单相半波可控整流电路仿真实验指导书样本
- 格式:doc
- 大小:570.00 KB
- 文档页数:11
实验二单相半波可控整流电路实验一、实验目的(1)观察单结晶体管触发电路各点的波形,掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作作全面分析。
(3)了解续流二极管的作用。
二、实验所需挂件及附件三、实验线路及原理将挂件上的单结晶体管触发电路的输出端“G”和“K”接到的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用三相可调电阻,将两个900Ω接成并联形式。
电感L d本实验中选用700mH。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系?(2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?七、实验方法(1)单结晶体管触发电路的调试使输出线电压为200V,用两根导线将200V交流电压接到“外接220V”端,按下“启动”按钮,打开触发电路板上的电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?图3-6单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。
单相半波可控整流电路仿真1.纯电阻负载仿真模型:电路参数:触发角:0°输出电压波形:谐波分析触发角:30°输出电压波形:谐波分析触发角:60°输出电压波形:谐波分析2.阻感负载仿真模型:触发角:0°(1)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(2)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(3)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析触发角:60°(4)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(5)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(6)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析3.带续流二极管的阻感负载仿真模型:触发角:0°:(7)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(8)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(9)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析触发角:60°:(10)L=1mH R=5Ω输出电压波形:输出电流波形:谐波分析(11)L=100mH R=5Ω输出电压波形:输出电流波形:谐波分析(12)L=100mH R=50Ω输出电压波形:输出电流波形:谐波分析分析:随着触发角的增大,晶闸管在一个周期内的导通时间变短,输出电压为正值的时间相应变短,因此输出电压平均值减小(三种模型都是这样)。
纯电阻负载模型中,当触发角为0°,输出电压波形为规则的正弦半波,所以高次谐波中几乎没有奇次谐波,只含有少量的偶次谐波,随着触发角增大的,波形畸变程度越大,高次谐波含量增加,因此波形畸变率增大,而因为晶闸管导通角变小,输出电流脉动程度相应减小。
阻感负载模型中,随电感增大,输出电压中高次谐波含量降低,波形畸变率从而减小,同时由于续流能力更强,输出电压为负值的时间增大,因此输出电压平均值减小,因其阻碍电流变化的能力变强,电流脉动程度减小;电阻越大,在续流过程中电流衰减越快,输出电压波形畸变程度越大,因此波形畸变率增大,输出电压平均值增大,而电阻越大,输出电流幅值越小,脉动程度相应减小在有续流二极管的阻感负载模型中,由于电感和电阻大小不再影响输出电压波形,故输出电压与电感和电阻大小无关。
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
一、实验目的1. 理解单相半波可控整流电路的工作原理。
2. 掌握单结晶体管触发电路的调试方法。
3. 研究单相半波可控整流电路在不同负载条件下的工作特性。
4. 计算整流电压和整流电流的平均值及电流的有效值。
二、实验原理单相半波可控整流电路主要由变压器、晶闸管、负载电阻和触发电路组成。
晶闸管在触发电路的控制下导通,实现交流电到直流电的转换。
通过调节触发电路,可以改变晶闸管导通的时刻,从而改变输出电压的平均值。
三、实验仪器与设备1. 单相半波可控整流电路实验板2. 直流电压表3. 直流电流表4. 交流电压表5. 单结晶体管触发电路6. 电源7. 负载电阻四、实验步骤1. 搭建实验电路:根据实验板上的接线图,连接变压器、晶闸管、负载电阻和触发电路。
2. 调试触发电路:调整触发电路的参数,确保晶闸管在适当的时刻导通。
3. 观察波形:使用示波器观察晶闸管各点电压波形,记录波形特征。
4. 测试不同负载:更换不同阻值的负载电阻,观察输出电压和电流的变化。
