2018高考物理总复习专题天体运动的三大难点破解3剖析宇宙中的双星三星模型同步练习
- 格式:doc
- 大小:71.00 KB
- 文档页数:3
深度剖析卫星的变轨一、考点突破:知识点 考纲要求题型说明卫星的变轨的动力学本质 1. 掌握卫星变轨原理; 2. 会分析不同轨道上速度和加速度的大小关系;3. 理解变轨前后的能量变化。
选择题、计算题 属于高频考点,重点考查卫星变轨中的供需关系、速度关系、能量关系及轨道的变化,是最近几年的高考热点。
二、重难点提示:重点:1. 卫星变轨原理;2. 不同轨道上速度和加速度的大小关系。
难点:理解变轨前后的能量变化。
一、变轨原理卫星在运动过程中,受到的合外力为万有引力,F 引=2R MmG 。
卫星在运动过程中所需要的向心力为:F 向=Rmv 2。
当:(1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引<F 向时,卫星做离心运动。
二、变轨过程 1. 反射变轨在1轨道上A 点向前喷气(瞬间),速度增大,所需向心力增大,万有引力不足,离心运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。
2. 回收变轨在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。
三、卫星变轨中的能量问题1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。
2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。
注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。
变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。
3. 卫星变轨中的切点问题【误区点拨】近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。
双星和多星系统难点破解双星系统一、模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星。
二、模型条件(1)两颗星彼此相距较近(且认为系统不受其它星体的引力影响)。
(2)两颗星靠相互之间的万有引力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
三、模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力。
(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等。
(3)“半径反比”——圆心在两颗行星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行星的质量成反比。
多星系统一、三星系统图一图二图一中,三颗质量相等的行星分别处于等边三角形的三个定点上,围绕正三角形的几何中心O点各自做匀速圆周运动。
三颗星的周期、半径均相同。
图二中,三颗质量相等的行星位于一条直线上,其中一颗星位于直线的中点O(可视为静止不动),另外两颗行星绕O点做匀速圆周运动。
运行的两颗星的周期相同。
二、四星系统图三图四图三中,三颗质量相等的行星分别处于等边三角形的三个定点上,围绕正三角形的几何中心O点各自做匀速圆周运动,第四颗星位于O点(可视为静止不动)。
运行的三颗星的周期相同。
图四中,四颗质量相等的行星位于正方向的四角,绕正方形的几何中心O点做匀速圆周运动。
四颗星的运行周期相同。
三、解决多星系统的关键多星系统与双星系统相似,首先选取其中一颗星为研究对象,分析各行星之间的万有引力关系并确定向心力的大小。
接着找到行星做圆周运动的圆心,确定半径。
然后结合圆周运动和牛顿运动定律进行计算。
例题 1 (重庆高考)冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O做匀速圆周运动。
由此可知,冥王星绕O点运动的()1A. 轨道半径约为卡戎的71B. 角速度大小约为卡戎的7C. 线速度大小约为卡戎的7倍D. 向心力大小约为卡戎的7倍思路分析:本题是双星问题,设冥王星的质量、轨道半径、线速度分别为m1、r1、v1,卡戎的质量、轨道半径、线速度分别为m2、r2、v2,由双星问题的规律可得,两星间的万有引力分别给两星提供做匀速圆周运动的向心力,且两星的角速度相等,故B、D均错;由G221L m m =m 1ω2r 1=m 2ω2r 2(L 为两星间的距离),因此1221211221,71m m r r v v m m r r ====ωω=71,故A 对,C 错。
剖析宇宙中的双星、三星模型考点课程目标备注双星、三星模型 1. 掌握双星、三星模型的向心力来源;2. 会根据万有引力定律求解双星、三星模型的周期,线速度等物理量;3. 掌握两种模型的特点。
双星问题是万有引力定律在天文学上的应用的一个重要内容,主要考查转动星体向心力来源及参数之间的关系,高考重点,属于高频考点 中等难度,命题形式选择题居多。
二、重难点提示:重点:1. 根据万有引力定律求解双星、三星模型的周期,线速度等物理量;2. 双星、三星两种模型的特点。
难点:双星、三星模型的向心力来源。
一、双星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示,双星系统模型有以下特点:(1)各自需要的向心力由彼此间的万有引力相互提供即221L m Gm =m 1ω21r 1,221Lm Gm =m 2ω22r 2; (2)两颗星的周期及角速度都相同即T 1=T 2,ω1=ω2;(3)两颗星的半径与它们之间的距离关系为r 1+r 2=L ;(4)两颗星到圆心的距离r 1、r 2与星体质量成反比即1221r r m m ; (5)双星的运动周期T=2π)(213mmGL+;(6)双星的总质量公式m1+m2=GTL2324π。
