聚氯乙烯耐热改性研发进展
- 格式:pdf
- 大小:516.78 KB
- 文档页数:5
PVC热稳定剂的研究进展前言聚氯乙烯(PVC)具有优良的耐腐蚀性和很高的力学性能,又因价格低廉、原料丰富、制造工艺成熟,其制品被广泛应用于工农业生产的各个领域。
然而,PVC加工时有一个致命的弱点,就是热稳定性差。
因为PVC结构中存在缺陷[1](头头结构、双键结构的活泼氯原子、聚合物的立构规整性等),而PVC是在高温和高剪切条件下进行加工的,容易脱去分子上的HCl而导致聚合物降解,引起产品变色和制品机械性能等下降,影响其使用及寿命。
虽然PVC 的热稳定性差,但是PVC的用量仍然很大,仅次于高低密度聚乙烯。
因此,提高PVC的热稳定性具有很重要的意义。
热稳定剂是PVC加工不可缺少的主要助剂之一,热稳定剂使用的份数不多,但其作用是巨大的。
在PVC加工中使用热稳定剂可以保证PVC不容易降解,比较稳定。
PVC加工中常用的热稳定剂有碱式铅盐类稳定剂、金属皂类稳定剂、有机锡稳定剂、稀土稳定剂、环氧化合物等。
PVC降解机制复杂, 不同稳定剂的作用机制也不相同,所达到的稳定效果也有所区别。
1. PVC的热降解机理PVC在100~150℃明显分解,紫外光、机械力、氧、臭氧、氯化氢以及一些活性金属盐和金属氧化物[2]等都会大大加速PVC的分解。
PVC的热氧老化较复杂,一些文献报道将PVC 的热降解过程分为两步[3]。
(一)脱氯化氢:PVC聚合物分子链上脱去活泼的氯原子产生氯化氢,同时生成共轭多烯烃;(二)更长链的多烯烃和芳环的形成:随着降解的进一步进行,烯丙基上的氯原子极不稳定易脱去,生成更长链的共轭多烯烃,即所谓的“拉链式”脱氢,同时有少量的C-C键的断裂、环化,产生少量的芳香类化合物。
其中分解脱氯化氢是导致PVC 老化的主要原因。
关于PVC的降解机理比较复杂,没有统一的定论,研究者提出的主要有[4]自由基机理、离子机理和单分子机理。
2. PVC的热稳定机理在加工过程中,PVC的热分解对于其他的性质改变不大,主要是影响了成品的颜色,加入热稳定剂可以抑制产品的初期着色性。
聚氯乙烯树脂耐热和增韧改性分析摘要:聚氯乙烯树脂(PVC)作为全球工业化产品代表树脂构成之一,自身结构上优点是物理力学结构稳定性好,能够广泛应用在建筑材料、几乎垄断了包装材料、以及生活日用品等领域,已经成为实际上合成树脂主力品类,同时聚氯乙烯树脂也存在不足,它本身的热稳定性比较差,在制作聚氯乙烯树脂混合料的过程中必须要与润滑剂、稳定剂、增塑剂、填料、颜料等搭配使用。
鉴于此,文章就简述目前我国对聚氯乙烯树脂的耐热性、增韧改性性能的研究进展情况。
关键词:聚氯乙烯树脂;耐热改性;增韧改性一、氯化聚氯乙烯的主要产品应用氯化聚氯乙烯是由聚氯乙烯(PVC)树脂氯化改性制得du,是一种新型工程塑料。
该产品为白色或淡黄色无味、无臭、无毒的疏松颗粒或粉末。
PVC树脂经过氯化后,分子链排列的不规则性增加,极性增加,使树脂的溶解性增大,化学稳定性增加,从而提高了材料的耐热性及耐酸、碱、盐、氧化剂等的腐蚀的性能。
提高了树脂的热变形温度的机械性能,氯含量由56.7%提高到63-69%,维卡软化温度由72-82℃提高到90-125℃,最高使用温度可达110℃,长期使用温度为95℃。
因此,PVC是一种应用前景广阔的新型工程塑料。
1.管材PVC产品的管材具有材料高刚性硬度、具有很好的耐腐蚀性能,PVC材料自身的热膨胀系数低,同时有很方便的安装优点,氯化聚氯乙烯冷/热水管对接的管道能够具有很高的强度和实现很好施工管道联结质量体系,形成科学安全的整体高性能的管道系统。
通常的PVC管材具有很长的寿命,不低于50年,由此可知,这种材料的管材是低价格高性能产品。
2.发泡材料PVC的主体材料配合一定的匀泡剂和合理匹配发泡剂,觉很轻松得到泡沫塑料。
PVC泡沫材料优势非常明显,发泡材料同时兼顾物理性能强度高、电绝缘性优良以及非常有效的耐高温性,常常被用于电气零件及化工设备等。
二、聚氯乙烯树脂耐热改性的方法1.共混改性在所有高分子改性中最常用、研究最多的方法就是共混改性。
聚氯乙烯热稳定剂研究新进展聚氯乙烯(PVC)是一种广泛应用的合成塑料,用途广泛,因其优异的物性和成本效益而备受青睐。
然而,PVC在高温条件下容易分解,从而导致其物理性能下降,限制了其应用范围。
为了克服这一问题,研究人员一直致力于开发新的聚氯乙烯热稳定剂。
近年来的研究表明,热稳定剂的研究重点主要集中在两个方面:一是开发新的热稳定剂;二是改进传统热稳定剂。