5. 计算平均值和有效值:根据实验数据,计算整流电压和整流电流的平均值及电流的有效值。
五、实验结果与分析1. 电阻性负载:当负载为电阻时,输出电压和电流的平均值与晶闸管导通角度成正比。
随着控制角增大,输出电压降低,输出电流增大。
2. 电感性负载:当负载为电感性时,输出电压和电流的平均值与晶闸管导通角度成反比。
随着控制角增大,输出电压升高,输出电流降低。
3. 续流二极管:在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
六、实验结论1. 单相半波可控整流电路可以实现交流电到直流电的转换,输出电压和电流的平均值与晶闸管导通角度有关。
2. 在电感性负载中,加入续流二极管可以改善输出电压波形,降低晶闸管的电流峰值。
3. 实验结果与理论分析基本一致。
七、实验心得1. 通过本次实验,加深了对单相半波可控整流电路工作原理的理解。
2. 掌握了单结晶体管触发电路的调试方法,提高了动手能力。
《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。
(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。
(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。
(4)了解三种不同负载电路的工作原理及波形。
二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。
其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。
如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。
设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。
α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。
单相半波可控整流电路实验报告单相半波可控整流电路实验报告引言:在电力系统中,整流电路起到将交流电转换为直流电的作用。
而单相半波可控整流电路是一种常见的整流电路,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
本实验旨在通过搭建单相半波可控整流电路,探究其工作原理和性能特点。
实验装置和方法:实验所需的装置包括变压器、可控硅器件、电阻、电容等。
首先,将变压器的输入端接入交流电源,输出端接入可控硅器件的阳极。
然后,将可控硅器件的控制端接入控制电路,通过控制电路来控制可控硅器件的导通角。
最后,通过电阻和电容来平滑输出电压。
实验结果和分析:在实验过程中,我们通过改变可控硅器件的导通角,观察输出电压的变化。
实验结果显示,随着导通角的增大,输出电压的有效值也相应增大。
这是因为导通角增大意味着可控硅器件导通时间增加,从而使得输出电压的平均值增大。
另外,我们还观察到,当可控硅器件的导通角为180度时,输出电压为零。
这是因为在这种情况下,可控硅器件始终处于关断状态,无法导通电流。
通过实验数据的分析,我们可以得出以下结论:1. 单相半波可控整流电路可以实现对输出电压的控制,通过改变可控硅器件的导通角可以调节输出电压的大小。
2. 输出电压的有效值与可控硅器件的导通角度成正比,导通角度越大,输出电压越大。
3. 当可控硅器件的导通角为180度时,输出电压为零,可控硅器件无法导通电流。
实验结论:通过本次实验,我们深入了解了单相半波可控整流电路的工作原理和性能特点。
我们发现,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
这对于电力系统的稳定运行和能源的有效利用具有重要意义。
同时,我们也了解到,单相半波可控整流电路存在导通角度限制的问题,需要在实际应用中加以考虑。
总结:单相半波可控整流电路是一种常见的整流电路,通过控制可控硅器件的导通角,可以实现对输出电压的控制。
本实验通过搭建实验装置,观察输出电压随导通角的变化,深入探究了单相半波可控整流电路的工作原理和性能特点。
张杨222008322072058 电科2班
一、实验名称:单相半波可控整流电路(仿真)
二、实验目的:1、了解单相半波可控整流的基本原理。
2、了解如何通过控制晶闸管的导通时间来得到需要的整流输出波形。
三、实验内容:根据单相半波可控整流电路在PSPICE环境中模拟出其整流输出曲线。
半波可控整流电路
四、实验步骤:
1)、画电路图:
在Capture的绘图页中绘制如上图所示的单相半波可控整流电路图。
2)、设置仿真参数:
上图中V1 为220V, 50Hz 的正弦交流电源,S1为晶闸管,V2为晶闸管的触发脉冲信号源。
触发脉冲的幅度为-lOV(对门、阴极间而言是+lOV),脉冲宽度为 lms,上升、下降时间均为1us,周期等于输入电源Vl 的周期(20ms)。
作图时,V1取自元件库SOURCE.slb;晶闸管S1和脉冲信号源V2分别取自元件库EVAL.slb中的2N1595和SOURCE.slb中的VPULSE。
3)、仿真电路:
