2015-2016年山东省济宁市微山县八年级上学期期中数学试卷和答案
- 格式:doc
- 大小:518.00 KB
- 文档页数:21
2015~2016学年第一学期中考试初二数学试卷试卷说明:本次考试满分100分,考试时间 100分钟。
一、精心选一选(每小题3分,共30分)1.计算33-的结果是( ).A .9-B .27-C .271D .271- 2.若分式221x x -+的值为0,则x 的值为( ). A .2 B .-2 C .12D .-123.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a a C . 22)2(422--=-+a a a a D .a b a b --=--11 4.下列条件中,不能..判定两个直角三角形全等的是( ). A .两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D .一个锐角和斜边对应相等5. 计算32a b(-)的结果是( ). A. 332a b - B. 336a b - C. 338a b- D. 338a b6.如图,AC 与BD 交于O 点,若OA=OD ,用“SAS ”证明△AOB ≌△DOC ,还需条件为 .( ) A. AB=DC B.OB=OCC. ∠A=∠DD. ∠AOB=∠DOC7.下列各式变形中,是因式分解的是( )2015.11A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)8.下列命题中正确的有 ( )个①三个内角对应相等的两个三角形全等; ②三条边对应相等的两个三角形全等; ③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. A .1B .2C .3D .49.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ;⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2.A .2个B .3个C .4个D .5个10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )① ②A .B .C . D二.、耐心填一填(每小题2分,共16分)11.当m_______时,(3- m)0=1.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为 米. 13.当x _________时,分式12x -有意义. 14.若2214a b -= ,12a b -= ,则a b +的值为 .15.若分式)3)(2(2+--a a a 的值为0,则a = .16题图 17题图16.如图,在△ABC 中,∠A=900,BD 平分∠ABC ,AC=8cm ,CD=5cm ,那么D 点到直线BC 的距离是 cm .17.如图,把△ABC 绕C 点顺时针旋转30°,得到△A ’B ’C , A ’B ’交AC 于点D ,若∠A ’DC=80°,则∠A= °.18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-.有下列命题:① 1(3)3⊗-=; ② a b b a ⊗=⊗; ③ 方程1()102x -⊗=的解为12x =;其中正确命题的序号是 .(把所有..正确命题的序号都填上).三、解答题(54分)CB'A A'BDABCD19.把下列各式因式分解(本小题满分10分)(1)3222a a b ab -+ (2) 3a 2﹣12 解: 解:20.已知:如图, A 、B 、C 、D 四点在同一直线上, AB =CD ,AE ∥BF 且AE =BF .求证: EC =FD .(5分) 证明: 21.计算2m n mm n n m ++-- (5分)EAC B DF22.先化简,再求值:2112()3369mm m m m +÷-+-+,其中9m =.(5分)23.解方程:3111x x x -=-+.(5分) 解:初中 年级 班 姓名 学号装订线内请不 要答题24.列方程解决问题(5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25. 已知2310x x -+=求221x x +的值(5分)26.已知: 如图, 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB. 若︒=21α, ∠ABC = 32°, 且AP 交BC 于点P, 试探究线段AB, AC 与PB 之间的数量关系, 并对你的结论加以证明; (6分)ABCP27.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,求证:AE=AC.(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7,求NC 的长.(8分)图1图2ABD MCNEBCAD初二数学试题参考答案及评分标准一、选择题(共10个小题,每小题3分,共30分) 题号 123 4 5 6 7 8 9 10 答案 CA CACBDABC二、填空题(共10个小题,每小题2分,共20分). 11.m ≠3 12. 8-102.5× 13. 2x ≠ 14.21 15. -216. 3 17. 70° 18. (1)三、解答题(共50分)19.(1))(2b a a - (2)3(a+2)(a-2) 20.略21.解:.原式=2m n mm n m n+--- . =2m n mm n +--……..3分. =n mm n --……5分.=1- ……6分22.化简得:33-+m m ,值为0.5 23.. 解:去分母,得.)1)(1()1(3)1(-+=--+x x x x x. 去括号,得13322-=+-+x x x x移项,得 31322--=--+x x x x .....-2x=-4x=2 .......经检验:x=2是原方程的解. .....∴原方程的解为:x=224. 解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ...1分据题意:12001200101.5x x =+ ..... 3分解得: 40x = 4分经检验:40x =是原方程的解. ..... 5分 所以1.560x =答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品、25. 726.关系:AB=AC+PB 证明:略 27.(1)略 (2)5.5辅助线:延长BA,MN 交与E 点,做AB 的平行线交NM的延长线于FEF。
12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A. 1个B. 2个C. 3个D. 4个2.下列图形中,不是轴对称图形的是()A. B. C. D.3.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个B. 2个C. 3个D. 4个4.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A. SASB. SSSC. AASD. ASA5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A. B. C. D. 和6.如果一个多边形的每个内角都相等,且内角和为1800度,那么这个多边形的一个外角是()A. B. C. D.7.下列结论正确的是()A. 有两个锐角相等的两个直角三角形全等B. 一条斜边对应相等的两个直角三角形全等C. 顶角和底边对应相等的两个等腰三角形全等D. 两个等边三角形全等8.一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A. 5或7B. 7或9C. 7D. 99.