CE 是两条高, ∴∠BDC =∠BEC =90°.∵△BEC 为直角三角形,点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B,C ,D ,E 在以O 为圆心的同一个圆上.8.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B=∠C.求证:CE =BF.证明:∵OB,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C,∠BOE =∠COF, ∴△EOB≌△FOC (ASA ). ∴OE =OF.∵CE =CO +OE ,BF =BO +OF , ∴CE =BF.02中档题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为(C)A.50°B.60°C.70°D.80°10.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有(B) A.1个B.2个C.3个D.4个11.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为(B)A.2rB.3rC.rD.2r12.已知A,B是半径为6 cm的圆上的两个不同的点,则弦长AB的取值范围是0<AB≤12cm.13.如图,CE是⊙O的直径,AD的延长线与CE的延长线交于点B,若BD=OD,∠AOC=114°,求∠AOD的度数.解:设∠B=x.∵BD=OD,∴∠DOB=∠B=x.∴∠ADO=∠DOB+∠B=2x.∵OA=OD,∴∠A=∠ADO=2x.∵∠AOC=∠A+∠B,∴2x+x=114°.解得x=38°.∴∠AOD=180°-∠A-∠ADO=180°-4x=180°-4×38°=28°.14.如图所示,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:∵OA,OB是⊙O的半径,∴OA=OB.∴∠OBA=∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS).∴OE=OF.15.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB=2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE.∴∠DOE=∠E,∠OCE=∠ODC.又∵∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°,∴∠OCE=36°.∴∠AOC=∠OCE+∠E=36°+18°=54°.03综合题16.如图,AB,CD是⊙O的直径,且AB⊥CD,点P,Q为弧CB上的任意两点,作PE⊥CD,PF⊥AB,QM⊥CD,QN⊥AB,则线段EF,MN的大小关系为EF=MN.(填“<”“>”或“=”)24.1.2 垂直于弦的直径01 基础题知识点1 认识垂径定理(1)圆是轴对称图形,它的对称轴有无数条;(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.图1如图1,在⊙O 中,点A 是圆上一点,OA⊥弦CD 于点B ,则BC =BD ,AC ︵=AD ︵.1.(黔西南中考)如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是(C )A .3B .2.5C .2D .1第1题图 第2题图2.(遵义仁怀市期末)如图,⊙O 的直径CD 垂直于弦AB 于点E ,且CE =2,OB =4,则AB 的长为(D )A .2 3B .4C .6D .433.如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为M ,下列结论不一定成立的是(D )A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB第3题图 第4题图4.(黔西南中考)如图,AB 是⊙O 的直径,CD 为⊙O 的一条弦,CD⊥AB 于点E ,已知CD =4,AE =1,则⊙O 的半径为52.知识点2 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图1,在⊙O 中,点A 是圆上一点,OA 与弦CD 交于点B ,且BC =BD ,则∠OBD=90°,AC ︵=AD ︵. 5.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于(D )A.8 B.2 C.10 D.5第5题图第6题图6.如图,⊙O的弦AB=8,P是劣弧AB的中点,连接OP交AB于C,且PC=2,则⊙O的半径为5.知识点3垂径定理的应用7.(南宁中考)在直径为200 cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160 cm,则油的最大深度为(A)A.40 cmB.60 cmC.80 cmD.100 cm8.(茂名中考)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB 为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.易错点忽略垂径定理的推论中的条件“不是直径”9.下列说法正确的是(D)A.过弦的中点的直径平分弦所对的两条弧B.弦的垂直平分线平分它所对的两条弧,但不一定过圆心C.过弦的中点的直径垂直于弦D.平分弦所对的两条弧的直径平分弦02 中档题10.(黔东南中考)如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6 cm,则AB的长为(B)A.4 cm B.3 2 cmC.2 3 cm D.2 6 cm第10题图第11题图11.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16 cm,则球的半径为(B)A .10 3 cmB .10 cmC .10 2 cmD .8 3 cm12.