高中物理复习 双星问题,天体追击
- 格式:docx
- 大小:284.29 KB
- 文档页数:5
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
高中物理:天体运动中的追及相遇问题,卫星的追及和相遇问题地面上的物体常常出现追及相遇问题,关键是找出它们的位移、速度和时间等关系,运动路线应该在同一轨道上。
天体运动中也有追及相遇问题,它与地面上的追及相遇问题在思维有上相似之处,即也是找出一些物理量的关系,但它也不同之处,有其自身特点。
根据万有引力提供向心力,即,所以当天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。
分析天体运动的追及相遇重点是角度、角速度和时间等关系的判断。
1、追及问题例1、如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度看,在相同时间内,A比B多转了2π;如果A、B在异侧,则它们相距最远,从角度看,在相同时间内,A比B多转了π。
所以再次相距最近的时间t1,由;第一次相距最远的时间t2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么结果如何?2、相遇问题例2、设地球质量为M,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止开始从P点沿PD方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q处掠过地球上空,如图2所示(图中“S”表示太阳)。
根据以上条件,求地球与太阳之间的万有引力大小。
解析:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。
设地球的公转周期为T,飞船由静止开始做加速度为a的匀加速直线运动,则地球的公转半径为所以地球与太阳之间的万有引力大小为例3、阅读下列信息,并结合该信息解题:(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。
双星及多星、天体追及问题1.双星问题知识点(1)运动模型:远离其他天体的两星在相互间的万有引力作用下绕两星连线上某点O各自做匀速圆周运动。
(2)几个结论:①两星彼此间的万有引力提供向心力,即=m 1r1,=m 2r2。
1②两星绕行方向、周期及角速度都相同,即T1=T2,ω1=ω2。
③两星的轨道半径与它们之间的距离关系为r1+r2=L。
④两星做圆周运动的半径r1、r2与星体质量成反比,即。
⑤两星的运动周期为T=2π。
⑥两星的总质量为m=m1+m2=。
22.多星问题类型三星模型四星模型3结构图2.多星问题类型三星模型四星模型结构图结论:1、每颗星做圆周运动的向心力均由系统内其余星对它万有引力的合力提供42、每颗星做圆周运动转动的方向、周期、角速度、线速度的大小均相同活动一、宇宙双星及多星模型1.宇宙双星模型2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。
将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星(BC)A.质量之积B.质量之和C.速率之和D.各自的自转角速度2. 宇宙三星模型三颗质量均为M的星球(可视为质点)位于边长为L的等边三角形的三个顶点上。
如图所示,如果它们中的每一颗都在相互的引力作用下沿等边三角形的外接圆轨道运行,引力常量为G,下列说法正确的是(BD)A.其中一颗星球受到另外两颗星球的万有引力的合力大小为3GM 2 2L2B.其中一颗星球受到另外两颗星球的万有引力的合力指向圆心OC.它们运行的轨道半径为3 2LD.它们运行的速度大小为GML56【习练】宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。
设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上。
2023届高三物理一轮复习多维度导学与分层专练专题30 卫星的变轨问题、天体追及相遇问题、双星和多星问题导练目标 导练内容目标1 卫星的变轨问题 目标2 天体追及相遇问题 目标3双星和多星问题一、卫星的变轨问题 1.两类变轨简介两类变轨离心运动近心运动示意图变轨起因 卫星速度突然增大卫星速度突然减小万有引力与 向心力的 大小关系 G Mmr 2<m v 2rG Mmr 2>m v 2r2.变轨前后各运行物理参量的比较(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v1、v3,在轨道Ⅰ上过A点和B点时速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A 点,卫星的加速度都相同,同理,经过B点加速度也相同。
(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒。
若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3。
①在A点,由圆周Ⅰ变至椭圆Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;②在B点,由椭圆Ⅰ变至圆周Ⅰ时,发动机向后喷气,推力做正功,动能增加、势能不变、机械能增加;反之也有相应的规律。
