2019高考数学二轮复习压轴提升练二文
- 格式:docx
- 大小:14.39 KB
- 文档页数:2
第2题](5分)三角形全等是三角形面积相等的()。
A充分但不必要条件B-必要但不充分条件C.充要条件D既不充分也不必要条件第3题:(5分)第殛:(5分)已知cota = 2,且cosa < 0,则sina的值等于()。
【正确答案】:B【答案分析】:第7题二(5分〉从9个学生中选出3个做值日,不同选法的种数是()。
A. 3B 9C 84D 504【正确答案】:C【答案分析】:第8题:(5分)A 8B 16C. 32D. 64=84(种).第2题:(5分) 的值等于 A. 5 B. 1C.15D.20A.a>1B.A>2C.1D.0【正确答案】:D【答案分析】:第13题:(5分)A是偶函数B.既是奇函数又是偶函数C既不是奇函数,也不是偶函数D是奇函数第15题:(5分)任选一个两位数,它恰好是10的倍数的概率是(〉。
A.2/9B 1/9C.1/10D.1/5AB.C.D.第17题:(5分)5人排成一排,甲、乙两人必须排在两端的排法有(〉。
A. 6 种B.12种C.24种D.8 种第3题:(4分〉过(1, 2)点且平行于向量a = (2, 2)的直线方程为_________第三题:解答题 【正确答案】: 【答案分析】:第2题:(12分)y求函数・第3题:(12分)某商品每件60元,每周卖出300件,若调整价格,每涨价1元,每周要少卖10件,已知每件商品的成本为40 元,如何定价才能使利润最大?。
高考数学第二轮复习 压轴题高考坚持“有利于高校选拔人才,有利于中学实施素质教育,有利于高校扩大办学自主权”的命题原则,坚持“考查基础知识的同时,注重考查能力”,这决定了每套高考试卷都有一道或几道把关的题目,我们称之为压轴题.这类题目的分值稳定在14分左右,多以传统的综合题或常用题型,与高等数学有关知识或方法联系比较紧密.如结合函数、不等式、导数研究无理型、分式型、指对数型以及多项式函数等初等函数的图像与性质,或数列兼考查数学归纳法,或以解析几何为主的向量与解析几何交汇,或以上三类题互相交汇形成新的综合问题,这类题目综合性强,解法多,有利于高校选拔.第一讲 函数、不等式与导数型压轴题【调研1】设21()log 1x f x x +=-,1()()2F x f x x=+- (1)试判断函数()y F x =的单调性,并给出证明;(2)若()f x 的反函数为1()f x -,证明 对任意的自然数(3)n n ≥,都有1()1nf n n ->+; (3)若()F x 的反函数1()F x -,证明 方程1()0F x -=有惟一解.分析:第(1)问先具体化函数()y F x =后,再判断单调性,而判断单调性有定义法和导数法两条途径;第(2)问先具体化1()f n -,再逐步逆向分析,寻找不等式的等价条件,最后转化为不等式212nn >+的证明问题;第(3)问应分“存在有解”和“唯一性”两个方面证明. 解析:(1)∵21()log 1x f x x +=-,1()()2F x f x x =+- ∴211()log 12x F x x x+=+-- ∴函数()y F x =的定义域为(1,1)-.解法一:利用定义求解 设任意1x ,2x (1,1)∈-,且12x x <,则21()()F x F x -=212222111111(log )(log )2121x x x x x x +++-+---- =212221211111()(log log )2211x x x x x x ++-+-----=211221212(1)(1)log (2)(2)(1)(1)x x x x x x x x --++--+- ∵210x x ->,120x ->,220x -> ∴1212(1)(1)0(1)(1)x x x x -+>+-∴211221212(1)(1)log 0(2)(2)(1)(1)x x x x x x x x --++>--+- ∴函数()y F x =在(1,1)-上是增函数解法二:利用导数求解∵211()log 12x F x x x+=+--∴()F x '=22121(1)ln 2(1)(2)x x x x -⨯++--=2221ln 2(1)(2)x x +⨯--又∵11x -<< ∴()F x '=22210ln 2(1)(2)x x +>⨯--∴函数()y F x =在(1,1)-上是增函数 (2) 由21()log 1x f x x +=-得121y x x +=-,即2121y y x -=+ ∴121()21x x f x --=+(x R ∈)∴121()21n n f n --=+=2121n -+∵1111n n n =-++∴证明不等式1()1n f n n ->+(3n ≥),即证222122n n <++,也即证212nn >+(3n ≥) 以下有两条求证途径:解法一:利用数学归纳法求证①当3n =时,不等式显然成立. ②设n k =时成立,即212kk >+当1n k =+时,12222(12)k k k +=⨯>+=42222k k k +=++232(1)1k k >+=++ ∴当1n k =+时不等式也成立.由①②可知,对利用大于或等于3的自然数都有212nn >+成立.∴证明不等式1()1nf n n ->+(3n ≥) 解法二:利用放缩法求证∵2(11)112221n n n n n n =+=++++=+>+…∴等式1()1n f n n ->+(3n ≥) 故:1()1n f n n ->+ (3)∵ 211(0)log 122F =+= ∴11()02F -=,即12x =是1()0F x -=的一个根.假设1()0F x -=另外还有一个解0x (012x ≠),则10()0F x -=∴0(0)F x = (012x ≠),这与1(0)2F =相矛盾 故1()0F x -=有惟一解.【方法探究】证明不等式的方法很多,其中分析法和综合法是最基本的方法.分析法由果索因,优点是便于寻找解题思路,而综合法由因索果,优点是便于书写,所以我们在求解过程中,常常两种方法联合作战,从而衍生出“分析综合法”,在本例第(2)问以及下例第(2)问都中有所体现.【技巧点拨】对于压轴题,大多数同学都不能完全解答,如何更好发挥,争取更好的成绩?“分步解答”、“跳步解答”与“解准第一问”是很实用的夺分技巧,其中分析综合题的各小问之间的关系是非常关键.从各小问之间的相互关系来分,数学综合题有以下三类: (1)递进型 递进型解答题是指前问是后问的基础,只有前问正确解答,才能准确求解后问,若第(1)问出错,则可能“全军覆没”,这也是相当多同学不能很好发挥其数学水平的重要原因.对于这类题目,“解准第一问”是至关重要,不容丝毫的马虎.(2)并列式 并列型解答题是指前问与后问关联性不强,前问是否正确,不会影响后问作答,如本例的三个问题.但这类题目也容易丢分,同学们在作答时,常常因为前问不会答而放弃后问的分析与思考,这时“跳步解答”非常关键.(3)混合式 混合型解答题是指解答题有三个及其以上的小问,兼有以上两种类型的特点,答题时注意“分步解答”,如本例万一不会求解第(2)问,具体化1()f n -是没有问题的,争取得到一定的步骤分.【调研2】已知函数22()ln f x x a x x=++(0x >),()f x 的导函数是()f x '对任意两个不相等的正数1x 、2x 求证:(1)当0a ≤时,1212()()()22f x f x x xf ++>;(2)当4a ≤时,1212()()f x f x x x ''->-. 分析:本例以高等数学的函数凸凹性、一致连续性、中值定理等知识为内核,综合考查函数的基本性质、导数求函数极值和均值不等式等知识的应用,考查综合分析、推理论证以及运算能力.第(1)问先根据题设条件具体化12()()2f x f x +、12()2x x f +的表达式,再对二者进行比较,可以逐项比较,也可以作差比较;第(2)问先具体化12()()f x f x ''-,再逐步逆向分析,采用分析法寻找解题思路,至于书写可用分析法,也可以用综合法. 