如图,在⊙O 中,AB ,AC 是互相垂直的两条弦,OD⊥AB 于点D ,OE⊥AC 于点E ,且AB =8 cm ,AC =6 cm ,那么⊙O 的半径OA 长为5__cm .第12题图 第13题图13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC⊥AP 于点C ,OD⊥PB 于点D ,则CD 的长为4.14.(遵义中考)如图,AB 是⊙O 的直径,AB =4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD 的长为14.15.(佛山中考)如图,⊙O 的直径为10 cm ,弦AB =8 cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解:作直径MN⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4 cm.又∵⊙O 的直径为10 cm ,连接OA ,则OA =5 cm. 由勾股定理,得OD =OA 2-AD 2=3 cm. ∴OP 的长度范围是3 cm≤OP≤5 cm.03 综合题16.(湖州中考)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D(如图所示).(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.解:(1)证明:过点O 作OE⊥AB 于点E. 则CE =DE ,AE =BE. ∴AE -CE =BE -DE ,即AC=BD.(2)连接OA,OC.由(1)可知,OE⊥AB且O E⊥CD,∴CE=OC2-OE2=82-62=27. AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.24.1.3 弧、弦、圆心角01 基础题知识点1 认识圆心角圆是中心对称图形,它的对称中心是圆心.顶点在圆心的角叫做圆心角. 如图,在⊙O 中,∠AOC 与∠ABC 中,是圆心角的是∠AOC .1.如图所示,图中的圆心角(小于平角的)有(B )A .1个B .2个C .3个D .4个2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB=60°.知识点2 弧、弦、圆心角之间的关系在同圆或等圆中,相等的圆心角⇔所对的弧相等⇔所对的弦也相等. 如图,∠AOB=∠COD ⇔AB ︵=CD ︵⇔AB =CD.3.如图,已知AB 为⊙O 的直径,点D 为半圆周上的一点,且AD ︵所对圆心角的度数是BD ︵所对圆心角度数的两倍,则圆心角∠BOD 的度数为60°.第3题图 第4题图4.(兰州中考)如图,在⊙O 中,点C 是AB ︵的中点,∠A=50°,则∠BOC=(A )A .40°B .45°C .50°D .60°5.(贵港中考)如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD=34°,则∠AEO 的度数是(A )A .51°B .56°C .68°D .78°第5题图 第6题图6.如图所示,在⊙O 中,AB ︵=AC ︵,∠A=30°,则∠B=(B )A .150°B .75°C .60°D .15°7.如图,AB ,DE 是⊙O 的直径,点C 是⊙O 上的一点,且AD ︵=CE ︵,求证:BE =CE.证明:∵∠BOE =∠AOD, ∴BE ︵=AD ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.易错点 对圆中的有关线段的关系运用不当而致错8.如图,A ,B ,C ,D 是⊙O 上的四点,且AD =BC ,则AB 与CD 的大小关系为(B )A .AB >CD B .AB =CDC .AB <CD D .不能确定02 中档题9.如图,在⊙O 中,已知弦AB =DE ,OC⊥AB,OF⊥DE,垂足分别为C ,F ,则下列说法中正确的个数为(D )①∠DOE =∠AOB ;②AB ︵=DE ︵;③OF =OC ;④AC =EF .A .1个B .2个C .3个D .4个10.已知⊙O 中,M 为AB ︵的中点,则下列结论正确的是(C )A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定11.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME⊥AB 于点E ,NF⊥AB 于点F.下列结论:①AM ︵=MN ︵=BN ︵;②ME=NF ;③AE=BF ;④ME=2AE.其中正确结论的序号是①②③.12.如图所示,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.证明:连接AF.∵四边形ABCD 为平行四边形, ∴AD∥BC.∴∠GAE =∠B, ∠EAF =∠AFB.又∵AB,AF 为⊙A 的半径,AB =AF , ∴∠B =∠AFB. ∴∠GAE =∠EAF. ∴GE ︵=EF ︵.13.(教材9上P84例3变式)如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°.(1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD .解:(1)△AOC 是等边三角形. ∵AC ︵=CD ︵,∴∠AOC =∠COD =60°. 又∵OA =OC ,∴△AOC 是等边三角形. (2)证明:∵AC ︵=CD ︵,∴OC⊥AD.∵∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD )=60°. ∵OD =OB ,∴△ODB 为等边三角形. ∴∠ODB =60°.∴∠ODB =∠COD =60°. ∴OC∥BD.03 综合题14.如图,∠AOB=90°,C ,D 是AB ︵的三等分点,连接AB 分别交OC ,OD 于点E ,F ,求证:AE =BF =CD.证明:连接AC ,BD.∵AC ︵=CD ︵=DB ︵,∠AOB =90°,∴∠AOC =∠COD =∠DOB =13∠AOB =13×90°=30°,AC =CD =BD.∵OA =OB ,∴∠OAB =∠ABO =45°.