在第一个方面,研究人员探索了许多新的热稳定剂候选物质。
例如,有机锡化合物被广泛研究作为PVC热稳定剂的候选物质。
它们具有良好的热稳定性能和低毒性,在高温条件下不易分解,并且可以有效地抑制PVC 分解产物的形成。
此外,还有一些无铅的热稳定剂被研究人员提出,以解决传统含铅热稳定剂中存在的环境和健康问题。
在第二个方面,改进传统热稳定剂是一个重要的研究方向。
例如,有研究人员发现通过将传统有机锡热稳定剂与金属氧化物相结合,可以提高其热稳定性能。
还有一些研究致力于改进钙锌热稳定剂,通过调整其配比和性质,以提高PVC的热稳定性。
此外,一些辅助稳定剂,如抗氧化剂和光稳定剂等,也被广泛研究,以提高PVC在高温条件下的稳定性。
此外,研究人员还探索了新的热稳定剂应用技术。
如纳米技术在热稳定剂领域的应用,通过将纳米颗粒掺入PVC中,可以显著提高其热稳定性能。
另外,有些研究还通过改变PVC材料的结构和分子链的组成,以提高其热稳定性能。
总的来说,聚氯乙烯热稳定剂的研究一直是一个活跃的领域。
研究人员通过开发新的热稳定剂、改进传统热稳定剂以及应用新的技术,不断提高PVC在高温条件下的热稳定性能,为PVC的应用提供了更广阔的空间。
未来,我们可以期待聚氯乙烯热稳定剂研究的新突破,进一步提高PVC在高温环境下的性能。
共混改性提高PVC耐热性的研究进展发布时间:2022-03-31T08:22:16.213Z 来源:《科学与技术》2021年25期作者:杨小川[导读] 聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。
杨小川广东达华生态科技有限公司广东揭阳522000摘要:聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。
提升聚氯乙烯耐热性能共混改性组分有很多,其中包括以N-取代马来酰亚胺类为代表的高分耐热改性剂,以氯化PVC为主的具备高耐热性的改良PVC,除此之外,还包括无机填料。
由于PVC 复合材料中混入不同类型耐热改性剂所呈现效果存在较大差异,本文将结合相关研究文献对共混改性提高PVC耐热性复合材料研究进行相关文献综述,为材料开发工作提供信息参考。
关键词:共混改性;PVC耐热性;复合材料为顺应社会市场需求,我国不断加大科学技术投资力度,各科研领域均取得了优异成绩。
我国现阶段塑料改良行业发展重心依旧以塑料工程化为主,研究高性能工程塑料,典型热塑性材料为聚氯乙烯,具有开发成本低、经济丰富等特性,在化工和建筑领域应用广泛。
从使用性角度看,PVC存在热稳定性差的缺陷,连续使用温度仅在65℃左右,这就导致产品需要着重关注使用温度和受力情况。
为解决此问题,常使用共混改性方式提升耐热温度。
所谓共混改性是指将玻璃化转变温度较高的树脂与PVC粉料充分结合,这种制作工艺简单、具有较高可操作性。
一、利用共混高分子耐热改性剂改善PVC耐热性利用该方法改变PVC树脂耐热性,需要保证高分子耐热改性剂与PVC之间具有较好的相容性,改性剂需要具备较高的玻璃化转变温度和较低的熔融温度以及熔体粘度,增强材料可塑性。
聚氯乙烯化学改性的研究进展作者:付威来源:《科技创新与应用》2019年第32期摘; 要:文章首先介绍了聚氯乙烯(PVC)化学改性的方法,然后介绍了化学改性的研究进展,并分析了在热稳定性、力学性能、疏水性方面的研究现状,为聚氯乙烯化学改性的研究提供了一些思路。
关键词:PVC;化学改性;热稳定性;力学性能;疏水性中图分类号:TQ325; ; ; ; ;文献标志码:A; ; ; ; ;文章编号:2095-2945(2019)32-0109-03Abstract: This paper first introduces the method of chemical modification of polyvinyl chloride (PVC), and then introduces the research progress of chemical modification, and the research status in terms of thermal stability, mechanical properties and hydrophobicity is analyzed, which provides some ideas for the research of polyvinyl chloride.Keywords: PVC; chemical modification; thermal stability; mechanical properties; hydrophobicity聚氯乙烯(簡称PVC)是一种热塑性树脂。