解析:(1)∵()22ln f x x a x x =++∴()()()()1222121212111ln ln 222f x f x a x x x x x x +⎛⎫=+++++ ⎪⎝⎭ ()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭ 以下有两条求解途径:解法一:逐项比较法122x x +<∴12ln 2x x +< ∵0a ≤∴12ln 2x x a a + ………………………………①∵()()22222212121212112242x x x x x x x x +⎛⎫⎡⎤+>++= ⎪⎣⎦⎝⎭……………………………………② 又∵()()2221212121224x x x x x xx x +=++> ∴1212124x x x x x x +>+ ………………③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭∴ ()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭解法二:作差比较法()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭=()22212121212121214[[()ln ]222x x x x x x x x a a x x x x ++++++-+++=22212121212121214[()()]()(ln )222x x x x x x x x a a x x x x ++++-+-++=221212121212()1()4()x x x x a x x x x --+++ ∵12x x ≠,且10x >,20x > ∴2121()04x x ->,2121212()0()x x x x x x ->+,1201<<∵0a ≤∴12ln0a ≥∴()()121222f x f x x x f ++⎛⎫-⎪⎝⎭=221212121212()1()04()x x x x a x x x x --++>+ 故()()121222f x f x x x f ++⎛⎫-⎪⎝⎭0>(2)证法一:分析综合法由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+- 欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->即证()1212122x x a x x x x +<+成立 ∵()121212122x x x x x x x x ++>+设t =,()()240u t t t t =+>,则()242u t t t '=- 令()0u t '=得t =()4u t a ≥=>≥ ∴()1212122x x x x a x x ++> ∴对任意两个不相等的正数12,x x ,恒有()()''1212f x f x x x ->-证法二:综合法1 对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> ∴ ()12221212221x x a x x x x ++->而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+-12x x >- 故:()()''1212f x f x x x ->- 证法三:综合法2由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()''12f x f x -=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+- ∵12,x x 是两个不相等的正数∴()()123221212122422x x aax x x x x x ++->+-()312442x x ≥+-设t =,()()322440u t t t t =+->,则()()'432u t t t =-,列表: ∴38127u => 即 ()12221212221x x ax x x x ++-> ∴()()()12''12121222121222x x af x f x x x x x x x x x +-==-⋅+->- 【方法探究】本例以高等数学中的函数凸凹性与中值定理为知识载体,所以也可以采取高等数学方法求解: (1)当0a ≤时,求证1212()()()22f x f x x xf ++>,联系凹(下凸)函数性质知,只需证明当0a ≤时,只需证明22()ln f x x a x x=++(0x >)为凹函数或下凸函数. 即证明“函数)(x f 的二阶导数恒大于0”其具体证明如下:∵22()ln f x x a x x =++(0x >)∴22()2a f x x x x '=-+,324()2a f x x x''=+-∵0x >,0a < ∴324()20af x x x''=+->在(0,)x ∈+∞时恒成立.∴22()ln f x x a x x =++(0x >)为凹函数 故()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭(2)为证明|||)()(|2121x x x f x f ->'-',可以考虑对函数()f x 的导函数是()f x '在闭区间12[,]x x (或21[,]x x )上应用中值定理,具体证明过程如下:不妨设210x x >>,则由(1)问知22()2a f x x x x '=-+,324()2af x x x''=+-,在闭区间12[,]x x 上,由中值定理有,存在[]21,x x ∈ξ,使得: ))(()()(2121x x f x f x f -''='-'ξ.下证当4a ≤,0ξ>时,有()1f ξ''>成立∵324()2a f x x x ''=+-∴当0a ≤,0x >时,有324()22af x x x ''=+->恒成立 当04a <≤,0x >时,令324()2()a f xg x x x ''=+-=,则34212()a g x x x'=-再令34212()0a g x'=-=,得6x =列表如下:即当04a <≤,0x >时,有33324438()222110810827a a f x x x ''=+-≥->-=>∴1)(04>''>≤ξξf a 时,有,当,有212121)()()(x x x x f x f x f ->-⋅''='-'ξ故()()''1212f x f x x x ->-1.已知32()2f x x bx cx =+++(1)若()y f x =在1x =时有极值-1,求b ,c 的值.(2)当b 为非零实数时,证明()f x 的图像不存在与直线2()10b c x y -++=平行的切线;(3)记函数|()|f x '(11x -≤≤)的最大值为M ,求证32M ≥. 2.已知函数()ln(1)(1)x f x a e a x =+-+,2()(1)(ln )g x x a x f x =---且()g x 在1x =处取得极值. (1)求a 的值和()g x 的极小值; (2)判断()y f x =在其定义域上的单调性, 并予以证明;(3)已知△ ABC 的三个顶点A 、B 、C 都在函数()y f x =的图象上,且横坐标依次成等差数列,求证△ABC 是钝角三角形, 但不可能是等腰三角形.【参考答案】解析:(1)∵32()2f x x bx cx =+++ ∴2()32f x x bx c '=++ 由()f x 在1x =时有极值-1有(1)320(1)121f b c f b c '=++=⎧⎨=+++=-⎩,解之得15b c =⎧⎨=-⎩当1b =,5c =-时,2()325f x x x '=+-当1x >时,()0f x '>,当513x -<<时,()0f x '< 从而符合在1x =时,()y f x =有极值 ∴1b =,5c =-(2)假设()y f x =图象在x t =处的切线与直线2()10b c x y -++=平行,则 ∵2()32f t t bt c '=++,直线2()10b c x y -++=的斜率为2c b -∴2232t bt c c b ++=-,即22320t bt b ++=∵0b ≠ ∴△=2224(3)80b b b -=-<从而方程22320t bt b ++=无解,即不存在t ,使22()32f t t bt c c b '=++=-∴()y f x =的图象不存在与直线2()10b c x y -++=平行的切线.(3)证法一:分类讨论∵|()|f x '=22|3()()|33b b xc ++-∴①若||13b ->,则M 应是|(1)|f '-和|(1)|f '中最大的一个∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②当30b -≤<时,2|(1)||()|3b M f f ''≥-+-=2|32|||3b b c c -++-2|23|3b b ≥-+=21|(3)|3b -3> ∴32M ≥ ③当03b <≤时,2|(1)||()|3b M f f ''≥+-=2|32|||3b bc c +++-2|23|3b b ≥++=21|(3)|3b +3> ∴32M ≥综上所述,32M ≥成立.证法二:利用二次函数最值求解2()32f t t bt c '=++的顶点坐标是(3b -,332b c -),①若||13b->,则M 应是|(1)|f '-和|(1)|f '中最大的一个 ∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②若||13b -≤,则M 应是|(1)|f '-、|(1)|f '、|332b c -|中最大的一个(1)当32c ≥-时,2|(1)||(1)|M f f ''≥-+|(1)(1)|f f ''≥-+=|62|3x +≥ ∴32M ≥ (2)当32c <-时, 23||3c b M -≥=2332b c c -≥->综上所述,32M ≥成立. 证法三:利用绝对值不等式的性质∵函数|()|f x '(11x -≤≤)的最大值为M ∴|(1)|M f '≥-,|(1)|M f '≥,|(0)|M f '≥∴4|(1)||(1)|2|(0)|M f f f '''≥-++|(1)(1)2(0)|f f f '''≥-+-=6 ∴32M ≥ 2.