∴∠AEC =∠AOC +∠OAB =75°. ∵在△AOC 中,OA =OC ,∴∠ACO =180°-∠AOC 2=180°-30°2=75°.∴∠AEC =∠ACO.∴AE =AC. 同理BF =BD. ∴AE =BF =CD.24.1.4 圆周角第1课时 圆周角定理及其推论01 基础题知识点1 圆周角定理(1)顶点在圆上,两边与圆相交的角叫做圆周角,图中是圆周角的是∠ABC ;(2)一条弧所对的圆周角等于它所对的圆心角的一半.如图,在⊙O 中,∠ABC=12∠AOC.1.(遵义桐梓县期末)如图,已知点A ,B ,C 在⊙O 上,∠ACB=50°,则∠AOB 的度数为(B )A .50°B .100°C .25°D .70°第1题图 第2题图2.如图,⊙O 是△ABC 的外接圆,连接OA ,OB ,∠OBA=50°,则∠C 的度数为(B )A .30°B .40°C .50°D .80°3.(柳州中考)如图,在⊙O 中与∠1一定相等的角是(A )A .∠2B .∠3C .∠4D .∠5第3题图 第4题图4.(娄底中考)如图,将直角三角板60°角的顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A 、B 两点,P 是优弧AB 上任意一点(与A ,B 不重合),则∠APB=30°.知识点2 圆周角定理的推论同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.如图,在⊙O 中,若AB =CD ,则∠ACB=∠DAC ;若AD 是直径,则∠ACD=90°;若∠ACD=90°,则AD 是直径.5.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠A=35°,则∠B 的度数是(C )A .35°B .45°C .55°D .65°第5题图 第6题图6.(绍兴中考)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB=60°,则∠BD C 的度数是(D )A .60°B .45°C .35°D .30°7.(黔西南中考)如图,在⊙O 中,AB ︵=AC ︵,∠BAC=50°,则∠AEC 的度数为(A )A .65°B .75°C .50°D .55°第7题图 第8题图8.如图,已知AB 是⊙O 的直径,∠D=40°,则∠CAB 的度数为50°.易错点 忽略弦所对的圆周角不唯一而致错9.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为30°或150°.02 中档题10.(广州中考)如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是(D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD第10题图 第11题图11.(遵义仁怀市期末)如图,AB ︵是半圆,连接AB ,点O 为AB 的中点,点C ,D 在AB ︵上,连接AD ,CO ,BC ,BD ,OD.若∠COD=62°,且AD∥OC,则∠ABD 的大小是(B )A .26°B .28°C .30°D .32°12.(南昌中考)如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD=70°,AO∥DC,则∠B 的度数为(D )A .40°B .45°C .50°D .55°第12题图 第13题图13.(贵阳中考)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠BOD=130°,AC∥OD 交⊙O 于点C ,连接BC ,则∠B=40度.14.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA=30°,点A 的坐标为(2,0),则点D 的坐标为(0,23).第14题图 第15题图15.(遵义道真县月考改编)如图,△ABC 的三个顶点都在⊙O 上,AP⊥BC 于点P ,AM 为⊙O 的直径.若∠BAM=15°,则∠CAP=15°.16.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)证明:连接AD. ∵AB 是⊙O 的直径, ∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线.∴AB =AC. 又∵AB =BC ,∴AB =AC =BC. ∴△ABC 为等边三角形. (2)连接BE.∵AB 是⊙O 的直径,∴∠AEB =90°.∴BE⊥AC. ∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点. 又∵D 是BC 的中点, ∴DE 是△ABC 的中位线.∴DE =12AB =12×2=1.03 综合题17.(东营中考)如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为8__cm.第2课时圆内接四边形01 基础题知识点圆内接四边形的性质如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆,圆内接四边形的对角互补.如图,四边形ABCD内接于⊙O,则∠A+∠BCD=180°.1.如图所示,图中∠A+∠C=(B)A.90° B.180°C.270° D.360°第1题图第2题图2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是(B) A.115° B.105° C.100° D.95°3.圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是(D)A.1∶2∶3∶4 B.1∶3∶2∶4C.4∶2∶3∶1 D.4∶2∶1∶34.(娄底中考)如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB∥CD.第4题图第5题图5.如图,AB是半圆O的直径,∠BAC=30°,D是弧AC的中点,则∠DAC的度数是30度.6.圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数.解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x°,x°,7x°,8x°,则2x+x+7x+8x=360.解得x=20.2x=40,7x=140,8x=160.答:这个四边形各内角的度数分别为40°,20°,140°,160°.7.如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.证明:(1)∵四边形ABCD 内接于⊙O, ∴∠ADC =180°-∠B =130°. ∵∠ACD =25°,∴∠DAC =180°-∠ACD -∠D =180°-25°-130°=25°. ∴∠DAC =∠ACD. ∴AD =CD.(2)∵∠BAC =∠BAD -∠D AC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°. ∴AB 是⊙O 的直径.易错点 对圆内接四边形的概念理解不清导致错误8.(来宾中考)如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB=110°,则∠α=140°.02 中档题9.(广东中考)如图,四边形ABCD 内接于⊙O,DA =DC ,∠CBE=50°,则∠DAC 的大小为(C )A .130°B .100°C .65°D .50°10.(聊城中考)如图,四边形ABCD 内接于⊙O,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC=105°,∠BAC=25°,则∠E 的度数为(B )A .45°B .50°C .55°D .60°第10题图 第11题图11.(南京中考)如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=215°.12.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO =120°.求⊙C 的半径.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.13.(苏州中考)如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使得CD =BD.连接AC交圆O于点F,连接AE,DE,DF.(1)求证:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C +∠CFD=110°.03 综合题14.(佛山中考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.解:(1)证明:∵∠DCE =∠BCF,∠E =∠F,又∵∠ADC =∠E +∠DCE,∠ABC =∠F +∠BCF, ∴∠ADC =∠ABC.(2)由(1)知∠ADC =∠ABC, ∵四边形ABCD 内接于⊙O, ∴∠ADC +∠ABC =180°. ∴∠ADC =90°.在Rt△ADF 中,∠A =90°-∠F =90°-42°=48°. (3)连接EF.∵四边形ABCD 为圆的内接四边形, ∴∠ECD =∠A.∵∠ECD =∠CEF +∠CFE, ∴∠A =∠CEF +∠CFE.∵∠A +∠CEF +∠CFE +∠DEC +∠BFC =180°, ∴2∠A +α+β=180°. ∴∠A =90°-α+β2.小专题7 圆周角定理——教材P90T14的变式与应用【教材母题】 如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°.判断△ABC 的形状,并证明你的结论.解:△ABC 为等边三角形.证明:∵∠APC =∠ABC,∠CPB =∠BAC, 又∵∠APC =∠CPB =60°, ∴∠ABC =∠BAC =60°. ∴∠ACB =60°.∴△ABC 为等边三角形.【问题延伸1】 求证:PA +PB =PC.证明:在PC 上截取PD =AP ,连接AD ,如图, ∵∠APC =60°,∴△APD 是等边三角形.∴AD =AP =PD ,∠ADP =60°,∠ADC =120°. ∵∠APB =∠APC +∠BPC =120°, ∴∠ADC =∠APB.在△APB 和△ADC 中,⎩⎨⎧∠ABP =∠ACD,∠APB =∠ADC,AP =AD ,∴△APB≌△ADC (AAS ). ∴BP =CD.又∵PD =AP ,∴PA +PB =PC.证明线段的和、差、倍、分问题的常见做法是“截长补短”法,具体做法是:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.【问题延伸2】 若BC =23,点P 是AB ︵上一动点(异于点A ,B),求PA +PB 的最大值.解:由上题知PA +PB =PC ,要使PA +PB 最大,则PC 为直径,作直径BG ,连接CG.∴∠G =∠BAC =60°,∠BCG =90°.∵BC =23,∴BG =4.即PA +PB 的最大值为4.直径是圆中最长的一条弦,在求最值的问题中经常用到这一结论.1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA=∠CPA,判断△ABC 的形状,并证明你的结论.解:△ABC 是等腰三角形,理由:∵四边形APBC 是圆内接四边形, ∴∠EPA =∠ACB.∵∠EPA =∠CPA,∠CPA =∠ABC, ∴∠ACB =∠ABC. ∴AB =AC.∴△ABC 是等腰三角形.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°.(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.解:(1)证明:∵∠ABC =∠APC =60°,∠BAC =∠APC =60°, ∴∠ABC =∠BAC =60°. ∴△ABC 是等边三角形. (2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.(广州中考改编)如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB=∠ABD=45°.