【例1】2013年12月6日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。
在“嫦娥三号”沿轨道Ⅰ经过P点时,通过调整速度使其进入椭圆轨道Ⅰ,在沿轨道Ⅰ经过Q点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
2020年高考物理专题精准突破 专题 双星与天体追及相遇问题【专题诠释】 一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。
1.在天体运动中,将两颗彼此相距较近的行星称为双星。
它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。
如果双星间距为L ,质量分别为m 1和m 2,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度2.两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为R ,a 卫星离地面的高度等于R ,b 卫星离地面高度为3R ,则:(1)a 、b 两卫星运行周期之比T A :T B 是多少?(2)若某时刻两卫星正好同时通过地面同一点正上方,则何时两行星再次相距最近?何时再相距最远?3.宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行。
设每个星体的质量均为m 。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少?4.宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为√Gm RB .每颗星做圆周运动的角速度为 √3Gm R 3C .每颗星做圆周运动的周期为2π√R 33GmD .每颗星做圆周运动的加速度与三星的质量无关5.由多颗星体构成的系统,叫做多星系统。
有这样一种简单的四星系统:质量刚好都相同的四个星体A 、B 、C 、D,A 、B 、C 分别位于等边三角形的三个顶点上,D 位于等边三角形的中心。
在四者相互之间的万有引力作用下,D 静止不动,A 、B 、C 绕共同的圆心D 在等边三角形所在的平面内做相同周期的圆周运动。
天体的追及相遇问题1.卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. (1)两星相距最近的条件:ωa Δt -ωb Δt =2n π(n =1,2,3…)(图甲) (2)两星相距最远的条件:ωa Δt -ωb Δt =(2n +1)π(n =0,1,2,…)(图乙)甲 乙 2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解.【题型1】如图是在同一平面不同轨道上同向运行的两颗人造地球卫星.设它们运行的周期分别是T 1、T 2(T 1<T 2),且某时刻两卫星相距最近.问:(1)两卫星再次相距最近的时间是多少? (2)两卫星相距最远的时间是多少?【答案】(1)T 1T 2T 2-T 1 (2)(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…)【解析】(1)依题意,T 1<T 2,周期大的轨道半径大,故在外层轨道的卫星运行一周所需的时间长.设经过t 1两卫星再次相距最近. 则它们运行的角度之差Δθ=2π 即2πT 1t 1-2πT 2t 1=2π 解得t 1=T 1T 2T 2-T 1.(2)两卫星相距最远时,它们运行的角度之差 Δθ=(2k +1)π(k =0,1,2…)即2πT 1t 2-2πT 2t 2=(2k +1)π(k =0,1,2…) 解得t 2=(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…).【题型2】一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R (R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为ω0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方? 【答案】63Rg 2π13g3R-ω0 【解析】由万有引力定律和牛顿定律可得: GMm (3R )2=m 4π2T 2·3R ①GMmR 2=mg ① 联立①①两式,可得T =6π3R g. 以地面为参考系,卫星再次出现在建筑物上方时转过的角度为2π,卫星相对地面的角速度为ω1-ω0,则Δt =2π2πT -ω0=2π13g3R-ω0. 【题型3】(多选)太阳系中某行星运行的轨道半径为R 0,周期为T 0,但天文学家在长期观测中发现,其实际运行的轨道总是存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离(行星仍然近似做匀速圆周运动)。
高中物理复习双星问题,天体追击一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