解析:(1)∵2()(1)(ln )g x x a x f x =---∴1()2(1)1a a g x x a x x+'=---++(0x >) ∵()g x 在1x =处取得极值 ∴(1)2(1)102ag a a '=---++=,即8a =∴()8ln(1)9xf x e x =+- 2()78ln(1)9ln g x x x x x =--+-89(1)(3)(23)()271(1)x x x g x x x x x x --+'=--+=++(0x >) 令(1)(3)(23)()0(1)x x x g x x x --+'==+得1x =或3x =当13x <<时,()0g x '<,当01x <<时,()0g x '>当3x >时,()0g x '> ∴当3x =时,min ()9ln38ln 412g x =-- (2)∵()8ln(1)9x f x e x =+-∴89()9011xx xe f x e e--'=-=<++恒成立,即函数()f x 在(,)-∞+∞上是单调减函数. (3)设11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,且123x x x <<,则123()()()f x f x f x >>,1322x x x +=∴1212(,()())BA x x f x f x =+-,3232(,()())BC x x f x f x =-- ∴12321232()()[()()][()()]BA BC x x x x f x f x f x f x ⋅=--+-⋅-∵120x x -<,320x x ->,12()()0f x f x ->,32()()0f x f x -< ∴0BA BC ⋅< 故B 为钝角,△ABC 为锐角三角形.另一方面,若ABC ∆为等腰三角形,则只能是BA BC = 即222212123232()[()()]()[()()]x x f x f x x x f x f x -+-=-+- ∵2132x x x x -=-,221232[()()][()()]f x f x f x f x -=- ∴1223()()()()f x f x f x f x -=-,即13)()()f x f x f x =+22(∵()8ln(1)9x f x e x =+- ∴21221316ln(1)188[ln(1)(1)]9()x x xe x e e x x +-=++-+ ∴132122ln(1)ln(1)x x x x xe e e e ++=+++,即22122222x x x x x e e e e e +=++∴3212x x x ee e =+,但与3122x x x e e e +≥==相矛盾,所以ABC ∆不能为等腰三角形.综上所述,△ABC 是钝角三角形, 但不可能是等腰三角形.第二讲 递推数列、数学归纳法型压轴题数列和数学归纳法是初等数学与高等数学的最重要衔接点之一,是中学数学的重要组成部分,涉及知识面广、综合性强、方法灵活、试题新颖、技巧性突出,蕴含函数与方程,等价转化、分类与整合等数学思想以及错位相减法、归纳-猜想-证明、叠加(乘)法、叠代法、裂项法等大量的数学方法,是代数计算与逻辑推理训练的重要题材,因而这类题目多以压轴题的形式出现,成为高考的重头戏之一.【调研1】已知函数)(x f 是定义在R 上的不恒为零的函数, 且对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+.若1()12f =,(2)n n f a n-=(n N *∈),求①.数列{}n a 的通项公式;②.数列{}n a 的前n 项和为n S ,问是否存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立?若存在,求出m 的最小值;若不存在,则说明理由.分析: 求解本题的关键在于准确求解第(1)小问,所以准确化简(2)n f -成为求解本例的焦点.大致有以下三条途径:①.由已知条件()()()f a b af b bf a ⋅=+探索)(n a f 的规律,最后用数学归纳法证明; ②.将所给函数关系式适当变形, 根据其形式特点构造另一个函数, 设法用此函数求出)(n a f ; ③.设法将(2)n f -转化为熟悉的数列. 解析:(1)解法一:“归纳-猜想-证明”法∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+∴2()f a =()()a f a a f a ⋅+⋅=2()a f a ⋅3()f a =22()()a f a a f a ⋅+⋅=22()()a a f a a f a ⋅⋅+⋅=23()a f a 4()f a =33()()a f a a f a ⋅+⋅=233()()a a f a a f a ⋅⋅+⋅=34()a f a猜想1()()n n f a na f a -=⋅ (n N *∈)现在用数学归纳法证明: ①.显然1n =时,左边=()f a ,右边=111()a f a -⨯⋅=()f a ∴1n =时,命题1()()n n f a na f a -=⋅显然成立. ②.设n k =(*k N ∈)时有1()()kk f a kaf a -=⋅当1n k =+时 ∵()()()f a b af b bf a ⋅=+∴1()k f a +=()k f a a ⨯=()()k k a f a a f a ⋅+⋅=1()()k k a f a a ka f a -⋅+⋅⋅=()()k k a f a ka f a ⋅+⋅=(1)()k k a f a +⋅∴1n k =+时,命题1()()n n f a na f a -=⋅成立.由①②可知,对任意n N *∈都有1()()n n f a na f a -=⋅(n N *∈)成立.又∵1()12f =∴11111[()]()()(2)1222()2n n nn n f n f f a n n n ---⋅====故数列{}n a 的通项公式n a =11()2n -解法二:构造函数法 ∵当0≠⋅b a 时,有()()()f a b af b bf a ⋅=+ ∴bb f a a f ab ab f )()()(+= 令()()f x g x x =,则bb f a a f ab ab f )()()(+=即为: ()()()g ab g a g b =+∴()()ng a n g a =⋅ 即()()n nf a ng a a=⋅ ∴1()()()()nnnn f a f a a n g a a n na f a a-=⋅⋅=⋅⋅=⋅,即1()()n n f a na f a -=⋅余下的过程同解法一. 证法三: 转化为特殊数列求解∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+,1()12f =∴1[()]2n f =111[()]22n f -⨯=111111[()]()()2222n n f f --⨯+⨯=11111[()]()222n n f --⨯+即1[()]2n f =11111[()]()222n n f --⨯+ ∴1111[()][()]222()()22n n n n f f --=+ ∴新数列1[()]21()2n n f ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为2,首项为1()2212f =的等差数列,即1[()]221()2n n f n = ∴11()2(2)12()2n nn n n f a n n --⨯=== 故数列{}n a 的通项公式n a =11()2n -.(2)假设存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,则由(1)问可知111()2n n S -=-,所以1141()23n m ---<恒成立∴413m -≥,即7m ≥ 故存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,此时m 的最小值为7.【方法探究】本例是已知抽象函数关系, 利用函数迭代求数列通项问题.在所给的三种方法之中, 解法一利用“归纳-猜想-证明”求解,思路自然, 但较为繁琐;解法二利用构造函数法求解,比较简洁,但技巧性强;解法三转化为特殊数列求解,思维跨度大.这三种证法反应出求解数列与函数综合题的共同规律: 充分应用已知条件变形转化, 根据其形式特点构造新的数列, 然后利用数列的性质求解.【调研2】已知等差数列{}n a 的公差d 大于0,且2a 、5a 是方程027122=+-x x 的两根,数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)(1)求数列{}n a 、{}n b 的通项公式;(2)设数列{}n a 的前n 项和为n S ,试比较nb 1与1+n S 的大小. 分析:(1)由方程027122=+-x x 可求2a 、5a ,从而得到等差数列{}n a 的通项;由公式1112n n n S n a S S n -=⎧=⎨-≥⎩求解数列{}n b 的通项.(2)要比较n b 1与1+n S 的大小,应先由(1)问具体化nb 1、1+n S ,再求出前几项,探索大小规律, 最后用数学归纳法证明.