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A. 1个B. 2个C. 3个D. 4个10.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为()(用含n的代数式表示).A. B. C. D.二、填空题(本大题共5小题,共15.0分)11.一个多边形的内角和是1980°,则它的边数是______ .12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是______ .13.△ABC中,若∠A=∠C=∠B,则∠A= ______ ,∠B= ______ .14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为______ .15.已知点M(x,3)与点N(-2,y)关于x轴对称,则3x+2y=______.三、解答题(本大题共8小题,共55.0分)16.如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.19.已知:如图,A、B、C、D四点在同一直线上,AB=CD,AE∥BF且AE=BF.求证:EC=FD.20.如图坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1______ ;B1______ ;C1______ ;(3)求出△A1B1C1的面积.21.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.22.如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且∠B=∠DEF,BD=CE,求证:ED=EF.23.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.试猜想BD与AC的数量关系,请直接写出结论;你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.答案和解析1.【答案】C【解析】解:共有4种方案:①取4cm,6cm,8cm;由于8-4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10-4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10-4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10-6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.【答案】A【解析】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是正确找出对称轴.3.【答案】D【解析】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.4.【答案】B【解析】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.5.【答案】C【解析】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA 判定,所以应该拿这块去.故选C.此题可以采用排除法进行分析从而确定最后的答案.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.6.【答案】A【解析】解:设这个多边形是n边形,根据题意得:(n-2)•180°=1800,解得n=12;那么这个多边形的一个外角是360÷12=30度,即这个多边形的一个外角是30度.故本题选A.设这个多边形是n边形,它的内角和可以表示成(n-2)•180°,就得到关于n的方程,求出边数n.然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.同时考查了多边形内角与外角的关系.7.【答案】C【解析】解:A、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;B、一条斜边对应相等的两个直角三角形,只有两个元素对应相等,不能判断全等,故选项错误;C、顶角和底边对应相等的两个等腰三角形,确定了顶角及底边,即两个等腰三角形确定了,可判定全等,故选项正确;D、两个等边三角形,三个角对应相等,但边长不一定相等,故选项错误.故选C.熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答案】B【解析】解:根据三角形的三边关系,得第三边大于8-3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选B.首先根据三角形的三边关系求得第三边的取值范围,再根据第三边又是奇数得到答案.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.9.【答案】C【解析】解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.故选C.先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.【答案】C【解析】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n-1)×4+4=2+4n=4n+2.故选:C.由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题.11.【答案】13【解析】解:设这个多边形的边数是n,由题意得,(n-2)×180°=1980°,解得,n=13,故答案为:13.根据多边形的内角和定理计算即可.本题考查的是多边形的内角与外角的计算,掌握n边形的内角和等于(n-2)×180°是解题的关键.12.【答案】19cm【解析】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.【答案】36°;108°【解析】解:∵△ABC中,∠A=∠C=∠B,∴∠A=x,则∠C=x,∠B=3x.∵∠A+∠B+∠C=180,即x+3x+x=180°,解得x=36°,∴∠A=36°,∠B=3×36°=108°.故答案为:36°,108°.设∠A=x,则∠C=x,∠B=3x,再由三角形内角和定理求出x的值即可.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.14.【答案】5或6或7【解析】解:设内角和为720°的多边形的边数是n,则(n-2)•180=720,解得:n=6.∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为5或6或7.故答案为:5或6或7.首先求得内角和为720°的多边形的边数,再根据截去一个角后边数增加1,不变,减少1,即可确定原多边形的边数.本题考查了多边形的内角和定理,解题时注意:一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.15.【答案】-12【解析】解:∵点M(x,3)与点N(-2,y)关于x轴对称,∴x=-2,y=-3,∴3x+2y=3×(-2)+2×(-3)=-6-6=-12.故答案为:-12.根据关于x轴对称的点,横坐标相同,纵坐标互为相反数分别求出x、y的值,然后代入代数式进行计算即可求解.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.【答案】解:如图:【解析】做出CD的垂直平分线和∠AOB的平分线,其交点P或P′即为所求.本题考查了作图--应用与设计作图,熟悉角平分线和线段垂直平分线的作法是解题的关键.17.【答案】解:如图所示:【解析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.18.