(1)求证:BD 是该圆的直径;(2)连接CD ,求证:2AC =BC +CD.证明:(1)∵AB ︵=AB ︵,∴∠ACB =∠ADB =45°. ∵∠ABD =45°, ∴∠BAD =90°.∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA , ∵∠ABD =∠ADB,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠ABC =∠ADE,BC =DE ,∴△ABC≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵AD ︵=AD ︵,∴∠ACD =∠ABD =45°. ∴△CAE 是等腰直角三角形. ∴2AC =CE.∴2AC =DE +CD =BC +CD.小专题8 与圆的性质有关的计算与证明类型1 求角度1.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,BA ,DC 的延长线交于点E ,AB =2CE ,∠E=25°,则∠BOD=75°.2.(南京中考)如图,A ,B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A ,B 重合),我们称∠APB 是⊙O 上关于点A ,B 的滑动角.已知∠APB 是⊙O 上关于点A ,B 的滑动角.(1)若AB 是⊙O 的直径,则∠APB 的度数是90°;(2)若⊙O 的半径是1,AB =2,则∠APB 的度数是45°或135°__.3.如图,AB 为⊙O 的直径,弦CD 与AB 相交于点E ,∠ACD=60°,∠ADC=50°,则∠CEB 的度数为100°.第3题图 第4题图4.(永州中考)如图,四边形ABCD 是⊙O 的内接四边形,点D 是AC ︵的中点,点E 是BC ︵上的一点.若∠CED=40°,则∠ADC=100度.5.(南京中考)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE.若∠D=78°,则∠EAC=27°.类型2 求长度6.(黔东南中考)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=15°,半径为2,则弦CD 的长为(A )A .2B .-1C. 2D .4第6题图第7题图7.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为213__.8.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2 3 cm.第8题图第9题图9.如图,AB,AC,AD为⊙O的弦,∠BAC=60°,∠DAC=30°,AB=4,AD=6,则CD的长为13.10.(十堰中考)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的平分线交⊙O于点D.若AC=6,BD=52,则BC的长为8.24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系01 基础题知识点1点与圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:(1)点P在圆外⇨d>r;(2)点P在圆上⇨d=r;(3)点P在圆内⇨d<r.1.若⊙O的半径为5 cm,点A到圆心O的距离为4 cm,那么点A与⊙O的位置关系是(C) A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定2.(遵义中考模拟)已知⊙O半径为6,点P在⊙O内,则OP长可能是(A)A.5 B.6 C.7 D.83.已知⊙O半径为3 cm,点P到圆心O的距离为3 cm,则点P与⊙O的位置关系是点P在⊙O上.4.已知⊙O的半径为6 cm,点P在圆外,则线段OP的长度的取值范围是OP>6__cm.5.已知⊙O的半径为7 cm,点A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系.(1)OP=8 cm;(2)OP=14 cm;(3)OP=16 cm.解:(1)在圆内.(2)在圆上.(3)在圆外.知识点2三角形的外接圆与外心不在同一条直线上的三个点确定一个圆,三角形外接圆的圆心叫外心,它是三角形三条边垂直平分线的交点;一个三角形的外接圆有1个,一个圆的内接三角形有无数个.6.下列关于三角形的外心的说法中,正确的是(C)A.三角形的外心在三角形外B.三角形的外心到三边的距离相等C.三角形的外心到三个顶点的距离相等D.等腰三角形的外心在三角形内7.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用2次就可以找到圆形工件的圆心.第7题图第8题图8.如图,△ABC的外接圆圆心的坐标是(-2,-1).知识点3反证法反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.9.用反证法证明“平行于同一条直线的两条直线互相平行”时,先假设平行于同一条直线的两条直线相交成立,然后经过推理与平行公理相矛盾.10.用反证法证明:若∠A,∠B,∠C是△ABC的三个内角,则其中至少有一个角不大于60°.证明:假设∠A,∠B,∠C都大于60°.则有∠A+∠B+∠C>180°,这与三角形的内角和等于180°相矛盾.因此假设不成立,即∠A,∠B,∠C中至少有一个角不大于60°.易错点概念不清11.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;③三角形的外心到三角形三边的距离相等;④圆有且只有一个内接三角形.其中正确的是②(填序号).02 中档题12.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P(D) A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部13.用反证法证明“两条直线相交只有一个交点”应该先假设(A)A.