解析:(1)∵2a 、5a 是方程027122=+-x x 的两根,公差d 大于0∴2a =3,5a =9,即5223a a d -==,11a = ∴21n a n =-(*n N ∈) ∵数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)∴当1n =时,111112T b b ==- ∴321=b当2≥n 时,∵n n b T 211-= ∴111122n n n n n b T T b b --=-=-∴113n n b b -=(2n ≥),即1212()333n n n b -==故21n a n =-,1212()333n n n b -==(2)解法一:归纳-猜想-证明由(1)可知2[1(21)]2n n n S n +-==,132n n b = ∴21(1)n S n +=+ 当1n =时,1132b =,24S = ∴211S b <当2n =时,2192b =,39S = ∴321S b <当3n =时,31272b =,416S = ∴431S b <当4n =时,41812b =,525S = ∴541S b >当5n =时,512432b =,636S = ∴651S b >猜想:4≥n 时,11+>n n S b以下用数学归纳法证明:(1)当4n =时,由上可知成立.(2)设n k =(*,4k N n ∈≥)时,11+>k kS b ,即2)1(23+>k K 当1n k =+时,11k b +=132k +=332k ⋅23(1)k >+2363k k =++=22(44)221k k k k ++++-2(1)1[(1)1]k k S ++>++=∴当1n k =+时,11+>n nS b 成立.由(1)(2)知n N *∈,4n ≥时,11+>n n S b .综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b .解法二:放缩法证明当1n =,2,3时,同以上解法 当n N *∈,4n ≥时1nb =32n =1223311(12)(1222)22n n n n C C C +>+⋅+⋅+⋅=1(1)(1)(2)[1248]226n n n n n n ---++⋅+⋅ ≥18[126(1)]23n n n n +++-=281636n n ++221n n >++1n S += 综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b . 【方法探究】通过对有限个特例进行考察,猜想一般的结论,然后运用数学归纳法证明,即“观察――猜想――证明”,这是中学数学中重要的解题方法,可有效解决探索性问题、存在性问题或某些与自然数有关的命题,在求解时注意“猜想大胆、求证小心”.【技巧点拨】放缩法是证明不等式的常用方法,过程简洁,但有一定难度,犹如花中的玫瑰,美丽但有刺. 成功运用放缩法求证的关键在于把握放缩尺度,在平时训练中注意多积累与整理.常见的放缩技巧有:(1)添项或减项的“添舍放缩”,如本例12233113(1222)22n n n n C C C ⨯>+⋅+⋅+⋅,只取(21)n +的二项展开式的前四项进行放缩;(2)拆项对比的“分项放缩”;(3)运用分数的性质放缩,如①分子增加正数项或分母减少正数项,分数值变大,反之变小;② a, b, m 都是正数并且a b <,有a a mb b m+<+(真分数的性质)等. (4)运用不等式串)1(11)1(12-<<+n n n n n 放缩,如在第3讲例2第(2)问中求证23π<n T 时,运用该技巧放缩后,再裂项相加求解.类似的不等式有2()4a b ab +≤≤ 222a b +,<<等. 1.已知函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3)及C (n S n ,),n S 为数列{}n a 的前n 项和,*n N ∈. (1)求n S 及n a ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n b b b b b b b b b b =++=++++∑(*n N ∈)求证:1111132n i i i bb =+≤<∑. 2.第七届国际数学教育大会的会徽的主体是由一连串直角三角形演变而成,其中OA =AB =BC =CD=DE =EF =FG =GH =HI =1.若将图2的直角三角形继续作下去,并记OA 、OB 、… 、OI 、…… 的长度所构成的数列为{}n a (1)求数列{}n a 的通项公式 (2)若函数22212111()nf n n a n a n a =+++++…+,求函数()f n 的最小值; (3)设11n n nb a a +=+,数列{n b }的前n 项和为n S .解不等式|2|4n S -≥3.已知一次函数)(x f 的反函数为)(x g ,且(1)0f =,若点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,11=a ,对于大于或等于2的任意自然数n 均有111=--+n nn n a a a a . (1)求)(x g y =的表达式;(2)求}{n a 的通项公式;O AB C DE F G H I图1图2(3)设)!2(!4!321++++=n a a a S n n ,求lim n n S →∞. 4.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.【参考答案】1.解析:(1)∵函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3) ∴2143m t m t +=⎧⎨+=⎩ 解之得11m t =⎧⎨=-⎩ ∴()21x f x =-∵函数()2x f x m t =⋅+的图象经过C (n S n ,) ∴21n n S =-(*n N ∈) ∴当1n =时,111S a ==当2≥n 时,111222n n n n n n a S S ---=-=-= ∵当1n =时,满足12n n a -= ∴数列{}n a 的通项为12n n a -= 故:12n n a -=,21n n S =-(*n N ∈)(2)由(1)可知121)1(21log 22-=+-=+=n n a b n n ,则∴11n n b b +=1(21)(21)n n -+=111()22121n n --+∴111ni i i b b -+∑=12233411111n n b b b b b b b b +++++=11111111(1)2335572121n n -+-+-++--+=11(1)221n -+(*n N ∈) ∵11(1)221n -+在*n N ∈上单调递增 ∴当1n =时min 11(1)221n -+=13 ∵1021n >+ ∴111(1)2212n -<+ 综上可得∑=+<≤n i i i b b 11211312.解析:(1)由题意有2211n n a a+=+∴ 21(1)1n a n =+-⨯=n 即n a (2)∵22212111()n f n n a n a n a =+++++…+∴1111()1232f n n n n n =++++++…+ 111111(1)23322122f n n n n n n n +=++++++++…+++ ∴111(1)()21221f n f n n n n +-=-++++=1102122n n >++- ∴(1)()f n f n +> 即函数()y f n =是递增数列∴()y f n =的最小值为11(1)112f ==+ (3)∵11n n n b a a +===+∴1)n S =++…1 ∴|2|4n S -≥即为2|4≥ 解之得48n ≥且n N ∈3.分析:由)(x g 为一次函数)(x f 的反函数得)(x g 也为一次函数,所以可设()g x kx b =+; 由(1)0f =得(0)1g =,从而有1b =;由“点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,且111=--+n nn n a a a a ”确定斜率k ,一旦直线)(x g y =的解析式确定,剩下的问题水到渠成. 解析:(1)∵)(x f 为一次函数,且)(x g 为其反函数 ∴设b kx x g +=)( 由(1)0f =得(0)1g =,即1)(+=kx x g ∵()1g n kn =+且1(,)n n n a A n a +(n N *∈)均在直线b kx x g +=)(上,且111=--+n n n n a aa a ∴1)1(112=-+-=+++nn a a a a k nn n n ∴1)(+=x x g (2)∵1(,)n n na A n a +(n N *∈)均在直线b kx x g +=)(上 ∴11+=+n a a nn ∴当*N n ∈时,12121(1)(2)n n n n a a an n n a a a ---⋅⋅⋅⋅⋅⋅⋅=⨯-⨯-⨯…21=n!(3)n S =123!4!(2)!n a a a n ++++=1!2!!3!4!(2)!n n ++++…=1112334(1)(2)n n +++⨯⨯++…=111111233412n n -+-++-++=1122n -+ ∴lim n n S →∞=11lim()22n n →∞-+=124.