专题3天体运动问题归类整合
- 格式:ppt
- 大小:1.25 MB
- 文档页数:31
mgF 向 φ ωF万有引力和航天知识的归类分析一.开普勒行星运动定律一、开普勒第必然律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个核心上。
二、开普勒第二定律(面积定律):对任意一个行星来讲,它与太阳的连线在相等的时刻内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如下图。
假设飞船要返回地面,可在轨道上某点处将速度降到适当的数值,从而使飞船沿着以地心为核心的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地址运动到近地址所需要的时刻。
二.万有引力定律 实例二、假想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,那么物体与地球间的万有引力是( )A 、零B 、无穷大C 、2R GMmD 、无法确信小结:F=221r m Gm 的适用条件是什么?三.万有引力与航天 (一)核心知识万有引力定律和航天知识的应用离不开两个核心1、一条主线,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。
2、 黄金代换式GM =g R 2此式往往在未知中心天体的质量的情形下和一条主线结合利用 (二)具体应用应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 一、理论依据:一条主线二、实例分析如下图,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度别离是R 和2R(R 为地球半径).以下说法中正确的选项是( )、b 的线速度大小之比是 2∶1 、b 的周期之比是1∶2 、b 的角速度大小之比是3 ∶4 、b 的向心加速度大小之比是9∶4 小结: 轨道模型:在中心天体相同的情形下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,那么卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生转变其它各量也会转变。
天体运动知识点归类解析【问题一】行星运动简史 1、两种学说(1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。
支持者托勒密。
(2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。
(3).两种学说的局限性都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。
2、开普勒三大定律开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。
1600年,到布拉格成为第谷的助手。
次年第谷去世,开普勒成为第谷事业的继承人。
第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。
他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。
并将老师第谷的数据结果归纳出三条著名定律。
第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。
如图某行星沿椭圆轨道运行,远日点离太阳的距离为a ,近日点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ∆,则有:t bv t av b a ∆=∆2121①所以bav v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。
②式也当之无愧的作为第二定律的数学表达式。
第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。
用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23,k 与中心天体的质量有关即k 是中心天体质量的函数)(23M k T a =①。
天体运动题型归纳题型一:天体的自转【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。
已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( )A .124π3G ρ⎛⎫ ⎪⎝⎭B .1234πG ρ⎛⎫ ⎪⎝⎭C .12πG ρ⎛⎫ ⎪⎝⎭D .123πG ρ⎛⎫ ⎪⎝⎭解析:在赤道上22R m mg RMmGω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m RMmGω=②又 ②③④得:23GT πρ= ④即21)3(ρπG T =选D 练习1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布均匀的球体,半径为R 。
则地球的自转周期为( )A. 2T =B.2T =C.R N m T ∆=π2D.N m RT ∆=π22、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:A.0203g g g GT π B. 0203g g g GT π C. 23GT π D. 023g g GTπρ 题型二:近地问题+绕行问题【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。
已知月球半径为R ,引力常量为G 。
则下列说法正确的是A .月球表面的重力加速度g 月=h v 20L2B .月球的质量m 月=hR 2v 20GL 2 C .月球的第一宇宙速度v =v 0L2h D .月球的平均密度ρ=3h v 202πGL 2R解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2,联立解得g 月=2h v 20L 2;由mg 月=G mm 月R 2,解得m 月=2hR 2v 20GT 2;由mg 月=m v 2R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3h v 202πGL 2R。
天体运动归类讲解与练习天体运动的描述类:1.有两颗人造地球卫星,它们的质量比m 1:m 2=2;1,轨道半径之比r 1:r 2=3;1,那么,它们所受的向心力大小之比F 1:F 2是多少?它们的运行速率之比v 1:v 2是多少?它们的向心加速度之比a 1:a 2是多少?它们的周期之比T 1:T 2是多少?2.某人造卫星距地面h 米,地球半径为R 、质量为M ,地面重力加速度为g ,万有引力恒量为G .(1)分别用h 、R 、M 、G 表示卫星周期T 、线速度v 、角速度ω。
(2)分别用h 、R 、g 表示卫星周期T 、线速度v 、角速度ω。
解析:(1)根据向心力来自万有引力得:得: , ,(2)卫星在地球表面上受的万有引力近似等于mg : 由得到代入得,3.已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响。