两条直线相交至少有两个交点B.两条直线相交没有两个交点C.两条直线平行时也有一个交点D.两条直线平行没有交点14.如图,在△ABC中,BC=3 cm,∠BAC=60°,那么△ABC能被半径至少为3cm的圆形纸片所覆盖.15.若O为△ABC的外心,且∠BOC=60°,则∠BAC=30°或150°.16.已知,如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,斜边AB边上的高为CD,若以点C为圆心,分别以R1=2,R2=2.4,R3=3为半径作⊙C1,⊙C2,⊙C3,试判断点D与这三个圆的位置关系.解:由勾股定理,得AB=AC2+BC2=5,由面积公式,得CD=2.4,∴d=CD=2.4.∴d>R1,d=R2,d<R3.∴点D在⊙C1的外部,在⊙C2上,在⊙C3的内部.17.如图,已知,△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O是△ABC的外接圆;(要求尺规作图,保留作图痕迹,不必写作法)(2)综合应用:在你所作的圆中,求∠AOB的度数.解:(1)如图.作法:分别作边AB,AC的垂直平分线GH,EF,交于点O,以O为圆心,以OA为半径的圆就是△ABC的外接圆.(2)在优弧AB上取一点D,连接DA,DB.∵∠CAB=25°,∠CBA=40°,∴∠C=180°-∠CAB-∠CBA=115°.∵四边形CADB是圆的内接四边形,∴∠ADB=180°-∠C=180°-115°=65°.∴∠AOB=2∠ADB=130°.24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系01 基础题知识点1 直线与圆的位置关系的判定如图,直线l 与⊙O 有三种位置关系:(1)图1中直线l 与⊙O 相交,有两个公共点,这条直线叫做圆的割线.图1 图2 图3(2)图2中直线l 与⊙O 相切,有1个公共点,这条直线叫做圆的切线. (3)图3中直线l 与⊙O 相离,无公共点.1.(梧州中考)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为(C )A .相离B .相切C .相交D .无法确定2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是(D )A .相离B .相切C .相交D .相切或相交3.(张家界中考)如图,∠O=30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是(C )A .相离B .相交C .相切D .以上三种情况均有可能4.⊙O 的半径为6,一条弦长63,以3为半径的同心圆与这条弦的关系是(A )A .相切B .相交C .相离D .相切或相交5.在Rt △ABC 中,∠C=90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm . 解:过点C 作CD⊥AB,垂足为D. ∵AB =4,BC =2,∴AC =2 3. 又∵S △ABC =12AB·CD =12BC·AC,∴CD =BC·ACAB = 3.(1)r =1.5 cm 时,相离. (2)r = 3 cm 时,相切. (3)r =2 cm 时,相交.知识点2 直线与圆的位置关系的性质已知⊙O 的半径为r ,圆心到直线l 的距离为d ,根据直线和圆相交,相切,相离的定义,可以得到: (1)直线l 与⊙O 相交⇔d <r ;(2)直线l 与⊙O 相切⇔d =r ;(3)直线l 与⊙O 相离⇔d >r.6.设⊙O 的半径为4,点O 到直线a 的距离为d ,若⊙O 与直线a 至多只有一个公共点,则d 的取值范围为(C )A .d ≤4B .d <4C .d ≥4D .d =47.(益阳中考)如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为(B )A .1B .1或5C .3D .58.(西宁中考)⊙O 的半径为R ,点O 到直线l 的距离为d ,R ,d 是方程x 2-4x +m =0的两根,当直线l 与⊙O 相切时,m 的值为4.9.如图,在Rt △ABC 中,∠A=90°,∠C=60°,BO =x ,⊙O 的半径为2,求当x 在什么范围内取值时,AB 所在的直线与⊙O 相交,相切,相离?解:过点O 作OD⊥AB,垂足为D.∵∠A =90°,∠C =60°,∴∠B =30°. ∴OD =12OB =12x.当AB 所在的直线与⊙O 相切时,OD =r =2.∴BO =4.∴0<x<4时,相交;x =4时,相切;x>4时,相离.易错点 题意理解不清10.已知⊙O 的半径为2,直线l 上有一点P 满足PO =2,则直线l 与⊙O 的位置关系是相切或相交.02 中档题11.(遵义汇川月考)如图,在Rt △ABC 中,∠B=90°,∠A=60°,BC =4 cm ,以B 为圆心,2 cm 长为半径作圆,则⊙B与AC的位置关系是(B)A.相离B.相切C.相交D.外切12.(百色中考)以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是(D) A.0≤b<2 2 B.-22≤b≤2 2C.-23<b<2 3 D.-22<b<2213.(铜仁模拟)已知如图,∠BOA=30°,M是OB上一点,以M为圆心、2 cm为半径作⊙M,点M在射线OB上运动,当OM=5 cm时,⊙M与直线OA的位置关系是相离.第13题图第14题图14.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于点N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是相交.15.如图所示,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标;并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标;并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.解:(1)∵⊙P的圆心在直线y=2x-1上,∴圆心坐标可设为(x,2x-1).