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.4.解析:(1)∵n n n a a b a a +=-(n N *∈),211()2n n na a a a +=+∴1n b +=11n n a a a a +++-=331()21()2n n n na a aa a a a a +++-=22()()n n a a a a +-=2n b 0> ∴1lg 2lg n n b b += ∵1113a a b a a +==- ∴1lg (lg3)2n n b -=⋅,即123n n b -= ∴11223131n n n a a --+=-故1n n a a a a +--=2n n a a a-=1n b +=1231n -+(2)当2≥n 时,1n a a +-=1231n n a a --+≤1()10n a a -(当且仅当2n =时取“=”) ∴321()10a a a a -≤-,431()10a a a a -<-,……,)(1011a a a a n n -<-- ∴])2([101)2(1121a n a S a n a a S n n ---<----- ∵12a a =,254a a = ∴651010(2)2(2)2n n n S a n a S a a n a ---<---- ∴11226131[(2)]189(31)n n n S n a --+<-+--251()189n a <+-23()18n a =+4()3n a <+故4()3n S n a <+.第三讲 解析几何型压轴题解析几何综合题是高考命题的一个热点内容,这类试题往往以解析几何知识为载体,综合函数、不等式、向量、数列等知识,涉及知识点多,综合性强,题目多变,解法灵活多样,能较好体现高考的选拔功能,因此这类题目常常以压轴题的形式出现.求解这类题目,注意在掌握通性通法的同时,从宏观上把握,微观上突破,在审题和解题思路上下功夫,不断跨越求解征途中可能会遇到的一道道运算难关,最终达到求解目的.【调研1】若1F ,2F 为双曲线22221b y a b -=的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足1F O PM =,11OF OP OP OM OP OMOF OP⋅⋅=.(1)求此双曲线的离心率;(2)若此双曲线过点N ,求双曲线的方程;(3)设(2)中双曲线的虚轴端点为1B ,2B (1B 在y 轴的正半轴上),过2B 作直线AB 与双曲线交于A ,B两点,求11B A B B =时,直线的方程. 分析:弄清向量表达式11OF OP OP OM OP OMOF OP⋅⋅=是求解本题的关键!由向量的数量积定义可知cos ,OP OM <>=1cos ,OF OP <>,即OP 是1F OM ∠的角平分线,联系1F O PM =可判断四边形1OMPF 是菱形.解析:(1)由1F O PM =知四边形1PFOM 是平行四边形 又由11OF OP OP OM OP OMOF OP⋅⋅=知OP 平分1F OM ∠ ∴四边形1PFOM 是菱形 设焦半距为c ,则有11OF PF PM c === ∴2122PF PF a c a =+=+ 由双曲线第二定义可知21PF e PM =,即2c aec+= ∴2e =(1e =-舍去) (2)∵2ce a== ∴2c a = ∴双曲线方程为222213x y a a -=又∵双曲线过点N ∴224313a a -=,即23a = ∴所求双曲线的方程为22139x y -=(3)由题意知()10,3B ,()20,3B -,则设直线AB 的方程为3y kx =-,()11,A xy ,()22,B x y则由223139y kx x y=-⎧⎪⎨-=⎪⎩有()2236180k x kx -+-= ∵双曲线的渐近线为y = ∴当k =时,AB 与双曲线只有一个交点,即k ≠∵12263k x x k +=-,122183x x k -⋅=- ∴()121221863y y k x x k -+=+-=-,()212121299y y k x x k x x ⋅=-++= 又∵()1113B A x y =-,,()1223B B x y =-,∵11B A B B ⊥∴()121212390xx y y y y +⋅-++=即221818939033k k --+-⋅+=-- ∴k = ∴直线AB 的方程为3y =-【方法探究】平面向量是高中数学新增内容,兼有代数和几何特性,是高中数学应用最广泛的数学工具之一,解析几何是高中数学的传统重点内容,是高考中的重头戏,而平面向量与解析几何交汇命题是近三年来新高考的一个新亮点.这类综合问题大致可分三类:(1)平面向量与圆锥曲线符号层面上的整合问题:这类题目是平面向量和圆锥曲线的简单拼盘,在平面向量刚进入高考时,比较常见,近来比较少;(2)平面向量与圆锥曲线知识层面上的整合问题:用平面向量语言包装解析几何中元素的关系,试题情境新颖,结合点选取恰到好处,命题手法日趋成熟,如本例求解过程中,明确向量式“1F O PM =”与“11OF OP OP OM OP OMOF OP⋅⋅=”含义,还原几何元素“菱形1PFOM ”是求解关键;(3)平面向量与圆锥曲线应用层面的整合问题:以平面向量作为工具,综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的轨迹、范围、最值、定值、对称等典型问题,这类问题往往更具有挑战性. 【调研2】在xoy 平面上有一系列点111(,)P x y ,222(,)P x y ,……,(,)n n n P x y ……,对每个自然数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切.若11=x ,且n n x x <+1 )(N n ∈.(1)求证数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21, 求证:23π<n T 分析:本题是数列与圆锥曲线的综合题,求解过程有两个关键点:①.由⊙n P 与⊙1+n P 彼此外切,从而构建关于n x 的递推关系式,突破的办法是具体化已知条件 “⊙n P 与⊙1+n P 彼此外切”为1n n P P +1n n r r ++=1n n y y ++; ②.经过一系列演算后得到222111]35(21)n T n =++++-,如何放缩?放缩度是把握问题的关键.解析:(1) ⊙n P 与⊙1+n P 彼此外切∴11n n n n P P r r ++=+1n n y y +=+ 两边平方并化简得1214)(++=-n n n n y y x x依题意有⊙n P 的半径2n n n x y r ==,22211()4n n n n x x x x ++-=⋅∵10n n x x +>> ∴112++=-n n n n x x x x ,即1112()n nn N x x +-=∈ ∴ 数列}1{n x 是以111x =为首项,以2为公差的等差数列. (2) 由(1)问有111(1)2n n x x =+-⋅,即121n x n =-∴2244(21)n n n n S r y x n ππππ====-, n n S S S T +⋅⋅⋅++=21])12(151311[222-++++=n π ≤])12()32(15313111[-⋅-++⋅+⋅+n n π =)]}121321()5131()311[(211{---++-+-+n n π =)]1211(211[--+n π< 【方法探究】在04年的湖南、上海、浙江卷, 05年的上海、浙江卷,06年的重庆、山东、湖北、浙江等卷都有数列与解析几何的综合问题.这类题综合性强,可以从数与形的两个角度考查理性思维能力以及函数与方程、数形结合、特殊化与一般化等数学思想.这类试题大多以点列的形式出现的,一个点的横,纵坐标分别是某两个不同数列的项,而这两个数列又由点所在的曲线建立联系,从而数列的代数特征与曲线的几何性质熔合.求解这类题目关键在于利用曲线性质建立数列的递推式,转化为代数问题求解.【技巧点拨】数列的判断与证明是数列的常考点,其求解过程常常从数列通项或递推式入手,通常有两种方法:①.定义法 证明数列每项与它的前项之差(比)是同一个常数,即证1n n a a +-=d ,d 为常数(1n na a +=q ,q 为不等于零的常数);②.中项法 证明每一项都是它的前一项和后一项的等差(比)中项,即证122n n n a a a ++=+(221++⋅=n n n a a a ).【调研3】在平面直角坐标系xOy中,有一个以(10,F和(2F的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A ,B ,且向量OM OA OB =+.求:(1)点M 的轨迹方程; (2)OM 的最小值.分析:求解本例可以根据以下步骤进行:①求立椭圆的方程,得到曲线C的方程; ②求过点P的切线方程,求出点A、B的坐标;③运用相关点法求点M 的轨迹方程; ④具体化OM ,转化为函数最值问题求解.