【答案】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°-30°-130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°-90°=40°,∴∠BAD=20°+40°=60°.【解析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用19.【答案】解:∵AE∥BF,∴∠A=∠FBD,又∵AB=CD,∴AB+BC=CD+BC.即AC=BD,在△AEC和△BFD中,∴△AEC≌△BFD(SAS),∴EC=FD.【解析】根据平行线的性质得到∠A=∠FBD,由AB=CD可得到AC=BD,然后根据三角形全等的判定方法可证出△AEC≌△BFD,再根据全等的性质即可得到结论.本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.20.【答案】(3,2);(4,-3);(1,-1)【解析】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(3,2),B1(4,-3),C1(1,-1).故答案为:(3,2),(4,-3),(1,-1).(3)△A1B1C1的面积为:3×5-×2×3-×1×5-×2×3=6.5.(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用长方形的面积减去三个顶点上三角形的面积即可.本题考查的是作图-轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.21.【答案】解:∵AD是△ABC的角平分线,∠BAC=60°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-30°-50°=100°.【解析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.此题主要考查了角平分线的性质以及高线的性质和三角形内角和定理,根据已知得出∠B的度数是解题关键.22.【答案】证明:∵∠CED是△BDE的外角,∴∠CED=∠B+∠BDE,又∠DEF=∠B,∴∠CEF=∠BDE,在△BDE和△CEF中,,∴△BDE≌△CEF(ASA)∴DE=EF.【解析】先根据∠CED=∠B+∠BDE,且∠DEF=∠B,得到∠CEF=∠BDE,再根据ASA判定△BDE≌△CEF,即可得出DE=EF.本题主要考查了全等三角形的判定与性质,解决问题的关键是掌握两角及其夹边分别对应相等的两个三角形全等.23.【答案】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°-90°=90°,∴BD⊥AC;(2)不发生变化.如图2,令AC、DE交点为O理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°-90°=90°,∴BD⊥AC;(3)BD=AC;夹角为60°或120°.【解析】【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.(1)见答案;(2)见答案;(3)①BD=AC;证明:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中∴△BED≌△AEC,∴BD=AC.②夹角为60°.解:如图3,令AC、BD交点为F,由①知△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)=180°-(∠ACE+∠EDC+∠DCF)=180°-(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°。
2015—2016学年度第一学期期中质量测试八年级数学试题(总分:120分时间:100分钟)一、选择题1、若分式112--xx的值为0,则应满足的条件是()A. x≠1B. x=-1C. x=1D. x=±12、下列计算正确的是()A.a·a2=a2 B.(a2)2=a4 C.3a+2a=5a2 D.(a2b)3=a2·b3 3、下列四个图案中,是轴对称图形的是()4、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)5、下列运算正确的是()A.yxyyxy--=--B.3232=++yxyx C.yxyxyx+=++22D.yxyxxy-=-+1226、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在().A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7、如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误..的是()A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8、如果2592++kxx是一个完全平方式,那么k的值是()A、30B、±30C、15D、±15BC(第7题)FEADB9、若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍二、填空题10、一种细菌半径是0.000 012 1米, 将0.000 012 1用科学记数法表示为 . 11.计算: ()a a a 2262÷-= .12、如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,则AC = .三、解答题13、分解因式:(4分) x 3﹣4x 2+4x14、先化简再求值:(6分))52)(52()1(42-+-+m m m ,其中3-=m15、解方程:(6分) .16、(6分)如图,点B ,E ,F ,C 在一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:∠A =∠D .DECB12题(第16题)F E DCBA图8ABCDE17(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.18、如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D . (1)求证:△ADC ≌△CEB .(5分)(2),5cm AD =cm DE 3=,求BE 的长度.(4分)第17题答案一、B B C A D C C BC二、1.21×10-5 , 3a-1 ,6 三、13、解:原式=x(x-2)214、解:原式=4m 2+8m+4-4m 2+25=8m+29当m=-3时,原式= -24+29=5 15、解:去分母得:x(x+2)-(x 2-4)=8整理 得:2x=4 解得:x=2经检验得x=2是原方程的增根 ∴原分式方程无解16、证明:∵BE =CF∴BF=CE在△ABE和△DCF中∵AB =DC ,∠B =∠C ,BF=CE∴△ABE≌△DCF∴∠A =∠D17、证明:∵BD平分∠ABC ∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD ∴BE=DE 。
2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