二、三星模型第一种情况:三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行。
特点:1. 周期相同;2. 三星质量相同;3. 三星间距相等;4. 两颗星做圆周运动的向心力相等。
原理:A、C对B的引力充当向心力,即:,可得:GmRT543π=,同理可得线速度:RGmR25。
第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行。
特点:1. 运行周期相同;2. 半径相同;3. 质量相同;4. 所需向心力相等。
原理:B、C对A的引力的合力充当向心力,即:rTmRGmF2222430cos2π==︒合,其中Rr33=,可得:运行周期GmRRT32π=。
第26课时 天体运动与人造卫星(重点突破课)[基础点·自主落实][必备知识]1.三种宇宙速度(1)轨道平面一定:轨道平面和赤道平面重合。
(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s 。
(3)角速度一定:与地球自转的角速度相同。
(4)高度一定:据G Mm r 2=m 4π2T 2r 得r = 3GMT 24π2≈4.24×104 km ,卫星离地面高度h =r -R ≈3.6×104 km(为恒量)。
(5)速率一定:运行速度v =2πr T ≈3.08 km/s(为恒量)。
(6)绕行方向一定:与地球自转的方向一致。
3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。
(3)两种卫星的轨道平面一定通过地球的球心。
[小题热身]1.判断正误(1)同步卫星可以定点在北京市的正上方。
(×)(2)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。
(×)(3)第一宇宙速度的大小与地球质量有关。
(√)(4)月球的第一宇宙速度也是7.9 km/s 。
(×)(5)同步卫星的运行速度一定小于地球第一宇宙速度。
(√)2.由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同解析:选A 同步卫星轨道只能在赤道平面内,高度一定,轨道半径一定,速率一定,但质量可以不同,A 项正确。
3.(多选)我国已先后成功发射了“天宫二号”飞行器和“神舟十一号”飞船,并成功地进行了对接试验,若“天宫二号”能在离地面约360 km 高的圆轨道上正常运行,则下列说法中正确的是( )A .“天宫二号”的发射速度应大于第二宇宙速度B .对接前,“神舟十一号”欲追上“天宫二号”,必须在同一轨道上点火加速C .对接时,“神舟十一号”与“天宫二号”的加速度大小相等D .对接后,“天宫二号”的速度小于第一宇宙速度解析:选CD 地球卫星的发射速度都大于第一宇宙速度,且小于第二宇宙速度,A 错误;若“神舟十一号”在与“天宫二号”同一轨道上点火加速,那么“神舟十一号”的万有引力小于向心力,其将做离心运动,不可能实现对接,B 错误;对接时,“神舟十一号”与“天宫二号”必须在同一轨道上,根据a =G M r 2 可知,它们的加速度大小相等,C 正确;第一宇宙速度是地球卫星的最大运行速度,所以对接后,“天宫二号”的速度仍然要小于第一宇宙速度,D 正确。
剖析宇宙中的双星、三星模型(答题时间:30分钟)1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()A. m1:m2做圆周运动的角速度之比为2:3B. m1:m2做圆周运动的线速度之比为3:2C. m1做圆周运动的半径为D. m2做圆周运动的半径为L2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()A. 1:6400B. 1:80C. 80:1D. 6400:13. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是.....()A. 两颗星有相同的角速度B. 两颗星的旋转半径与质量成反比C. 两颗星的加速度与质量成反比D. 两颗星的线速度与质量成正比4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()A. 双星做圆周运动的角速度不断减小B. 双星做圆周运动的角速度不断增大C. 质量较大的星体做圆周运动的轨道半径渐小D. 质量较大的星体做圆周运动的轨道半径增大5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
专题强化五天体运动的“三类热点”问题【专题解读】1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现。
2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解。
3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等。
热点一近地卫星、同步卫星和赤道上物体的区别1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。
(2)极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星。
(3)其他轨道:除以上两种轨道外的卫星轨道,所有卫星的轨道平面一定通过地球的球心。
2.同步卫星问题的“四点”注意(1)基本关系:G Mmr2=ma=mv2r=mrω2=m4π2T2r。