当⊙P和x轴相切时,2x-1=2或2x-1=-2,解得x1=1.5,x2=-0.5.∴P1(1.5,2),P2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y轴与⊙P相交.(2)当⊙P和y轴相切时,x=2或-2.得2x-1=3或2x-1=-5.∵|-5|>2,3>2,∴x轴与⊙P相离.(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切.03 综合题16.(永州中考)如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l 的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是1<d<3.第2课时切线的判定与性质01 基础题知识点1切线的判定经过半径的外端且垂直于这条半径的直线是圆的切线.如图,△ABC的一边AB是⊙O的直径,∵AB⊥BC,∴BC为⊙O的切线.1.下列说法中,正确的是(D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是半圆的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD.判断直线PD是否为⊙O的切线,并说明理由.解:PD是⊙O的切线.理由如下:∵AB为直径,∴∠ADB=90°.∴∠ADO+∠ODB=90°.∵OD=OB,∴∠OBD=∠ODB.∵∠PDA=∠PBD,∴∠ADO+∠PDA=90°,即∠PDO=90°.又∵直线PD经过⊙O半径的外端,∴PD是⊙O的切线.知识点2切线的性质圆的切线垂直于过切点的半径.3.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA=30°,则OB 的长为(B )A .4 3B .4C .2 3D .2第3题图 第4题图4.(黔南中考)如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C 在⊙O 上,且∠ODA=36°,则∠ACB 的度数为(D )A .54°B .36°C .30°D .27°5.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA =6,PB =3,则⊙O 的半径是(C )A .5B .4C .4.5D .3.5第5题图 第6题图6.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心,若∠B=25°,则∠C 等于40°. 7.(济南中考)如图,AB 与⊙O 相切于点C ,∠A=∠B,⊙O 的半径为6,AB =16.求OA 的长.解:连接OC.∵AB 与⊙O 相切于点C , ∴OC⊥AB.∵∠A =∠B,∴OA =OB. ∴AC =BC =12AB =8.∵OC =6,∴OA =62+82=10.易错点 判断圆和各边相切时考虑不全面而漏解8.如图,在平面直角坐标系第一象限内有一矩形OABC ,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P 的坐标为(1,1)或(3,1)或(2,0)或(2,2).02 中档题9.(教材9上P 101习题T 5变式)如图,两个同心圆的半径分别为4 cm 和5 cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为(C )。
24.1 圆的有关性质同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦2. 如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25∘,则∠AOC=()A.25∘B.30∘C.40∘D.50∘3. 如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3√5米B.5米C.7米D.8米4. 锐角△ABC的三条高AD、BE、CF交于H,在A、B、C、D、E、F、H七个点中.能组成四点共圆的组数是()A.4组B.5组C.6组D.7组5. 如图,在⊙O中,∠ABC=130∘,则∠AOC等于()A.50∘B.80∘C.90∘D.100∘6. 如图,在⊙O中,∠BAC=15∘,∠ADC=20∘,则∠ABO的度数为()A.70∘B.55∘C.45∘D.35∘7. 如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=3√2,CD的长为()A.2B.4C.6D.88. 如图,四边形ABCD 内接于半径为6的⊙O 中,连接AC ,若AB =CD ,∠ACB =45∘,∠ACD =12∠BAC ,则BC 的长度为( )A.6√3B.6√2C.9√3D.9√29. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =12米,净高CD =9米,则此圆的半径OA =( )A.122米B.132米C.142米D.152米10. 如图,四边形ABCD 是⊙O 的内接四边形,点D 是AĈ的中点,点E 是BC ̂上的一点,若∠CED =40∘,则∠ADC =( )A.100∘B.110∘C.95∘D.120∘二、填空题(本题共计10 小题,每题3 分,共计30分,)̂=CD̂,且AB=2,则CD=________.11. 已知AB、CD是⊙O的两条弦,若AB12. 如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为________∘.13. 如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=62∘,∠E =24∘,则∠F=________.14. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.15. 在△ABC中,∠B=60∘,∠BCA=20∘,∠DAC=20∘,∠BCA的平分线交AB于E,连DE,则∠BDE=________.16. 