山东省济宁市微山县2015-2016学年八年级(上)第二次段考数学试卷一、选择题(每题3分,计30分,)1.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a22.因式分解x2y﹣4y的正确结果是()A.y(x+2)(x﹣2)B.y(x+4)(x﹣4)C.y(x2﹣4)D.y(x﹣2)23.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y24.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.7 D.7或﹣16.下列各式是完全平方式的是()A.a2+ab+b2B.1+4x2C.x2﹣x+D.x2+2x﹣17.下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)8.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+99.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm10.已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy二、填空题(每题3分,计15分)11.若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=,B=.12.若实数a满足a2+a=1,则﹣2a2﹣2a+2015=.13.如果x2+mx+6=(x﹣3)(x﹣n),则m+n的值为.14.观察下列各式,找规律:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,第n个等式是.(n是正整数)15.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.三、解答题(共55分)16.把下列多项式分解因式(1)x3﹣9x(2)4a3﹣12a2+9a(3)6x(a﹣b)+4y(b﹣a)(4)9(a+b)2﹣25(a﹣b)2.17.解方程或不等式(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;(2)(x+1)(x﹣1)+8>(x+5)(x﹣1).18.计算(1)20152﹣2014×2016(2)(15x2y﹣10xy2)÷(﹣5xy)(3)(﹣0.25)11×(﹣4)12(4)1002﹣992+982﹣972+…22﹣1.19.若3x=,3y=,求9x﹣y的值.20.已知a=,b=,则(a+b)2﹣(a﹣b)2的值.21.若|a+2|+a2﹣4ab+4b2=0,求a、b的值.22.微山县鹿鸣小区内有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,物业部门计划将这块空地进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=8,b=7时的绿化面积.2015-2016学年山东省济宁市微山县八年级(上)第二次段考数学试卷参考答案与试题解析一、选择题(每题3分,计30分,)1.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.2.因式分解x2y﹣4y的正确结果是()A.y(x+2)(x﹣2)B.y(x+4)(x﹣4)C.y(x2﹣4)D.y(x﹣2)2【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再根据平方差公式进行二次分解即可求得答案.【解答】解:x2y﹣4y=y(x2﹣4)=y(x2﹣22)=y(x+2)(x﹣2).故选A.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.3.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【考点】幂的乘方与积的乘方.【分析】根据积的乘方的知识求解即可求得答案.【解答】解:(2x3y)2=4x6y2.故选:A.【点评】本题考查了积的乘方,一定要记准法则才能做题.4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.1【考点】因式分解-提公因式法.【分析】首先提取公因式ab,进而分解因式将已知代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.7 D.7或﹣1【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,故选D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列各式是完全平方式的是()A.a2+ab+b2B.1+4x2C.x2﹣x+D.x2+2x﹣1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:根据完全平方公式:(a±b)2=a2±2ab+b2.A,B,D不是完全平方公式,C正确;故选:C.【点评】本题是完全平方公式的应用,熟记公式结构:两数的平方和,再加上或减去它们积的2倍,是解题的关键.7.下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)【考点】去括号与添括号.【分析】分别利用去括号以及添括号法则分析得出即可.【解答】解;A、a+b﹣c=a+(b﹣c),故此选项错误;B、a+b+c=a+(b+c),故此选项错误;C、a﹣b+c﹣d=a﹣(b﹣c+d),此选项正确;D、a﹣b+c﹣d=(a﹣b)+(c﹣d),故此选项错误;故选:C.【点评】此题主要考查了去括号以及添括号法则,正确掌握法则是解题关键.8.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【考点】因式分解-运用公式法.【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.9.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm【考点】一元一次方程的应用.【专题】几何图形问题.【分析】根据正方形的面积公式找出本题中的等量关系,列出方程求解.【解答】解:设这个正方形的边长为x,正方形的边长如果增加2cm,则是x+2,根据题意列出方程得x2+32=(x+2)2解得x=7.则这个正方形的边长为7cm.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy【考点】整式的除法.【分析】由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.【解答】解:由题意得:长方形的宽=(18x3y4+9xy2﹣27x2y2)÷9xy=9xy(2x2y3+y﹣3xy)÷9xy=2x2y3+y﹣3xy.故选:D.【点评】本题考查了整式的除法,从长方形的面积公式到整式除法,关键要从整式的提取公因式进行计算.二、填空题(每题3分,计15分)11.若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=4n,B=7m.【考点】因式分解-运用公式法.【分析】直接利用平方差公式因式分解,进而得出A,B的值.【解答】解:∵(﹣7m+A)(4n+B)=16n2﹣49m2,∴16n2﹣49m2=(4n+7m)(4n﹣7m),∴A=4n,B=7m,故答案为:4n,7m.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式的形式是解题关键.12.若实数a满足a2+a=1,则﹣2a2﹣2a+2015=2013.【考点】代数式求值.【分析】首先化简所给代数式﹣2a2﹣2a+2015,然后把a2+a=1代入算式﹣2a2﹣2a+2015,求出算式的值是多少即可.【解答】解:∵a2+a=1,∴﹣2a2﹣2a+2015=﹣2(a2+a)+2015=﹣2×1+2015=﹣2+2015=2013故答案为:2013.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.13.如果x2+mx+6=(x﹣3)(x﹣n),则m+n的值为﹣3.【考点】多项式乘多项式.【专题】计算题.【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m+n的值.