良好的耐磨损、耐腐蚀、绝缘等性能使其在日用品、工业制品、建筑材料等领域具有广泛的应用[1]。
自19世纪初发现以来,一直是高分子科学的研究课题。
然而,其耐热、耐化学和力学性能差,增塑剂迁移现象以及疏水性等缺点限制了PVC的一些应用。
PVC的内部结构缺陷源于它的直接制造(通过自由基聚合),增强了它的特性,包括它的热不稳定性。
聚氯乙烯耐热改性技术进展摘要: 综述聚氯乙烯耐热改性方法的技术进展,比较了不同方法对其性能的影响,并介绍了几种耐热改性剂。
关键词:聚氯乙烯 耐热改性剂 技术进展 性能The progress in the modif ication of PVC heat resistanceAbstract The progress in the modification of PVC heat resistance isreviewed. Theeffect s of different methods on it s properties are compared. Several heat resistant modi 2fier are int roduced.Key words polyvinyl chloride , heat resistant modifier , progress , property前言】】【【41聚氯乙烯(PVC )是通用塑料的主要品种之一,具有价格便宜、透明性好、难燃、电绝缘性好和耐腐蚀等优点, 可通过添加各种添加剂和运用多种成型方法制得性能各异、用途广泛的软质或硬质制品。
但是,通用PVC 树脂的热稳定性差,加工过程中易受热发生由活性部位(如烯丙基氯、叔氯、叔氢、带双键或过氧化物残基的端基等) 引发的自催化脱氯化氢反应,形成共扼多烯链,并进而发生断链、交联等反应而变色、降解,致使塑料制品质量变差,性能下降,进而影响其加工和使用性能。
因此,为了拓宽PVC 的使用范围,人们致力于对通用PVC 树脂进行耐热改性,进而开发新型耐热PVC 树脂。
目前,PVC 耐热改性的方法主要有添加热稳定剂、共混、交联、共聚以及氯化等,通过这些方法,可以改善聚氯乙烯的耐热性能,拓宽使用范围。
1. 改善PVC 热稳定性的方法1.1 热稳定剂】【2聚合物共混是生产改性材料的有效技术和方法,对现有聚合物进行改性可以开拓更多的新材料。
氯化聚氯乙烯改性材料研究进展摘要:氯化聚氯乙烯(CPVC)是聚氯乙烯树脂的一种,因具有良好的耐腐蚀性、电绝缘性和耐磨性,被广泛应用于化工、造纸、纺织等领域。
但是随着工业生产规模的扩大,氯化聚氯乙烯(CPVC)在应用过程中出现了一些问题,例如抗冲击强度差、耐候性能差、耐酸碱性差等。
为了解决这些问题,国内外学者对CPVC进行了改性研究,取得了很多成果。
本文综述了国内外 CPVC改性材料的研究进展,主要介绍了 CPVC改性塑料的研究现状以及改性材料的种类和改性方法。
随着对 CPVC改性研究的深入, CPVC改性材料在耐酸碱性、耐化学品腐蚀性、耐候性、强度和韧性等方面都得到了一定改善。
关键词:氯乙烯树脂;耐热改性;增韧改性;研究进展引言:氯化聚氯乙烯(PVC)是一种性能优良的高分子材料,它具有低密度、低热膨胀系数、耐化学腐蚀和电绝缘性能好等特点,并且 PVC的耐热性和耐化学性在所有塑料中是最好的。
但 PVC也有明显的缺点,如 PVC只能耐高温,不能耐低温,不能承受弯曲和冲击等机械性能; PVC易被氧气氧化,其使用寿命较短;PVC在受热时会发生分解。
因此,利用其优良性能进行改性以提高其使用寿命成为解决 PVC材料问题的关键。
耐酸碱性在日常生活中,大多数塑料制品会与酸和碱性物质接触,而这类物质对塑料制品的性能会产生较大的影响。
例如:塑料与盐酸接触后会出现变色现象;在与碱性溶液接触后,塑料会发生水解现象,并且使其性能变差。
CPVC耐酸碱性较差的原因是因为氯化聚氯乙烯(CPVC)的分子链中含有大量的- Cl基团,而这些基团对酸和碱都有很强的亲和力,所以容易与酸和碱发生反应。
因此,改善 CPVC耐酸碱性主要是通过引入或合成含- Cl基团的聚合物来提高其耐酸碱性。
目前,常用的含- Cl基团聚合物主要有:羧基类化合物(如羧酸类、羧酸酯类)、苯基类化合物(如苯乙基苯类)、醚基类化合物(如甲醚氯化聚乙烯)、双酚A类化合物(如环氧乙烷聚醚)和杂环类化合物(如N-甲基吡咯烷酮)。