天体追及问题知识点高一天体追及问题是一种经典的物理学问题,它主要研究天体(如行星、卫星等)在空间中的运动轨迹和相对位置变化。
这一问题涉及到多个物理学概念和公式,需要我们通过数学和物理知识来解决。
首先,我们来了解一下天体追及问题的几个基本概念。
在天体追及问题中,通常有两个天体,一个是追赶者(也称为追逐者),另一个是被追赶者。
追赶者不断追赶被追赶者,我们需要计算追赶者追上被追赶者所需的时间、距离等信息。
在物理学中,天体追及问题可以通过运动学中的相对运动概念来进行求解。
相对运动是指两个物体之间的相对位移和相对速度。
我们可以将追赶者视为参考系中的静止物体,而被追赶者则是运动物体。
根据这个思路,我们可以建立一个数学模型来描述这个问题。
首先,设追赶者离被追赶者的距离为d0,追赶者的速度为v1,被追赶者的速度为v2。
令t表示追上被追赶者所需的时间,而d表示追上被追赶者所需的距离。
我们可以得到以下几个关系式:d = v2td0 = v1t有了这些关系式,我们就可以通过代入和解方程来求解t和d 的值。
在实际应用中,我们会遇到各种不同的情况,需要根据已知条件灵活运用。
以下是一些常见的天体追及问题的解法技巧:1. 同向追及问题:当追赶者的速度大于被追赶者的速度时,追赶者可以追上被追赶者。
此时,我们可以通过代入关系式并解方程,计算出追上所需的时间和距离。
2. 反向追及问题:当追赶者的速度小于被追赶者的速度时,追赶者无法追上被追赶者。
在这种情况下,我们需要通过计算被追赶者离追赶者最近的距离,来确定被追赶者与追赶者之间的相对位置关系。
3. 追击问题:当追赶者的速度和被追赶者的速度相等时,无论怎么追赶,追赶者都无法追上被追赶者。
这是一种特殊情况,也是值得我们思考的。
除了上述几种情况外,天体追及问题还涉及到物理学中的其他概念和公式。
例如,如果天体的运动是二维的,我们还需要考虑平面几何中的坐标系、向量、位移、速度等概念。
此外,如果天体的运动是三维的,我们还需要引入立体几何中的三维坐标系、点、直线等概念。
1112一、双星问题双星及多星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,mω2r=mω2r,即mr=mr;等式mr=mr两边同乘以角速度ω,得mrω=mr1 12 2 1 1 2 2 1 1 2 2 1 1 2 2ω,即mv=mv;由mω2r=mω2r直接可得,ma=ma。
1 12 2 1 1 2Gmm 2 Gmm 1 1 2 2 G m+m ω2L3(4)巧妙求质量和:12=mω2r①12=mωr②2由①+②得:12=ωL2∴m+m=L2L2L2G4.解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由mω2r=mω2r知由于m与m一般不相等,故r与r一般也不相等。
1 12 2 1 2 1 2二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
2、某星体的两颗卫星从相距最近到相距最远遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为π的奇数倍。
3、对于天体追及问题的处理思路:(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
1.2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X 射线调制望远镜卫星“慧眼”。
“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。
在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L ,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T ,引力常量为G ,则双黑洞总质量为( )A.2324L GT π B.23243L GT π C.3224GL T π D.2324T GL π2.引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代有科学家发现高速转动的双星,可能由于辐射引力波而使质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将( )A. 变大B. 变小C. 不变D. 可能变大也可能变小3.若某双星系统A 和B 各自绕其连线上的O 点做匀速圆周运动。
已知A 星和B 星的质量分别为m 1和m 2,相距为d ,下列说法正确的是( )A. A 星的轨道半径为112m d m m +B. 若A 星所受B 星的引力可等效为位于O 点处质量为m '的星体对它的引力,则()32212'm m m m=+C. A 星和B 星的线速度之比为m 1:m 2D. 若在O 点放一个质点,它受到的合力一定为零4.太阳系中某行星运行的轨道半径为R 0,周期为T 0.但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔T 0时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )A .20003)(T t tR R-= B .Tt t R R -=000 C . 2003)-(t T t R R = D .00203T t t R R-=5.