【解答】解:∵x2+mx+6=(x﹣3)(x﹣n)=x2﹣nx﹣3x+3n=x2﹣(n+3)x+3n,∴m=﹣(n+3),3n=6,解得:m=﹣5,n=2,则m+n=﹣5+2=﹣3.故答案为:﹣3【点评】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键.14.观察下列各式,找规律:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,第n个等式是(n+2)2﹣n2=4(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,一个数与比它小2的两个数的平方差等于比这个数小1的数的4倍.【解答】解:∵①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,…,∴第n个等式为(n+2)2﹣n2=4(n+1).故答案为:(n+2)2﹣n2=4(n+1).【点评】本题是对数字变化规律的考查,比较简单,难点在于要注意底数与等式序号的关系.15.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证③(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故可以验证③.故答案为:③.【点评】本题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.三、解答题(共55分)16.把下列多项式分解因式(1)x3﹣9x(2)4a3﹣12a2+9a(3)6x(a﹣b)+4y(b﹣a)(4)9(a+b)2﹣25(a﹣b)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式提取a,再利用完全平方公式分解即可;(3)原式变形后,提取公因式即可得到结果;(4)原式平方差公式分解即可.【解答】解:(1)原式=x(x2﹣9)=x(x+3)(x﹣3);(2)原式=a(4a2﹣12a+9)=a(2a﹣3)2;(3)原式=6x(a﹣b)﹣4y(a﹣b)=2(a﹣b)(3x﹣2y);(4)原式=[3(a+b)+5(a﹣b)][3(a+b)﹣5(a﹣b)]=4(4a﹣b)(﹣a+4b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.17.解方程或不等式(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;(2)(x+1)(x﹣1)+8>(x+5)(x﹣1).【考点】多项式乘多项式;解一元一次方程;解一元一次不等式.【分析】(1)先利用多项式乘以多项式,再解方程,即可解答;(2)先利用多项式乘以多项式,再解不等式,即可解答.【解答】解:(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0,x2﹣3x+2x﹣6﹣x2+7x﹣6=0,6x﹣12=0,6x=12,x=2.(2)(x+1)(x﹣1)+8>(x+5)(x﹣1),x2﹣1+8>x2+4x﹣5,﹣4x>﹣12,x<3.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式的法则.18.计算(1)20152﹣2014×2016(2)(15x2y﹣10xy2)÷(﹣5xy)(3)(﹣0.25)11×(﹣4)12(4)1002﹣992+982﹣972+…22﹣1.【考点】整式的混合运算.【分析】(1)先变形,再根据平方差公式进行计算,最后求出即可;(2)根据多项式除以单项式法则进行计算即可;(3)先根据幂的乘方进行变形,再求出结果即可;(4)先根据平方差公式进行计算,最后求出即可.【解答】解:(1)20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣20152+1=1;(2)(15x2y﹣10xy2)÷(﹣5xy)=﹣3x+2y;(3)(﹣0.25)11×(﹣4)12=[(﹣0.25)×(﹣4)]11×(﹣4)=1×(﹣4)=﹣4;(4)1002﹣992+982﹣972+…22﹣1=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(2+1)×(2﹣1)=100+99+98+97+…+2+1=5050.【点评】此题主要考查了平方差公式,整式的混合运算的应用,正确利用平方差公式进行计算是解题关键.19.若3x=,3y=,求9x﹣y的值.【考点】同底数幂的除法.【分析】根据幂的成方,可得同底数幂的除法,根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:9x=(3x)2=,9y=(3y)2=,9x﹣y=9x÷9y=÷=×=.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.20.已知a=,b=,则(a+b)2﹣(a﹣b)2的值.【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用平方差公式分解化简后,将a与b的值代入计算即可求出值.【解答】解:原式=(a+b+a﹣b)(a+b﹣a+b)=4ab,当a=,b=时,原式=1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.21.若|a+2|+a2﹣4ab+4b2=0,求a、b的值.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;因式分解.【分析】已知等式利用完全平方公式化简后,再利用非负数的性质求出a与b的值即可.【解答】解:已知等式整理得:|a+2|+(a﹣2b)2=0,可得a+2=0,a﹣2b=0,解得:a=﹣2,b=﹣1.【点评】此题考查了因式分解﹣运用公式法,以及非负数的性质,熟练掌握因式分解的方法是解本题的关键.22.微山县鹿鸣小区内有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,物业部门计划将这块空地进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=8,b=7时的绿化面积.【考点】整式的混合运算;代数式求值.【分析】先根据题意列出算式,把算式进行化简,最后代入求出即可.【解答】解:根据题意得:绿化面积为:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣ab﹣b2=5a2+4ab,当a=8,b=7时,原式=5×82+4×8×7═544,知识像烛光,能照亮一个人,也能照亮无数的人。
2015-2016学年山东省济宁市微山县八年级(上)期末数学试卷一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出地四个选项中,只有一项是符合题意地,把所选项前地字母代号填在卷Ⅱ地答题栏内.相信你一定能选对!)1.(3分)下列图形具有稳定性地是()A.三角形B.四边形C.五边形D.六边形2.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°3.(3分)把分式中地x、y都扩大3倍,那么分式地值是()A.扩大3倍B.缩小3倍C.不变D.缩小原来地4.(3分)下列各式正确地是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a5.(3分)如图,点A和点D都在线段BC地垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°6.(3分)下列分式中,是最简分式地是()A.B.C.D.7.(3分)一个多边形地外角和与它地内角和地比为1:3,这个多边形地边数是()A.9 B.8 C.7 D.68.(3分)如果9a2﹣ka+4是完全平方式,那么k地值是()A.﹣12 B.6 C.±12 D.±69.(3分)已知分式,下列分式中与其相等地是()A.B.C. D.10.