解析:∵椭圆的焦点为(10,F、(2F,离心率为2∴椭圆方程可写为22221y x a b +=(0a b >>),其中223a b ⎧+==,解之得24a =,21b =∴曲线C的方程为y =,y '=设在曲线C上的动点00(,)P x y (0<x 0<1),则0y =∴过切点P的切线的斜率为0|x x k y ='==04x y -,过点P的切线的方程为 00004()x y x x y y =---+ ∵点,A B 是切线与x y 、轴的交点 ∴A01(,0)x ,B04(0,)y设点M为(,)x y ,则由OM →=OA → +OB →得01x x =,04y y =∵点00(,)P x y在曲线C:0y =∴点M 的轨迹方程为22141x y +=(1x >,2y >) (2)由(1)问可知2y =2411x -=2441x +- ∴2||OM =22x y +=22441x x ++-=224151x x -++-≥5=9 (当且仅当22411x x -=-,即1x =>时取等号)故当x =|OM →|的最小值为3. 【高考前沿】切线是曲线的一个重要几何性质,而导数是求曲线切线的最有力的工具,所以从切线角度与圆锥曲线综合考查,这是高考的一个新趋势,大大丰富了解析几何的研究内容,可能成为以后高考的一个新热点.导数也是求解最值问题的最常用工具,常与解析几何交汇,以最值问题的形式出现,是高考常考常新的热点.1.P 、Q 、M 、N 四点都在中心为坐标原点,离心率22=e ,左焦点)0,1(-F 的椭圆上,已知PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=,求四边形PMQN 的面积的最大值与最小值.2.设向量(1,0)i =,(0,1)j =,()a x m i y j =++,()b x m i y j =-+,且||||6a b +=,03m <<,0x >,y R ∈. (1)求动点(,)P x y 的轨迹方程;(2)已知点(1,0)A -,设直线1(2)3y x =-与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得13AB AC ⋅=?若存在,求出m 的值;若不存在,请说明理由. 3.已知曲线C :222(23)1k x k y k +-=+(k R ∈). (1)若曲线C 是双曲线,求k 的取值范围;(2)若曲线C 是焦点在x(3)对于满足条件(2)的双曲线,是否存在过点B (1,1)的直线l ,使直线l 与双曲线交于M ,N 两点且B 是线段MN 的中点?若存在,求出直线l 的方程;若不存在,请说明理由. 【参考答案】1.解析:∵椭圆的中心为坐标原点,离心率22=e ,左焦点)0,1(-F ∴椭圆方程为2212x y += ∵PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=∴直线PQ 和直线MN 都过椭圆的左焦点)0,1(-F不妨设PQ 的方程为1ky x =+,设11(,)P x y ,11(,)Q x y ,则12y y +22112ky x x y =+⎧⎪⎨+=⎪⎩ ∴22(2)210k y ky +--= ∴12222k y y k -+=-+,12212y y k -⋅=+∴12PQ y y =-=22)2k k +==+ (1)当0k ≠时,MN 的斜率为1k-,同理可得221)12k MN k +=+故四边形面积222214(2)12252k k S PQ MN k k ++==++=222212(5)2252k k k k ++-++=222252k k-++ ∵222529k k ++≥ ∴222202952k k-≤-<++,即1629S ≤<(2) 当0k =时,MN 为椭圆的长轴,MN =PQ =∴122S PQ MN ==综合(1) (2)知,四边形PQMN 面积的最大值为2,最小值为169.2.解析:(1)∵(1,0)i =,(0,1)j =,||||6a b +=6=,即为点(,)P x y 到点(,0)m -与到点(,0)m 距离之和为6记1(,0)F m -,2(,0)F m (03m <<),则12||26F F m =<∴1212||||6||PF PF F F +=> 又∵0x > ∴P 点的轨迹是以1F ,2F 为焦点的椭圆的右半部分.∵26a =,22c m =∴22229b a c m =-=-∴所求轨迹方程为222199x y m +=-(0,03x m ><<) (2)设11(,)B x y =,22(,)C x y = ∴11(1,)AB x y =+,22(1,)AC x y =+∴121212·()1AB AC x x x x y y =++++而12y y ⋅=1211(2)(2)33x x -⋅-=12121[2()4]9x x x x -++∴AB AC ⋅=121212121()1[-2()4]9x x x x x x x x ++++++=12121[107()13]9x x x x +++若存在实数m ,使得1·3AB AC =成立,则1212107()13=0x x x x +++………………………①高考数学第二轮复习 压轴题21 由⎪⎪⎩⎪⎪⎨⎧>=-+=0)(1992),-(31y 222x m y x x 得222(1)4(977)0m x x m --+-=…………………………② ∵0x > ∴22164(1)(977)0m m =--⋅->△,2124010x x m +=>-,21229-77010 m x x m =>- ∴2321940m =< 此时虽满足△>0,但21229-7728893080010 4040m x x m ==-<- ∴不存在符合题意的实数m ,使得1·3AB AC = 3.解析:(1)当1k =-、0k =或32k =时,曲线C 表示直线. 当1k ≠-且0k ≠且32k ≠时,曲线C 可化为22111223x y k k k k +=++-………………(1) 方程(1)表示椭圆的充要条件是110223k k k k ++⋅<- ∴解之得302k << (2)∵ 曲线C 是焦点在x∴212k a k +=,2123k b k +=--,从而有211223312k k k k e k k++--==+ ∴ 1k = 故曲线C 的方程为22112x y -= (3)假设存在直线l ,设11(,)M x y ,22(,)N x y ,则有⎪⎪⎩⎪⎪⎨⎧=-=-12112122222121y x y x ∴0)(2122212221=---y y x x ,即121212122()()()()x x x x y y y y -+=-+ ∵B 是线段MN 的中点 ∴221=+x x ,221=+y y∴ 直线l 的斜率22121=--=x x y y k ,即直线l :21y x =- 又直线l 与双曲线交于MN 两点,由⎪⎩⎪⎨⎧-==-1212122x y y x 得03422=+-x x , 此时0832416<-=⨯⨯-=∆,方程无实数根.即直线l 与双曲线12122=-y x 无交点. 故不存在满足条件的直线l .点评:本题易忽视直线m 与双曲线交于MN 两点的隐含条件0>∆,而得出存在直线l 为12-=x y 的错误结论.。
第2讲三角恒等变换与解三角形(文理)JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.三角恒等变换是高考的热点内容,主要考查利用各种三角函数公式进行求值与化简,其中二倍角公式、辅助角公式是考查的重点,切化弦、角的变换是常考的内容.2.正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:(1)边、角、面积的计算;(2)有关边、角的范围问题;(3)实际应用问题.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷9、16三角恒等变换和同角间的三角函数关系求值;利用余弦定理解三角形10Ⅱ卷17解三角形求角和周长的12(文科)KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一三角恒等变换错误!错误!错误!错误!三角恒等变换与求值1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β。
(2)cos(α±β)=cos αcos β∓sin αsin β。
(3)tan(α±β)=错误!。
2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α。
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=错误!.3.辅助角公式a sin x+b cos x=错误!sin(x+φ)(其中tan φ=错误!)典错误!错误!错误!典例1(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin 10°=(A)A.错误!B.错误!C.错误!+错误!D.错误!(2)(2020·宜宾模拟)已知α∈错误!,且3sin2α-5cos2α+sin 2α=0,则sin 2α+cos 2α=(A)A.1B.-错误!C.-错误!或1D.-1(3)已知函数f(x)=错误!cos x cos错误!+sin2错误!-错误!.①求f(x)的单调递增区间;②若x∈错误!,f(x)=错误!,求cos 2x的值.【解析】(1)原式=cos240°+2sin 35°cos 35°sin 10°=cos240°+sin 70°sin 10°=12+12cos 80°+sin 70°sin 10°=错误!+错误!(cos 70°cos 10°-sin 70°sin 10°+2sin 70°sin 10°)=错误!+错误!(cos 70°cos 10°+sin 70°sin 10°)=错误!+错误!cos 60°=34。