以时间位横轴,电压和电流输出为纵轴绘制曲线,仿真时间长度设置为两个周期。
五、仿真及分析结果:
1)、仿真结果曲线如下图:
2)、结果分析:
根据仿真结果曲线分析:当晶闸管导通时间段,负载两端电压波形应和交流电源波形一致,为标准正弦波;当晶闸管由导通变为关断时,此时电路相当于断路,如果为阻性负载,则电压,电流立即变为0,但是本实验负载为租感性负载,电路断路的瞬间由于电感作为储能元件,将维持电流在一段微小的时间内不变,从而导致电压继续保持不变。
六、实验总结:
通过本次仿真实验,理解了单相半波可控整流的基本原理,了解了如何通过控制晶闸管的导通时间来得到需要的整流输出波形。
实验一单相半波可控整流电路实验实验序号:1020226001一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。
(3)了解续流二极管的作用。
三、实验线路及原理利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1所示。
图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
图1 单结晶体管触发电路原理图工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压U P时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压U v,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
单结晶体管触发电路的各点波形如图2所示。
图2 单结晶体管触发电路各点的电压波形(α=900)电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。
将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
实验一、单相半波可控整流电路实验王季诚(20101496)一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。
(3)了解续流二极管的作用。
二、实验所需挂件及附件三、实验线路及原理单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。
将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
图3-6单相半波可控整流电路四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图3-6电路图接线。
实验二单相半波可控整流电路实验一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。
(3)了解续流二极管的作用。
三、实验线路及原理单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。
将DK05挂件上的单结晶体管触发电路的输出端“G”和“K”接到DK03挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用DQ27三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DK08挂件上,电感L d在DK03面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DK03挂件上得到。
图2-3 单相半波可控整流电路四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。
(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系?(2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?七、实验方法(1)单结晶体管触发电路的调试通过操作控制屏左侧的自藕调压器使DQ01电源控制屏的电源输出线电压为200V(不能调高,如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏)。
然后才能将电源接入挂件。
用两根导线将200V交流电压接到DK05的“外接220V”端,按下“启动”按钮,打开DK05电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
信息科学与技术学院实验报告课程名称: 电力电子应用技术 实验项目: 单相半波可控整流电路实验 实验地点: 指导老师: 实验日期: 实验类型: 综合性实验 专业: 电子信息科学与技术 班级: 姓名: 学号:一、实验目的及要求1.掌握单结晶体管触发电路的调试步骤和方法。
2.掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。
3.了解续流二极管的作用。
二、实验仪器、设备或软件1. DJK01 电源控制屏2. DJK03-1 晶闸管触发电路3. 双踪示波器4. DJK02 晶闸管主电路5. D42 三相可调电阻三、实验内容1、电阻性负载在电源电压正半周,晶闸管承受正向电压,在α=wt 处触发晶闸管,晶闸管开始导通,负载上的电压等于变压器输出电压u 2。