(3分)在一次数学课上,李老师出示一道题目:明明作法:分别作∠ACD和∠BCD地平分线,交AB于点P,Q.点P,Q就是所求作地点.晓晓作法:分别作AC和BC地垂直平分线,交AB于点P,Q.点P,Q就是所求作地点.你认为明明和晓晓作法正确地是()A.明明B.晓晓C.两人都正确D.两人都错误二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中地横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)一个三角形地三边长分别是3,6,x.那么整数x可能是.(填一种情况即可)12.(3分)齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域地研究.纤毛虫作为原生动物中特化程度最高且最为复杂地一个门,是单细胞真核生物,具有高度地形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为.13.(3分)一个等腰三角形地一个角为80°,则它地顶角地度数是.14.(3分)若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点地坐标是.15.(3分)如果地解为正数,那么m地取值范围是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(6分)计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.17.(8分)(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢地a值,代入求值.18.(8分)如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE地度数;(2)如果AD=6,BE=5.求△ABC地面积.19.(7分)作图与证明:(1)读下列语句,作出符合题意地图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB地同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.20.(8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好地前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量地笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量地笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x地实际意义是;团支部书记所列方程中y 地实际意义是.(2)你认为刘老师能买到相同数量地笔记本和钢笔吗?请说明理由.21.(8分)先阅读下面地内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n地值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面地问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016地值;(2)已知a,b,c为△ABC地三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC地形状,并证明.22.(10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB地中点,点E 是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD地延长线于点M(如图2).那么图中是否存在与AM相等地线段?若存在,请写出来并证明;若不存在,请说明理由.2015-2016学年山东省济宁市微山县八年级(上)期末数学试卷参考答案与试题解析一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出地四个选项中,只有一项是符合题意地,把所选项前地字母代号填在卷Ⅱ地答题栏内.相信你一定能选对!)1.(3分)下列图形具有稳定性地是()A.三角形B.四边形C.五边形D.六边形【解答】解:具有稳定性地图形是三角形.故选A.2.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∴∠C=180°﹣∠A﹣∠B=70°,故选:D.3.(3分)把分式中地x、y都扩大3倍,那么分式地值是()A.扩大3倍B.缩小3倍C.不变D.缩小原来地【解答】解:分式中地x、y都扩大3倍,那么分式地值不变.故选:C.4.(3分)下列各式正确地是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a【解答】解:A、同底数幂地乘法底数不变指数相加,故A错误;B、积地乘方等于乘方地积,故B错误;C、同底数幂地除法底数不变指数相减,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.(3分)如图,点A和点D都在线段BC地垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°【解答】解:∵点A和点D都在线段BC地垂直平分线上,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠2=50°,∴∠ABC=∠ACB=∠1+∠DBC=70°,∴∠BAC=40°,∠BDC=80°,∴∠BAC比∠BDC小40°,故选B.6.(3分)下列分式中,是最简分式地是()A.B.C.D.【解答】解:A、=;B、=;C、=;D、地分子、分母都不能再分解,且不能约分,是最简分式;故选D.7.(3分)一个多边形地外角和与它地内角和地比为1:3,这个多边形地边数是()A.9 B.8 C.7 D.6【解答】解:内角和是3×360=1080°.设多边形地边数是n,根据题意得到:(n﹣2)•180=1080.解得n=8.故选:B.8.(3分)如果9a2﹣ka+4是完全平方式,那么k地值是()A.﹣12 B.6 C.±12 D.±6【解答】解:∵9a2﹣ka+4=(3a)2±12a+22=(3a±2)2,∴k=±12.故选C.9.(3分)已知分式,下列分式中与其相等地是()A.B.C. D.【解答】解:=﹣=,故A正确.故选:A.10.(3分)在一次数学课上,李老师出示一道题目:明明作法:分别作∠ACD和∠BCD地平分线,交AB于点P,Q.点P,Q就是所求作地点.晓晓作法:分别作AC和BC地垂直平分线,交AB于点P,Q.点P,Q就是所求作地点.你认为明明和晓晓作法正确地是()A.明明B.晓晓C.两人都正确D.两人都错误【解答】解:∵AC=BC,AD=BD,∴∠B=∠A=30°,CD⊥AB,∴∠ACD=∠BCD=60°,明明作法:如图1,∵CP平分∠ACD,CQ平分∠BCD,∴∠ACP=∠BCQ=30°,∴∠A=∠ACP,∠B=∠BCQ,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ;∴明明作法正确;晓晓作法:如图2,∵分别作AC和BC地垂直平分线,交AB于点P,Q,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ,∴晓晓作法正确,故选C.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中地横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)一个三角形地三边长分别是3,6,x.那么整数x可能是5.(填一种情况即可)【解答】解:根据三角形地三边关系可得:6﹣3<x<6+3,即3<x<9,∵x为整数,∴x=5.故答案为:5.12.