芳芳家今年搬进了新房,新房外飘的凉台呈圆弧形(如图所示),她测得凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为________.17. 已知一条弧的度数为120∘,则它所对的圆周角的度数是________∘.18. 如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为________.19. 如图,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105∘,∠BAC=25∘,则∠E的度数为________度.20. 如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为________m(精确到0.1m).三、解答题(本题共计6 小题,共计60分,)21. 如图,⊙O是△ABC外接圆,AB=AC,P是⊙O上一点.(1)分别出图①和图②中∠BPC的角平分线;(2)结合图②,说明你这样理由.22. 如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.23. 如图,⊙O的弦AC、BD交于点Q,AP、CP是⊙O的切线,O、Q、P三点共线.求证:PA2=PB⋅PD.24. 如图,AB、CD是⊙O中的两条弦,M、N分别是AB、CD的中点,且∠OMN=∠ONM.求证:AB=CD.25. 如图,⊙O的半径长为12cm,弦AB=16cm.(1)求圆心到弦AB的距离;(2)如果弦AB的两端点在圆周上滑动(AB弦长不变),那么弦AB的中点形成什么样的图形?̂上一点,AG、CD的延长线26. 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是AD相交于点F,求证:∠FGD=∠AGC.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】A二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】212.【答案】22.513.【答案】32∘14.【答案】11815.【答案】20∘16.【答案】5米17.【答案】6018.【答案】2√319.【答案】5020.【答案】6.1三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图①,连接AP,即为所求角平分线;如图②,连接AO并延长,与⊙O交于点D,连接PD,即为所求角平分线(2)∵ AD是直径,∵ 半圆ABD=半圆ACD又∵ AB=AC,̂=AĈ,∵ AB∵ BĈ=BD̂,∵ ∠BPD=∠CPD,即PD平分∠BPC.22.【答案】证明:连结OA、OC,如图,∵ E、F分别为弦AB、CD的中点,∵ OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵ AB=CD,∵ AE=CF,在Rt△AEO和Rt△COF中,{AE=CFAO=CO,∵ Rt△AEO≅Rt△COF(HL),∵ OE=OF.23.【答案】证明:连接OA、OB、OD、OC,设DP交⊙O于E.∵ AP、CP是⊙O的切线,∵ ∠OAP=∠PCO=90∘∵ A、O、C、P四点共圆,∵ OQ⋅PQ=AQ⋅CQ(相交弦定理);又∵ DQ⋅BQ=AQ⋅CQ(相交弦定理),∵ OQ⋅PQ=DQ⋅BQ,∵ D、O、B、P四点共圆;∵ OD=OB,∵ ∠ODB=∠OBD;又∵ ODPB四点共圆∵ ∠ODB=∠OPB;∠OBD=∠OPD;∵ ∠OPD=∠OPB,∵ PB=PE,∵ PA2=PE⋅PD=PB⋅PD(切割线定理),即PA2=PB⋅PD.24.【答案】证明:∵ M、N分别是AB、CD的中点,∵ OM⊥AB,ON⊥CD,又∵ ∠OMN=∠ONM,∵ OM=ON,∵ AB=CD.25.【答案】解:(1)作OC⊥AB,垂足为C连接AO,则AC=8cm,在Rt△AOC中,OC=√OA2−AC2=√122−82=√80=4√5cm(或OC=8.944cm);即圆心到弦的距离是4√5cm.(2)形成一个以O为圆心,4√5cm为半径的圆.(答“以O为圆心,OC长为半径的圆”亦可,如果只答“是一个圆”得1分)26.【答案】证明:连接AC,∵ 四边形ACDG是圆内接四边形,∵ ∠FGD=∠ACD.∵ 弦CD⊥AB于点E,∵ AĈ=AD̂,∵ ∠AGC=∠ACD,∵ ∠FGD=∠AGC.。
第二十四章圆
圆的有关性质
24.1.1 圆
1.下列说法中,结论错误的是( )
A.直径相等的两个圆是等圆
B.长度相等的两条弧是等弧
C.圆中最长的弦是直径
D.一条弦把圆分成两条弧,这两条弧可能是等弧
2.如图2415所示,⊙O中的点A,O,D以及点B,O,C分别在同一直线上,图中弦的条数为( )
图2415
A.2 B.3
C.4 D.5
3.如图2416所示,点P是⊙O内的一点,点P到⊙O的最小距离为4 cm,最大距离为9 cm,则⊙O的直径为( )
图2416
A.6.5 cm B.2.5 cm
C.13 cm D.15 cm
4.[2017·河北模拟]如图2417,C是以点O为圆心,AB为直径的半圆上一点,且CO ⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG=FD.
请回答:小云所作的两条线段分别是____和____;
证明IG=FD的依据是矩形的对角线相等,____和等量代换.
5.如图2418所示,以O为圆心的两个同心圆,大圆O的半径OC,OD分别交小圆O 于A,B两点.求证:AB∥CD.
图2418
6.如图2419所示,在⊙O中,点D,E分别为半径OA,OB上的点,且AD=BE,点C 为弧AB上一点,连接CD,CE,CO,∠AOC=∠BOC.
图2419
求证:CD=CE.
7.如图24110,AB,CD为⊙O的两条直径,点E,F在直径CD上,且CE=DF.求证:AF=BE.
图24110
8.如图24111所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O 于点B,且AB=OC,求∠A的度数.
图24111
参考答案
【分层作业】
1.B 2.A 3.C 4.OHOE同圆的半径相等
5.略6.略7.略8.∠A=26°.。