在π=wt 时刻,电源电压过零,晶闸管电流小于维持电流而关断,负载电流为零。
在电源电压负半周,0<AK u ,晶闸管承受反向电压而处于关断状态,负载电流为零,负载上没有输出电压,直到电源电压u 2的下一周期,直流输出电压u d 和负载电流i d 的波形相位相同。
通过改变触发角α的大小,直流输出电压u d 的波形发生变化,负载上的输出电压平均值发生变化,显然O 180=α时,U d =0。
由于晶闸管只在电源电压正半波内导通,输出电压ud 为极性不变但瞬时值变化的脉动直流,故称“半波”整流。
直流输出电压平均值为2. 电感性负载(无续流二极管)电感性负载的特点是感生电动势总是阻碍电感中流过的电流使得流过电感的电流不发生突变。
α-0时,AK u 大于零,但门极没有触发信号,晶闸管处于正向关断状态,输出电压、电流都等于零。
在α=wt ,门极有触发信号,晶闸管被触发导通,负载电压u d = u 2。
当π=wt 时,交流电压u 2过零,由于流过电感电流的减小,电感会产生感生电势,使得晶闸管的电压AK u 仍大于零,晶闸管会继续导通,电感的储能全部释放完后,晶闸管在u 2反压作用下而截止。
实验1_单相半波可控整流电路实验一、实验目的1. 学习单相半波可控整流电路的工作原理和特点。
2. 掌握单相半波可控整流电路的基本组成和参数计算方法。
3. 熟练掌握实验仪器的使用方法和实验操作技能。
4. 加深对电力电子器件及其应用的理解。
二、实验原理1. 半波可控整流电路的工作原理半波可控整流电路是将单相交流电源经过变压器变压、整流、滤波和调压等环节后的直流电压,通过可控硅实现电压调节和电流控制的电路。
其原理图如图1所示:在正半周,当可控硅触发角大于 0 时,可控硅导通;当触发角小于 0 时,可控硅截止,电路不导电。
在负半周,可控硅不导电,所以输出电压为零。
通过调节触发角$α$,可以改变可控硅导通的时间,从而改变负载电流的大小,实现电压调节和电流控制的目的。
(1)单向导电,在交流电源中只能使用单相和三相有源触发器。
(2)电压和电流不能随意控制,需要通过调整触发角来实现。
(3)输出电压具有高负载性,即在负载改变时,输出电压变化小。
三、实验设备2. 可动直流电源。
3. 电流表、电压表、示波器等。
四、实验内容1. 接线图:实验仪器各接口之间的接线如图 2 所示:图2. 实验仪器接线图2. 实验步骤:(1)按照图 2 的接线要求连接电路,注意接线的正确性和稳定性。
(2)打开电源开关,调节直流电源输出电压为 15V。
(3)按照图 3 的时序关系接触触发器,观察电路输出电压和电流波形,并测量数据,记录在数据表中。
(4)改变触发角为不同值,重复步骤(3),并记录数据。
(5)实验结束后,关闭电路电源和电源开关。
(6)根据测量数据和实验结果,总结实验中发现的问题和运行特点。
(7)撰写实验报告。
3. 数据记录:输入电压 $V_\mathrm{in}$ =______V 周期 $T$ =______s滤波电容$C$ =______μF输出电压 $V_\mathrm{out}$ $= \dfrac{V_\mathrm{p}}{\pi} - 1.1V$,其中$V_\mathrm{p}$ 是电路输出峰值电压。
单相半波可控整流电路仿真实验
一、实验目的和要求
1.掌握晶闸管触发电路的调试步骤与方法;
2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作;
3.掌握单相半波可控整流电路MATLAB的仿真方法, 会设置各个模块的参数。
二、原理图
单相半波可控整流电流( 电阻性负载) 原理图, 晶闸管作为开关元件, 变压器t器变换电压和隔离的作用, 用u1和u2分别表示一次和二次电压瞬时值, 二次电压u2为50hz正弦波波形如图所示, 其有效值为u2, 如图1-1。
图1-1
三、实验模型和参数设置
2.参数设置
仿真参数, 算法( solver) ode15s, 相对误差( relativetolerance) 1e-3, 开始时间0结束时间0.05s, 如图1-3。
图1-3
脉冲发生器: Amplitude=5, period=0.02, Pulse Width=2, 时相延迟( 1/50) x( n/360) s, 如图1-4
图1-4
电源参数, 频率50hz, 电压220v, 如图1-5
图1-5
晶闸管: Ron=1e-3,Lon=1e-5,Vf=0.8,Ic=0,Rs=500, Cs=250e-9如图1-6
图1-6
晶闸管: Ron=1e-3,Lon=1e-5,Vf=0.8,Ic=0,Rs=500, Cs=250e-9.
电源: Up=220, f=50Hz.
脉冲发生器: Amplitude=5, period=0.02, Pulse Width=2
情况一: R=1Ω,L=10mH; a=0°、30°、90°、120°、150°情况二: L=10mH; a=0°、30°、90°、120°、150°
四、波形记录和实验结果分析
( 1) R=1Ω,L=10mH; a=0°时的波形图:
( 1) R=1Ω,L=10mH; a=60°时的波形图:。