(3分)齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域地研究.纤毛虫作为原生动物中特化程度最高且最为复杂地一个门,是单细胞真核生物,具有高度地形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为2×10﹣5.【解答】解:0.00002=2×10﹣5,故答案为:2×10﹣5.13.(3分)一个等腰三角形地一个角为80°,则它地顶角地度数是80°或20°.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.14.(3分)若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点地坐标是(﹣2,﹣15).【解答】解:∵(x+5)(x﹣3)=x2+2x﹣15,∴b=2,c=﹣15,∴点P地坐标为(2,﹣15),∴点P(2,﹣15)关于y轴对称点地坐标是(﹣2,﹣15).故答案为:(﹣2,﹣15).15.(3分)如果地解为正数,那么m地取值范围是m<1且m≠﹣3.【解答】解:去分母得,1+x﹣2=﹣m﹣x,∴x=,∵方程地解是正数∴1﹣m>0即m<1,又因为x﹣2≠0,∴≠2,∴m≠﹣3,则m地取值范围是m<1且m≠﹣3,故答案为m<1且m≠﹣3.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(6分)计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.【解答】解:(1)原式==1;(2)原式==;(3)原式=1﹣=.17.(8分)(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个【解答】解:(1)原式=3(x2﹣2xy+y2)﹣(2x2﹣4xy+xy﹣2y2)=3x2﹣6xy+3y2﹣2x2+4xy﹣xy+2y2=x2﹣3xy+5y2;(2)原式=•+=a﹣(﹣a)=2a,当a=2时,原式=2×2=4.18.(8分)如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE地度数;(2)如果AD=6,BE=5.求△ABC地面积.【解答】解:(1)∵AD,CE是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°﹣∠AFD=90°﹣80°=10°.∵AF平分∠BAC,∴∠BAF=∠BAC=×80°=40°.∴∠BAD=∠BAF﹣∠DAF=40°﹣10°=30°.∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BCE=∠BAD=30°.(2)在Rt△BCE中,∵∠BCE=30°,∴BC=2BE=2×5=10.∴S=BC•AD=×10×6=30.△ABC19.(7分)作图与证明:(1)读下列语句,作出符合题意地图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.【解答】(1)解:如图,△ABD为所作;(2)证明:连接BC,如图,由作图可得AB=AC=BC=CD,∴点B在以AD为直径地圆上,∴∠ABD=90°,∴△ABD是直角三角形.20.(8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好地前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量地笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量地笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(2)你认为刘老师能买到相同数量地笔记本和钢笔吗?请说明理由.【解答】解:(1)班长所列方程中x地实际意义是:钢笔地单价;团支部书记所列方程中y地实际意义是:所买笔记本地本数;(2)假设刘老师能买到相同数量地笔记本和钢笔.设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得.解这个方程,得z=8,经检验z=8是所列方程地解.∴,而笔记本地本数必须为整数,∴z=8不符合实际题意.∴刘老师不能买到相同数量地笔记本和钢笔.21.(8分)先阅读下面地内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n地值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面地问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016地值;(2)已知a,b,c为△ABC地三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC地形状,并证明.【解答】解:(1)∵x2+y2﹣8x+10y+41=0,∴x2﹣8x+16+y2+10y+25=0.∴(x﹣4)2+(y+5)2=0.∴x﹣4=0且y+5=0.∴x=4,y=﹣5.∴2a2+2b2+2c2=2ab+2bc+2ca.∴a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ca+a2=0.∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0.∴a﹣b=0且b﹣c=0且c﹣a=0.∴a=b=c.∴△ABC是等边三角形.22.(10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB地中点,点E 是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD地延长线于点M(如图2).那么图中是否存在与AM相等地线段?若存在,请写出来并证明;若不存在,请说明理由.【解答】解:(1)∵点D是AB地中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,,∴△AEC≌△CGB(ASA).证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.∵AC=BC,∠ACM=∠CBE=45°,在△CAM和△BCE中,,∴△CAM≌△BCE(AAS).∴AM=CE.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2015-2016学年山东省济宁市微山县八年级(上)期中数学试卷一、精心选一选(本大题共10个小题,共30分,在每题所给出的四个选项中,只有一项是符合题意的额,把所选项前的字母代号填在卷Ⅱ的答题栏内,相信你一定能选对!)1.(3分)如图所示,图中三角形的个数共有()A.1个 B.2个 C.3个 D.4个2.(3分)已知△ABC≌△DEF,那么EF的对应边是()A.AB B.BC C.CA D.DE3.(3分)下面四省电视台标示图案中,属于轴对称图形的是()A.B.C.D.4.(3分)将一副三角板按图所示的摆放,那么∠1的度数等于()A.75°B.65°C.55°D.45°5.(3分)如果点P(a,2015)与点Q(2016,b)关于x轴对称,那么a+b的值等于()A.﹣4031 B.﹣1 C.1 D.40316.(3分)已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,那么c的值可能是下面四个数中的()A.2 B.6 C.10 D.187.(3分)如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是()A.B.C.D.28.(3分)将一个多边形按图所示减掉一个角,所得多边形的内角和为1800°,那么原多边形的边数是()A.10 B.11 C.12 D.139.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十边形至少再钉上()A.9根 B.8根 C.7根 D.6根二、细心填一填(本大题共有5小题,每小题3分,共15分,请把结果直接填在题中的横线上,只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是.12.(3分)一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是.13.(3分)如图所示,BD是四边形ABCD的对角线,AD∥CB,请添加一个条件,使△ABD≌△CDB,这个添加的条件可以是.(只需填一个,不添加辅助线)14.(3分)如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB 的最小值是.15.(3分)已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是.三、认真答一答(本大题共7题,满分55分,只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程。