文 科 数 学(二)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( ) A .()0,2B .()1,6C.(D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B.2BM =C .∠MBND .△MBN第Ⅱ卷本卷包括必考题和选考题两部分。
第8讲 三角恒等变换与正、余弦定理]典型真题硏析応年典型鼻羁选 解氐结论,拓届研:7T 37T1.(1)[2016全国卷I ]已知B 是第四象限角,且sin 0 + '=,则ta n‘ 0 -「'= ________________ .f7T⑵[2017 •全国卷 I ]已知 a€: '' ,ta n a =2,则 cos' a -「= _____________ .[试做] _________________________________________________________________________疼'命题角度不同名三角函数的求值(i)解决“已知角”与“所求角”不同名的求值问题 :关键一,根据“所求角”与“已知角”的和或差的关系进行“变角”,对角的分拆要尽可能化成同角、补角、余角或特殊角 ;关键二,利用诱导公式进行“变名”求值 (2) 常见的配角技a + /? a-p er + /? a-p a-p g a 巧:2 a =( a + 3 )+( a - 3 ), a =( a + 3 )- 3 , 3 =- , a = + ,= a + - +3 , 0 + - 0 -=等.12. (1)[2016 •全国卷川]若 tan 0 =-,则 cos 2 0 =()4 1 14A-B.-C.D ^2/2 ■ .(2)[2013 •全国卷n ] 已知sin 2 a =,则 cos ' :=(1 1 12 A B.D.[试做]_ _________________________________________________________________________山命题角度求高次幕或倍角的三角函数值问题(1) 解决已知正切值,求高次幕或倍角的三角函数值问题:关键一,应用倍角公式将倍角转化为2 2 2"已知角” 关键二,“1 ” 的代换,1=sin a +cos a =(sin a +cos a ) -2sin a • COS a 关键sina三,弦切互化,tan a =f(2) 解决已知倍角值,求高次幕的三角函数值问题:关键一,应用倍角公式将高次幕的三角函数转化为倍角;关键二,利用诱导公式进行变名求值.3. (1)[2017 •全国卷I ] △ ABC勺内角AB,C的对边分别为a,b,c.已知sin B+sin A(sin C-cosC)=0,a=2,c=.,则C=( )Jl JTA : B.'n ITD.$(2) [2018 •全国卷I] △ ABC的内角ABC的对边分别为a,b,c.已知b sin C+c sin B=4a sin B sinCb2+c2-a2=8,则厶ABC的面积为_______ .(3) [2014 •全国卷I]如图M28-1,为测量山高MN选择A和另一座山的山顶C为测量观测点. 从A点测得M点的仰角/ MAN60 ° ,。
专题02 高考数学仿真押题试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.ð()1.已知集合,则M=R15.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是________.16.如图所示,在中,AB与CD是夹角为60︒的两条直径,,E F分别是与直径CD 上的动点,若,则λ的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:爱好不爱好合计男20 30 50女10 20 30合计30 50 80(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为X ,求X 的分布列和期望值;(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?附:()2P k χ≥0.1000.0500.010k2.7063.841 6.63518.已知数列{}n a 为等差数列,首项11a =,公差0d ≠.若成等比数列,且.X 0 1 2 3P125512 225512 135512 27512∴.(2),故没有充分证据判定爱好羽毛球运动与性别有关联.18.【答案】(1)1312n n b -+=;(2)22n -.【解析】(1),,111b a a ==,23b a =,∴3q =,,∴1312n n b -+=.(2),.19.【答案】(1)见解析;(2)155.(2)如图,分别以OD ,1OB ,OC 所在直线为x ,y ,z 轴,以O 为坐标原点,建立如图所示的空间直角坐标系,,O x y z -,则,,,6(,0,0)3D ,,,,设平面ABC 的法向量为(,,)x y z =n , 则00AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,令1y =,则1z =-,22x =,所以.设直线CD 与平面ABC 所成角为α,则:.20.【答案】(1)2p =;(2)3π.【解析】(1)0,2p F ⎛⎫⎪⎝⎭,当直线的倾斜角为45︒时,直线的方程为2p y x =+,设()11,A x y ,()22,B x y ,222py x x py ⎧=+⎪⎨⎪=⎩得, 122x x p +=,,得AB 中点为3,2D p p ⎛⎫ ⎪⎝⎭,AB 中垂线为,0x =代入得552y p ==,2p ∴=. (2)设的方程为1y kx =+,代入24x y =得,,AB 中点为,令,,SABα∴=, D 到x 轴的距离,, 当20k =时,cos α取最小值12,α的最大值为3π,故SAB 的最大值为3π.21.【答案】(1)1a >,B A ⊆;(2)2m =. 【解析】(1),,()1,x ∈+∞.易知在()1,+∞上递减,.存在()01,x ∈+∞,使得()00m x '=,函数()m x 在()01,x x ∈递增,在递减,()0a m x ≥. 由()00m x '=得001ln x x =,,1a ∴>,B A ⊆.(2)令,,()1,x ∈+∞.,()1,x ∈+∞,由于,,x →+∞,,由零点存在性定理可知:,函数()f x 在定义域内有且仅有一个零点.,()1,x ∈+∞,,x →+∞,()g x →+∞,同理可知,函数()g x 在定义域内有且仅有一个零点.假设存在0x 使得,,消得, 令,,()h x ∴递增,,,,此时,所以满足条件的最小整数2m =.选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分. 22.选修4—4:坐标系与参数方程选讲 【答案】(1)直线:l y x =,曲线;(2)点M 的轨迹是椭圆夹在平行直线3y x =±之间的两段弧. 【解析】(1)直线:l y x =,曲线,(2)设点00(,)M x y 及过点M 的直线为,由直线1l 与曲线C 相交可得:,,即:,表示一椭圆,取y x m =+代入2212x y +=得:,0∆≥得,故点M 的轨迹是椭圆夹在平行直线3y x =±之间的两段弧.。
仿真模拟训练(三)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |2x≥4},集合B ={x |y =ln(x -1)},则A ∩B =( ) A .[1,2) B .(1,2] C .[2,+∞) D.[1,+∞)2.下列函数中,既是偶函数又在区间(0,1)内单调递减的是( )A .y =x 2B .y =cos xC .y =2xD .y =|ln x |3.设S n 是等差数列{a n }的前n 项和,若a 3+a 11=18,d =2,那么a 5等于( ) A .4 B .5 C .9 D .184.已知OA →=(cos15°,sin15°),OB →=(cos75°,sin75°),则|AB →|=( ) A .2 B. 3 C. 2 D .15.过原点且倾斜角为π3的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 36.设l ,m 是两条不同的直线,α,β是两个不同平面,给出下列条件,其中能够推出l ∥m 的是( )A .l ∥α,m ⊥β,α⊥βB .l ⊥α,m ⊥β,α∥βC .l ∥α,m ∥β,α∥βD .l ∥α,m ∥β,α⊥β7.函数y =log a (x -3)+1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,其中m >0,n >0,则mn 的最大值为( )A.12B.14C.18D.1168.