(1)推导第一宇宙速度v 1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h ,求卫星的运行周期T 。
解析:(1)设卫星的质量为m,地球的质量为M, 在地球表面附近满足mg R MmG=2得 g R GM 2= 卫星做圆周运动的向心力等于它受到的万有引力 221RMm G R v m = 得到Rg v =1 (2)考虑式,卫星受到的万有引力为 222)()(h R mgR h R Mm GF +=+=由牛顿第二定律)(422h R T m F +=π 联立解得gh R R T 2)(2+=π4.土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动.其中有两个岩石颗粒A 和B 与土星中心的距离分别为r A =8.0×104km 和r B =1.2×105km.忽略所有岩石颗粒间的相互作用.(结果可用根式表示)(1)求岩石颗粒A 和B 的线速度之比. (2)求岩石颗粒A 和B 的周期之比.(3)土星探测器上有一物体,在地球上重为10N ,推算出它在距土星中心3.2×105km 处受到土星的引力为0.38N .已知地球半径为6.4×103km ,请估算土星质量是地球质量的多少倍? 解析:岩石颗粒绕土星做匀速圆周运动,由牛顿第二定律和万有引力定律得 所以v =则岩石颗粒A 和B 的线速度之比为v A ∶v B =(2)所以T =则岩石颗粒A 和B 的周期之比为T A ∶T B =(3)F 万= =G 重 由题意可得:10=0.38=解得=95 即土星质量是地球质量的95倍.估测(中心天体的质量和密度)类:1.若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L 。
一、天体物理题型与解法归类(2009、5)一、单个绕行天体:问题1:讨论重力加速度g随离地面高度h的变化情况基本题1-1-1:地球半径为R,地球表面的重力加速度为,物体在距地面3R处,由于地球的引力作用而产生的重力加速度g,则()A、1B、1/9C、1/4D、1/16分析与解:因为g= G,g= G,所以g/g=1/16,即D选项正确。
变形题1-1-2:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图1所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A、卫星在轨道3上的速率大于在轨道1上的速率。
B、卫星在轨道3上的角速度小于在轨道1上的角速度。
C、卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度。
D、卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。
分析:因为,所以V=,,即B选项正确,A选项错误。
根据牛顿第二定律可得,即卫星的加速度a只与卫星到地心的距离r有关,所以C选项错误,D选项正确。
易错:认为卫星在轨道1上经过Q点时的速度等于它在轨道2上经过Q点时的速度,而在Q点轨道的曲率半径<r,所以>,即错选C。
说明:卫星的加速度等于该处的重力加速度,不等于卫星的向心加速度,只有当卫星作匀速圆周运动时,三者相等。
问题2:用万有引力定律求中心天体的质量1、通过观察绕行天体运动的周期T(或角速度、线速度)和轨道半径r;2、中心天体表面的重力加速度g和中心天体的半径R。
基本题1-2-1:已知地球绕太阳公转的轨道半径r=1.4910m,公转的周期T=3.1610s,求太阳的质量M。
分析:根据地球绕太阳做圆周运动的向心力来源于万有引力得:G=mr(2π/T)解得: M=4πr/GT=1.9610kg.变形题1-2-2:宇航员在一星球表面上的某高处,沿水平方向抛出一小球。
有关天体运动题型的归纳与研究一、基本问题例题:某人造卫星距地面h,地球半径为R,质量为M,地面重力加速度为g, 引力常量为G。
(1)分别用h,R,M,G表示卫星周期T,线速度v,角速度w(2)分别用h,R,g表示卫星周期T,线速度v,角速度w 解:(1)根据向心力来自万有引力得:GM R2g代入得:二、密度问题例题:宇宙中某星体每隔4.4X 10-4s就向地球发出一次电磁波脉冲。
有人曾经乐观地认为,这是外星人向我们地球人发出的联络信号,而天文学家否定了这种观点,认为该星体上有一个能连续发出电磁波的发射源,由于星体围绕自转轴高速旋转,才使得地球上接收到的电磁波是不连续的。
试估算该星体的最小密度(结果保留两位有效数字)解:接受电磁波脉冲的间隔时间即是该星体自转的最大周期,星体表面物体不脱4 o而M二—R3求得3代入已知数据得:7.3 1017kg/m3三、双星问题例题:现根据对某一双星系统的光学测量确定,该双星系统中每个星体的质量都是M ,两者相距L,它们正围绕两者连线的中点做圆周运动。
万有引力常量为G 求:(1)试计算该双星系统的运动周期T―Mm(R+h) 22v 2m mw (RR+hh)m(*)2(R h)GM(R h)3,4 2(R h)3GM(2)卫星在地球表面上受的万有引力近似等于mg,由mg G竺R2得到离星体时满足: G啤R23GT2w得vGMR h(2)若实验上观测到运动周期为T'且「:T 1: JN(N 1),为了解释两者的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的物质一一暗物质,作为一种简化的模型,我们假定在以这两个星体连线为直径的球体内均匀分布着这种暗物质,而不考虑其他暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
2解:(1)由万有引力提供向心力有:G M r2L(2)设暗物的密度为P, 质量为m,则m由万有引力提供向心力有:GM21^GMm2丄22T234L32L 4 22T'2L36出①得由②得:MM 4mT'—代入上式解得:63(N 1)M / 2 L3四、神州问题例题:随着我国神舟五号”宇宙飞船的发射和回收成功。
高中物理-天体运动知识“万有引力定律”习题归类例析万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析.一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)[例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为设初始平抛小球的初速度为v,则水平位移为x=vt.有○1当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有②在星球表面上物体的重力近似等于万有引力,有mg=G ③联立以上三个方程解得而天体的体积为,由密度公式得天体的密度为。
2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为[例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)()A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C 项正确.由求得地球质量为,所以D项正确.二、人造地球卫星的运动参量与轨道半径的关系问题根据人造卫星的动力学关系可得由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为()A.B.C.D.[解析]由可得卫星的运动周期与轨道半径的立方的平方根成正比,由可得轨道半径,然后再由得线速度。