(2)重要手段:构建物理模型,绘制草图辅助分析。
(3)物理规律①不快不慢:具有特定的运行线速度、角速度和周期。
②不高不低:具有特定的位置高度和轨道半径。
③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能在赤道上方特定的点运行。
(4)重要条件①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km,地球表面重力加速度g约为9.8 m/s2。
②月球的公转周期约27.3天,在一般估算中常取27天。
③人造地球卫星的运行半径最小为r=6.4×103 km,运行周期最小为T=84.8 min,运行速度最大为v=7.9 km/s。
3.两个向心加速度卫星绕地球运行的向心加速度物体随地球自转的向心加速度产生原因由万有引力产生由万有引力的一个分力(另一分力为重力)产生方向指向地心垂直且指向地轴大小a=GMr2(地面附近a近似等于g)a=rω2,r为地面上某点到地轴的距离,ω为地球自转的角速度特点随卫星到地心的距离的增大而减小从赤道到两极逐渐减小4.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢。
剖析宇宙中的双星、三星模型
(答题时间:30分钟)
1. 经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。
现测得两颗星之间的距离为L,质量之比为m1:m2=3:2。
则可知()
A. m1:m2做圆周运动的角速度之比为2:3
B. m1:m2做圆周运动的线速度之比为3:2
C. m1做圆周运动的半径为
D. m2做圆周运动的半径为L
2. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动。
据此观点,可知月球与地球绕O点运动的线速度大小之比约为()
A. 1:6400
B. 1:80
C. 80:1
D. 6400:1
3. 在太空中,两颗靠得很近的星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线上的某点做周期相同的匀速圆周运动。
则下列说法不正确的是
.....()
A.两颗星有相同的角速度
B.两颗星的旋转半径与质量成反比
C.两颗星的加速度与质量成反比
D.两颗星的线速度与质量成正比
4. 某国际研究小组观测到了一组双星系统,它们绕二者连线上的某点做匀速圆周运动,双星系统中质量较小的星体能“吸食”质量较大的星体的表面物质,达到质量转移的目的。
根据大爆炸宇宙学可知,双星间的距离在缓慢增大,假设星体的轨道近似为圆,则在该过程中()
A.双星做圆周运动的角速度不断减小
B.双星做圆周运动的角速度不断增大
C.质量较大的星体做圆周运动的轨道半径渐小
D.质量较大的星体做圆周运动的轨道半径增大
5. 如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,最新观测表明“罗盘座T星”距离太阳系只有3260光年,比天文学家此前认为的距离要近得多。
该系统是由一颗白矮星和它的类日伴星组成的双星系统,由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星,并同时放出大量的γ射线,这些γ射线到达地球后会对地球的臭氧层造成毁灭性的破坏。
现假设类日伴星所释放的物质被白矮星全部吸收,并且两星间的距离在一段时间内不变,两星球的总质量不变,则下列说法正确的是()
A. 两星间的万有引力不变
B. 两星的运动周期不变
C. 类日伴星的轨道半径增大
D. 白矮星的轨道半径增大
6. 双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()
A. T
B. T
C. T
D. T
1. C解析:两星的周期相同即两者运行一周的时间相同,故其运动的角速度相同,A项错误;由于两星的向心力相同,有,故有,由于,联立前式有、,故C项正确,D项错误;m1、m2做圆周运动的角速度相同,
线速度之比为2:3,故B项错误。
2. C解析:万有引力提供向心力,设地球、月球之间的距离为L,质量分别为m1、m2,做圆周运动的半径分别为L1、L2,线速度分别为v1、v2,二者有相同的角速度,万有引力提供
向心力,有,得,有v=,故,C正确。
3. D解析:双星运动的角速度相同,选项A正确;由,可得,即两颗星的旋转半径与质量
成反比,选项B正确;,可知两颗星的加速度与质量成反比,选项C正确;,故可知两颗星的
线速度与质量不成正比关系,选项D错误。
故选D。
4. AD解析:根据双星运动的角速度向心力大小相等,有:,,联立可得:,,所以A、D正确;
B、C错误。
5. BC 解析:图片下面的中间亮点即为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体),组成的双星系统的周期T相同,设白矮星与类日伴星的质量分别为M1和M2,圆周运动的半径分别为R1和R2,由万有引力定律:,可得,,两式相加可得G(M1+M2)T2=4π2L3(①式),M1R1=M2R2(②式)。
由①式可知白矮星与类日伴星的总质量不变,则周期T不变,B对;由②式可知双星运行半径与质量成反比,类日伴星的质量逐渐减小,故其轨道半径增大,C对D错;依题意两星间距离在一段时间内不变,由万有引力定律可知,两星的质量总和不变而两星质量的乘积必定变化,则万有引力必定变化,A错。
6. B解析:双星间的万有引力提供向心力。
设原来双星间的距离为L,质量分别为M、m,圆周运动的圆心距质量为m的恒星距离为r。
对质量为m的恒星:G=m2·r;
对质量为M的恒星:G=M2(L-r),
得G=·L,即T2=。
则当总质量为k(M+m),间距为L′=nL时,T′=T,选项B正确。