将火星和地球绕太阳的运动近似看成是同一平面内的同方向绕行的匀速圆周运动,已知火星的轨道半径m r 111103.2⨯=,地球的轨道半径为m r 112105.1⨯=,根据你所掌握的物理和天文知识,估算出火星与地球相邻两次距离最小的时间间隔约为( )A .1年B .2年C .3年D .4年6.如图所示,A 、B 为地球的两个轨道共面的人造卫星,运行方向相同,A 为地球同步卫星,A 、B 卫星的轨道半径的比值为k ,地球自转周期为T 0.某时刻A 、B 两卫星距离达到最近,从该时刻起到A 、B 间距离最远所经历的最短时间为( )A.()321k + B.031k - C.()321k - D.031k +7.如图,A 为太阳系中的天王星,它绕太阳O 运行的轨道视为圆时,运动的轨道半径为R 0,周期为T 0,长期观测发现,天王星实际运动的轨道与圆轨道总有一些偏离,且每隔t 0时间发生一次最大偏离,即轨道半径出现一次最大.根据万有引力定律,天文学家预言形成这种现象的原因可能是天王星外侧还存在着一颗未知的行星(假设其运动轨道与A 在同一平面内,且与A 的绕行方向相同),它对天王星的万有引力引起天王星轨道的偏离,由此可推测未知行星的运动轨道半径是( )A.000t R t T - B. 30000t R t T ⎛⎫ ⎪-⎝⎭C. 200300t T R t ⎛⎫- ⎪⎝⎭D. 203000t R t T ⎛⎫⎪-⎝⎭8.宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设每个星体的质量均为m.(1)试求第一种形式下,星体运动的线速度和周期.(2)假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少?9.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比.1.【答案】A 【解析】对双黑洞中的任一黑洞:2121122m m G m r L T π⎛⎫= ⎪⎝⎭得22122m G r L T π⎛⎫= ⎪⎝⎭对另一黑洞:2122222m m G m r L T π⎛⎫= ⎪⎝⎭得21222m G r L T π⎛⎫= ⎪⎝⎭ ,又12r r L +=联立得:2221122222m m G G r r L L T T ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭则()()2211222m m G r r LT π+⎛⎫=+ ⎪⎝⎭即222M G L L T π⎛⎫= ⎪⎝⎭ 双黑洞总质量2324L M GT π=。
故A 项正确。
2.【答案】B 【解析】:双星靠相互间的万有引力提供向心力,有:212122m m G m r r T π⎛⎫= ⎪⎝⎭ 212222m m G m r r T π⎛⎫= ⎪⎝⎭计算得出231224r m m GT π+= ,计算得出T =3.【答案】B 【解析】试题分析:双星系统是一个稳定的结构,它们以二者连线上的某一点为圆心做匀速圆周运动,角速度相等,万有引力提供向心力,根据牛顿第二定律列式求解.双星系统中两个星体做圆周运动的周期相同,即角速度相同,过程中,两者之间的引力充当向心力,故22121112222m m G m r m r dωω==,又知道12r r d +=,解得2112m r d m m =+,1112m r d m m =+,A 错误;两者的角速度相同,故有1212v v r r =,即112221v r m v r m ==,C 错误;A 星受到的引力为122m mF G d=,放在O 点的星体对其的引力为121''m m F G r =,两者等效,则有121221'm m m m G G d r =,代入2112m r dm m =+可得()32212'm m m m =+,B 正确;若在圆心处放一个质点,合力()20121020122222212210Gm m m m m m m m m F GG r r d m m +⎛⎫=-=-≠ ⎪⎝⎭,D 错误.4.【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时 万有引力最大偏离程度最大。
设未知行星的周期为T 则:1000=-T t T t 则0000T t Tt T -=根据开普勒第三定律232030TR T R =得2003)(T t t R R-=选A5.【解析】已知地球绕太阳的公转周期为年11=T 设火星的公转周期为2T 根据开普勒第三定律22322131T r T r =得年2)(31212≈=r r T T 又根据 121=-T tT t 化简得年21221≈-=T T T T t6.【答案】C 【解析】由开普勒第三定律得:3322A BA Br r T T =,设两卫星至少经过时间t 距离最远,即B 比A 多转半圈,12B A B A t t n n T T -=-=,又0A T T =,解得:t =,故选项C 正确。
12T Ta OaOr7.【答案】D 【解析】设未知的行星的周期为T ,依题意有:0001t t T T-=,则0000t T T t T -=,根据开普勒第三定律:220022T R T R=,联立解得:203000t R R t T ⎛⎫= ⎪-⎝⎭,D 正确,ABC 错误.故选:D 。