单相可控整流电路
- 格式:ppt
- 大小:1.08 MB
- 文档页数:26
单相半波可控整流电路是一种常见的电力控制电路,它在工业领域和家用电器中都有着广泛的应用。
本文将从工作原理、电路结构和应用范围等方面对单相半波可控整流电路进行详细介绍。
一、工作原理1.1 整流电路的基本原理在交流电路中,为了将交流电转换为直流电以供电子设备使用,需要采用整流电路。
整流电路的基本原理是利用二极管或可控硅等器件对交流电进行单向导通,将其转换为直流电。
而可控整流电路是在传统整流电路的基础上引入了可控器件,如可控硅,从而实现对电流的精确控制。
1.2 半波可控整流电路的工作原理半波可控整流电路是一种简单的可控整流电路,它采用单相交流电源,并通过可控硅来控制电流的导通。
在正半周,可控硅导通,电流正常通过;而在负半周,可控硅不导通,电流被截断。
通过对可控硅的触发角控制,可以实现对输出电流的精确调节。
1.3 工作原理总结通过上述介绍可以看出,单相半波可控整流电路利用可控硅对交流电进行单向导通,实现了对电流的精确控制。
其工作原理简单清晰,便于实际应用,并且具有高效稳定的特点。
二、电路结构2.1 单相半波可控整流电路的基本结构单相半波可控整流电路的基本结构包括交流电源、变压器、可控硅和负载电阻等组成。
其中,交流电源通过变压器降压后接入可控硅,可控硅的触发装置接受控制信号,控制可控硅的导通角,从而实现对输出电流的调节。
负载电阻则接在可控硅的输出端,用于消耗电能并提供电源。
2.2 功能模块的详细介绍交流电源:作为单相半波可控整流电路的输入电源,一般为家用交流电,其电压和频率根据实际需求进行选择。
变压器:用于降低交流电源的电压,保证可控硅和负载电阻正常工作。
可控硅:作为电路的核心器件,可控硅的导通和截断状态由外部控制信号决定,从而实现对电流的精确控制。
负载电阻:接在可控硅的输出端,用于消耗电能并提供直流电源。
2.3 电路结构总结单相半波可控整流电路的基本结构清晰明了,各功能模块之间相互协调,实现了从交流电到可控直流电的转换和精确控制。
单相相控整流电路的应用单相相控整流电路的应用随着现代技术的不断发展,单相相控整流电路已经成为了常见的电子电路之一。
这种电路主要是通过控制半导体开关元件的导通时间来实现对电源电压的调节。
相较于传统的整流电路,相控整流电路不仅具有更加准确和稳定的电源输出特性,而且也可以应用于许多不同领域的技术设备中。
下面,我们将会详细介绍单相相控整流电路的应用以及其在不同设备中的作用。
一、单相相控整流电路的基本工作原理在介绍单相相控整流电路的应用之前,让我们先来了解一下这种电路的基本工作原理。
单相相控整流电路主要由两个部分组成:整流桥和相控电路。
整流桥是由四个可控的半导体元件组成,能够实现交流电到直流电的转换。
而控制电路则通过检测电源电压,控制半导体元件的导通时间,从而实现对整流电路输出电压的调节。
二、单相相控整流电路的应用1、电力电子调节器单相相控整流电路可以应用于电力电子调节器中。
这种调节器由交流电源、单相半波整流电路、交流过滤器、可调变压器以及直流负载组成。
电力电子调节器可以对交流电进行整流和平滑,实现调节输出电压的功能。
这种调节器已经广泛应用于电力系统调节中,可以实现电流、电压和功率的控制。
2、光伏逆变器单相相控整流电路还可以应用于光伏逆变器中。
光伏逆变器能够将太阳能板产生的直流电转换成为交流电,并将其送回电网。
光伏逆变器由整流模块、过滤器、逆变模块以及控制电路组成。
其中,整流模块使用单相相控整流电路,能够将太阳能板收集到的交流电转换为直流电,并保证电路的输出电压稳定。
3、交流调光器单相相控整流电路还可以应用于交流调光器中。
在传统的交流调光器中,常使用三角型调制电路或方波调制电路对电源电压进行调节。
但是这种调制方式会引起电容滤波器的谐波产生,从而影响电灯的寿命。
单相相控整流电路则通过减小谐波的产生,能够实现更加平滑的调光效果。
4、电动机调速器单相相控整流电路还可以应用于电动机调速器中。
电动机调速器是一种常见的电气控制设备,能够通过对电机输入电压的控制来实现对电机转速的调节。
实验二 单相全波可控整流电路一.实验目的1.了解可控硅整流电路的组成、特性和计算方法。
2.了解不同负载类型的特性。
二.实验原理1.可控硅(又名晶闸管)不同于整流二极管,可控硅的导通是可控的。
可控整流电路的 作用是把交流电变换为电压值可以调节的直流电。
图2-1所示为单相半波可控整流实验电路。
可控硅的特点是以弱控强,它只需功率很小的信号(几十到几百mA 的电流,2~3V 的电压)就可控制大电流、大电压的通断。
因而它是一个电力半导体器件,被应用于强电系统。
(a )主回路(b )控制回路图2-1 单相全波可控整流电路2. 如图2-1,设变压器次级电压为U=Usin ωt 则负载电压与电流的平均值以及有效值:在 控制角为α时,负载上直流电压的平均值U dA V =⎰παωωπ)(sin 1t td U =)cos 1.(απ+U直流电流平均值I dA V =d d R U =dR Uπ )cos 1(α+ 直流电压有效值:U dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππU 直流电流有效值:I dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππdR U三.实验器材名称 数量 型号 1.变压器45V/90V 3N 1 MC0101 2.保险丝 1 MC0401 3.可控硅 1 MC0309D 4.负载板 各1 MC0603 MC0604 5.2脉冲控制单元 1 MC0501 6.稳压电源(±15V ) 1 MC0201 7.电压/电流表 2 MC0701 8.输入单元 1 MC0202 10.隔离器 1 11.示波器 1 12.导线和短接桥 若干四.带电阻性负载的可控整流实验步骤1. 根据图2-1连接线路,注意:主回路和控制回路交流供电电源必须同步。
将各实验模块连接好,采用电阻负载,取U 1=U 2=45V 档的交流电为输入电压,负载R=50Ω(采用2只100Ω电阻并联)。
2. 用电压电流表实测输入电压U 2有效值= ______________V 。
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。