电力电子技术—单相半波可控整流电路
- 格式:doc
- 大小:2.79 MB
- 文档页数:5
试验一、单相半波可控整流电路试验王季诚(1496)一、试验目(1)掌握单结晶体管触发电路调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时工作情况。
(3)了解续流二极管作用。
二、试验所需挂件及附件5 D42 三相可调电阻6 双踪示波器自备7 万用表自备三、试验线路及原理单结晶体管触发电路工作原理及线路图已在1-3节中作过介绍。
将DJK03-1挂件上单结晶体管触发电路输出端“G”和“K”接到DJK02挂件面板上反桥中任意一个晶闸管门极和阴极, 并将对应触发脉冲钮子开关关闭(预防误触发), 图中R负载用D42三相可调电阻, 将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上, 电感L d 在DJK02面板上, 有100mH、200mH、700mH三档可供选择, 本试验中选择700mH。
直流电压表及直流电流表从DJK02挂件上得到。
图3-6单相半波可控整流电路四、试验内容(1)单结晶体管触发电路调试。
(2)单结晶体管触发电路各点电压波形观察并统计。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特征测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用观察。
五、预习要求(1)阅读电力电子技术教材中相关单结晶体管内容, 搞清单结晶体管触发电路工作原理。
(2)复习单相半波可控整流电路相关内容, 掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时工作波形。
(3)掌握单相半波可控整流电路接不一样负载时U d、I d计算方法。
六、试验方法(1)单结晶体管触发电路调试将DJK01电源控制屏电源选择开关打到“直流调速”侧, 使输出线电压为200V, 用两根导线将200V交流电压接到DJK03-1“外接220V”端, 按下“开启”按钮, 打开DJK03-1电源开关, 用双踪示波器观察单结晶体管触发电路中整流输出梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第2章 整流电路1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A) 此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为222U ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。
带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。
续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。
2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
3.实际上很少应用此种电路。
4.分析该电路的主要目的建立起整流电路的基本概念。
单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。
向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。
(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。
(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。
(4)了解三种不同负载电路的工作原理及波形。
二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。
其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。
如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。
设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。
α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。
电力电子技术第五版课后习题及答案第二章电力电子器件2-1 与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。
2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。
低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。
2-2. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:uAK>0且uGK>0。
2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
2-4 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为Im π4π4π25π4a)b)c)图1-43图2-27 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m =π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t I m =22m I π2143+≈0.6741I m c) I d3=π21⎰20)(πωt d I m =41 I m I 3 =⎰202)(21πωπt d I m =21 I m 2-5 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I ≈329.35,I d1≈0.2717 I m1≈89.482 / 16 b) I m2≈6741.0I ≈232.90,I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314,I d3=41I m3=78.5 2-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能?答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益a1和a2,由普通晶阐管的分析可得,a1+a2=1是器件临界导通的条件。
重庆三峡学院实验报告课程名称电力电子技术实验名称单相半波可控整流电路实验实验类型验证学时 2系别电信学院专业电气工程及自动化年级班别 2015级2班开出学期 2016-2017下期学生姓名袁志军学号 4228 实验教师谢辉成绩2017 年 4 月 30 日发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动图3-6 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。
将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U d和电源电压U2,记录于下表中。
五、数据记录及处理实验台实测数据:α36°60°90°126°154°U2/V 213 213 213 213 213U d/V(记录值)75 56 37 9 2U d/U2U d/V(计算值)(1)α =30°Ud =75V,U2=220V,Ud/U2=,=(1+cosα)/2=;|Ud-|/*100%=%;α =60°。
U d=56V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =90°,U d=37V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =120°,U d=9V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%;α =150°;U d=2V,U2=220V,U d/U2=;=(1+cosα)/2=;|U d -|/*100%=%。
电力电子课程设计单相半波可控整流目录1. .......................................................................................................................... 绪论 (2)2. 单相半控桥式整流电路电路设计 (2)2.1电路原理图 (2)2.2单相桥式半控整流电路的计算公式 (3)2.3带阻感负载时的工作情况 (3)3. MATLUB仿真 (4)3.1 MATLUB仿真图 (4)3.2 元器件参数设置 (4)3.2.1设置晶闸管参数 (4)3.2.2设置交流电源参数 (5)3.2.3设置负载参数 (5)3.2.4设置脉冲参数 (6)3.3 仿真结果展示 (7)4. 结论 (8)参考文献 (9)1. 绪论电力电子技术是以电力、电能为研究对象的电子技术,又称电力电子学(Power Electronics)。
它主要研究各种电力电子半导体器件,以及由这些电力电子器件所构成的各式各样的电路或设置,以完成对电能的变换和控制。
电力电子学是横跨“电子”“电力”“控制”三个领域的一个新兴工程技术学科。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能的变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多的相似之处。
单相桥式整流电路是一种相对重要的整流电路,把交流电能转换成直流电能的一种桥式整流电路。
它可以应用到很多的地方,在许多的元器件中都有用到,范围广泛。
本课程设计内容是设计一个单相桥式半控整流电路为PL负载提供直流电源。
本文需要研究的是设计一个主电路、控制电路组成的总电路,以及要进行MATLAB仿真实验。
其中主电路是要设计一个单相半控桥式整流电路,控制电路是要同步信号为锯齿波的触发电路。
2. 单相半控桥式整流电路电路设计单相半控桥式整流电路总体设计框图如图所示2.1 电路原理图实验电路如图所示。
单相半波可控整流电路的实验流程及设计要点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!单相半波可控整流电路的实验流程及设计要点1. 实验介绍。
电力电子技术—单相半波可
控整流电路
-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
整流电路
1、单相半波可控整流电路
电阻负载:
注:电阻负载的特点是电压d u 与电流d i 成正比,两者波形相同。
g u :触发脉冲;α:触发角;θ:导通角
1、直流输出电压平均值: ()()2
145.0122sin 221222ααπωωππαCOS U COS U t td U U d +=+==⎰ 2、相控方式:通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式
阻感负载:
1、流过电感的电流变化时,在其两端产生感应电动势dt di L ,它的极性反过来阻止电流减小。
L 的存在使d i 不能突变,d i 从0开始增加。
2、2u 由正变负的过零点处,d i 已经处于减小的过程中,但尚未降到零,因此VT 仍处于通态。
3、2t ω时刻,d i 降至零,VT 关断并立即承受反压。
4、由于电感的存在延迟了VT 的关断时刻,使d u 波形出现负的部分,与带电阻负载时相比其平均值d U 下降。
5、
()22L R Z ω+=,R L
ωϕarctan =
6、若ϕ为定值,ɑ角大,θ越小。
若ɑ为定值,ϕ越大,θ越大,且平均值
U
d 越接近零。
阻感负载(带续流二极管):
i连续,且其波形接近一条水平线。
1、若L足够大,
d
2、流过晶闸管的电流平均值IdT 和有效值IT 分别为:
续流二极管的电流平均值IdDR 和有效值IDR 分别为:
3、其移相范围为180°,其承受的最大正反向电压均为2u的峰值即
2U。
续流
2
二极管承受的电压为-ud ,其最大反向电压为
2U,亦为u2 的峰值。
2。