)16.(6分)已知:如图,点C是线段AE的中点,AB=CD,BC=DE.求证:△ABC≌△CDE.17.(8分)将长方形ABCD按如图所示沿EF所在直线折叠,点C落在AD上的点C′处,点D落在点D′处.(1)求证:△EFC′是等腰三角形.(2)如果∠1=65°,求∠2的度数.18.(8分)已知:如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,AE=BE.(1)猜想:∠B的度数,并证明你的猜想.(2)如果AC=3cm,CD=2cm,求△ABD的面积.19.(7分)△ABC在平面直角坐标系中的位置如图所示,点A(﹣2,2),点B (﹣3,﹣1),点C(﹣1,1).(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标.(2)求出△A1B1C1的面积.20.(8分)证明:有两条边和其中一边上的高线分别相等的两个三角形全等.21.(8分)如图1,在4×4正方形网格中,有5个黑色的小正方形,现要求:移动其中的一个(只能移动一个)小正方形,使5个黑色的小正方形组成一个轴对称图形.(范例:如图1﹣2所示)请你在图3中画出四个与范例不同且符合要求的图形.22.(10分)八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.2015-2016学年山东省济宁市微山县八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共10个小题,共30分,在每题所给出的四个选项中,只有一项是符合题意的额,把所选项前的字母代号填在卷Ⅱ的答题栏内,相信你一定能选对!)1.(3分)如图所示,图中三角形的个数共有()A.1个 B.2个 C.3个 D.4个【解答】解:BC上有3条线段,所以有三个三角形.故选C.2.(3分)已知△ABC≌△DEF,那么EF的对应边是()A.AB B.BC C.CA D.DE【解答】解:∵△ABC≌△DEF,∴EF=BC,故选:B.3.(3分)下面四省电视台标示图案中,属于轴对称图形的是()A.B.C.D.【解答】解:A,B,C,图形沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,D、是轴对称图形,故选:D.4.(3分)将一副三角板按图所示的摆放,那么∠1的度数等于()A.75°B.65°C.55°D.45°【解答】解:如图,∵∠2=∠3=∠4=45°,∠5=30°,∴∠1=∠2+∠5=75°,故选:A.5.(3分)如果点P(a,2015)与点Q(2016,b)关于x轴对称,那么a+b的值等于()A.﹣4031 B.﹣1 C.1 D.4031【解答】解:∵点P(a,2015)与点Q(2016,b)关于x轴对称,∴a=2016,b=﹣2015,∴a+b=2016﹣2015=1,故选:C.6.(3分)已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,那么c的值可能是下面四个数中的()A.2 B.6 C.10 D.18【解答】解:,②﹣①得:a=6,把a=6代入①得:b=4,∴6﹣4<c<6+4,即2<c<10,则c的值可能是6.故选:B.7.(3分)如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是()A.B.C.D.2【解答】解:∵AC=5,DE=2,∴△ADC的面积为=5,∵AD是△ABC的中线,∴△ABD的面积为5,∴点D到AB的距离是.故选:A.8.(3分)将一个多边形按图所示减掉一个角,所得多边形的内角和为1800°,那么原多边形的边数是()A.10 B.11 C.12 D.13【解答】解:设多边形截去一个角的边数为n,则(n﹣2)•180°=1800°,解得n=12,∵截去一个角后边上增加1,∴原来多边形的边数是11,故选:B.9.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选:C.10.(3分)我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十边形至少再钉上()A.9根 B.8根 C.7根 D.6根【解答】解:过n边形的一个顶点可以作(n﹣3)条对角线,把多边形分成(n ﹣2)个三角形,所以,要使一个十边形木架不变形,至少需要10﹣3=7根木条固定.故选:C.二、细心填一填(本大题共有5小题,每小题3分,共15分,请把结果直接填在题中的横线上,只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是高线.【解答】解:三角形的角平分线和中线都在三角形内部,而锐角三角形的三条高在三角形内部,直角三角形有两条高与直角边重合,另一条高在三角形内部,钝角三角形有两条高在三角形外部,一条高在三角形内部.故答案为:高线.12.(3分)一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是16或17.【解答】解:①当等腰三角形的腰为5,底为6时,周长为5+5+6=16.②当等腰三角形的腰为6,底为5时,周长为5+6+6=17.故这个等腰三角形的周长是16或17.故答案为:16或17.13.(3分)如图所示,BD是四边形ABCD的对角线,AD∥CB,请添加一个条件,使△ABD≌△CDB,这个添加的条件可以是AD=CB.(只需填一个,不添加辅助线)【解答】解:可再添加一个条件:AD=BC,∵AD∥CB,∴∠ADB=∠CBD,在△ABD与△CDB中,,∴△ABD≌△CDB(SAS),故答案为:AD=CB(答案不唯一).14.(3分)如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB的最小值是8cm.【解答】解:∵线段AB与线段CD关于直线L对称,∴点B与点D关于直线L对称,连接AD,交于直线L于点P,则此时PA+PB最小,且PB=PD,∴PA+PB=PA+PD=AD=8cm.故答案为:8cm.15.(3分)已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是BE=CE+2AF.【解答】解:∵△ACB和△DAE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ADB=∠AEC,∵点A,D,E在同一直线上,∴∠ADB=180﹣45=135°,∴∠AEC=135°,∴∠BEC=∠AEC﹣∠AED=135﹣45=90°;∵∠DAE=90°,AD=AE,AF⊥DE,∴AF=DF=EF,∴DE=DF+EF=2AF,∴BE=BD+DE=CE+2AF.故答案为:BE=CE+2AF.三、认真答一答(本大题共7题,满分55分,只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程。