设S n 是数列{a n }的前n 项和,若S n =2a n -3,则S n =( )A .2n +1B .2n +1-1C .3·2n -3D .3·2n-19.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为 ( )A.23 B .2 C.43D .4 10.已知F 1,F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,点P 为双曲线C 右支上一点,|PF 2|=|F 1F 2|,∠PF 1F 2=30°,则双曲线C 的离心率为( )A. 2B.2+1C.3+12D.3+1 11.千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:年份(届) 2014 2015 2016 2017学科竞赛获省级一等奖及以上学生人数x 51 49 55 57 被清华、北大等世界名校录取的学生人数y 103 96 108 107根据上表可得回归方程y ^=b ^x +a ^中的b ^为1.35,我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为( )A .111B .115C .117D .12312.设函数f (x )=ln x +ax 2-32x ,若x =1是函数f (x )是极大值点,则函数f (x )的极小值为( )A .ln2-2B .ln2-1C .ln3-2D .ln3-1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13.已知正方形ABCD 边长为2,M 是CD 的中点,则AM →·BD →=________.14.若实数x ,y 满足⎩⎪⎨⎪⎧y ≤1x +y ≥1y ≥x -1,则2x +y 的最大值为________.15.直线l 与抛物线y 2=4x 相交于不同两点A ,B ,若M (x 0,4)是AB 中点,则直线l 的斜率k =________.16.钝角△ABC 中,若A =3π4,|BC |=1,则22|AB |+3|AC |的最大值为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本题满分12分)已知函数f (x )=3sin 2x +sin x cos x .(1)当x ∈⎣⎢⎡⎦⎥⎤0,π3时,求f (x )的值域;(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,f ⎝ ⎛⎭⎪⎫A 2=32,a =4,b +c =5,求△ABC 的面积.18.(本题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟) 平均每天锻炼的时间/分钟 [0,10) [10,20) [20,30) [30,40) [40,50) [50,60)总人数 20 36 44 50 40 10 将学生日均课外体育锻炼时间在[40,60)的学生评价为“课外体育达标”. (1)请根据上述表格中的统计数据填写下面的2×2列联表:课外体育不达标课外体育达标 合计男女 20 110 合计(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考格式:K 2=n ad -bc 2a +b c +d a +c b +d,其中n =a +b +c +dP (K 2≥k )0.025 0.15 0.10 0.005 0.025 0.010 0.005 0.001 k5.024 2.0726.6357.879 5.024 6.635 7.879 10.82819.(本题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =120°且AC =BC =AA 1=2,E 是棱CC 1的中点,F 是AB 的中点.(1)求证:CF ∥平面AEB 1;(2)求点B 到平面AEB 1的距离. 20.(本题满分12分)已知F 是椭圆x 26+y 22=1的右焦点,过F 的直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点.(1)若x 1+x 2=3,求AB 弦长;(2)O 为坐标原点,∠AOB =θ,满足3OA →·OB →tan θ=46,求直线l 的方程.21.(本题满分12分)已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =-1时,求函数y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.请考生在22,23两题中任选一题作答. 22.【选修4-4 坐标系与参数方程】(本题满分10分)在极坐标系中,曲线C 1的方程为ρ2=31+2sin 2θ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 2的方程为⎩⎪⎨⎪⎧x =2+32t y =12t(t 为参数).(1)求曲线C 1的参数方程和曲线C 2的普通方程; (2)求曲线C 1上的点到曲线C 2的距离的最大值. 23.【选修4-5 不等式选讲】(本题满分10分)已知函数f (x )=2|x -a |-|x +2|. (1)当a =1时,求不等式f (x )≥0的解集;(2)当a =2时,函数f (x )的最小值为t ,1m +14n=-t (m >0,n >0),求m +n 的最小值.仿真模拟训练(三)1.C 因为集合A ={x |2x≥4}=[2,+∞),集合B ={x |y =ln(x -1)}=(1,+∞) 所以A ∩B =[2,+∞).故选C.2.B 对于A ,y =x 2是偶函数,在区间(0,1)单调递增,故排除;对于B ,y =cos x 是偶函数,在区间(0,1)单调递减,故正确;对于C ,y =2x是非奇非偶函数,在区间(0,1)单调递增,故排除;对于D ,y =|ln x |是非奇非偶函数,在区间(0,1)单调递减,故排除.故选B.3.B 因为a 3+a 11=18,公差d =2所以a 3+a 11=a 1+2d +a 1+10d =2a 1+24=18 所以a 1=-3所以a 5=a 1+4d =-3+8=5.故选B.4.D 因为OA →=(cos15°,sin15°),OB →=(cos75°,sin75°)所以|AB →|=|OB →-OA →|=cos75°-cos15°2+sin75°-sin15°2=2-2cos60°=1,故选D.5.D x 2+y 2-4y =0,即x 2+(y -2)2=4.依题意可得,直线方程为y =3x ,则圆心(0,2)到直线y =3x 的距离d =1,所以直线被圆所截得的弦长为24-d 2=24-1=23,故选 D.6.B 由A ,C ,D 可推出l 与m 平行、相交或异面,由B 可推出l ∥m .故选B.7.A 依题意有A (4,1),代入直线得4m +n =1,所以mn =14·4mn ≤14·⎝ ⎛⎭⎪⎫4m +n 22=14·14=116,故选A. 8.C 当n =1时,S 1=a 1=2a 1-3,解得a 1=3.当n ≥2时,S n =2a n -3,S n -1=2a n -1-3,则a n =2a n -3-2a n -1+3,即a n =2a n -1. 所以数列a n 是首项为3,公比为2的等比数列所以S n =3×1-2n1-2=3·2n-3.故选C.9.A 由三视图可知该几何体为三棱锥D -ABC (如图所示),其中AB =AC =2,D 到平面ABC 的距离为1,故所求的三棱锥的体积为V =13×12×2×2×1=23.故选A. 10.C 根据题意作图如下:设|F 1F 2|=|PF 2|=2c 因为∠PF 1F 2=30° 所以|PF 1|=23c 又|PF 1|-|PF 2|=2a 所以2a =23c -2c所以e =c a=13-1=3+12.故选C. 11.C 由题意得x -=51+49+55+574=53,y -=103+96+108+1074=103.5因为数据的样本中心点在线性回归直线上,y ^=b ^x +a ^中的b ^为1.35所以103.5=1.35×53+a ^,即a ^=31.95所以线性回归方程是y ^=1.35x +31.95因为我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人 所以我校今年被清华、北大等世界名校录取的学生人数为1.35×63+31.95=117.故选C.12.A 因为f (x )=ln x +ax 2-32x所以f ′(x )=1x +2ax -32因为x =1是函数f (x )的极大值点所以f ′(1)=1+2a -32=0所以a =14所以f (x )=ln x +14x 2-32x所以f ′(x )=1x +x 2-32=x 2-3x +22x =x -2x -12x(x >0)所以当x ∈(1,2)时,f ′(x )<0,当x ∈(2,+∞)时, f ′(x )>0所以当x =2时f (x )取极小值为ln2-2.故选A.13.2 根据题意AM →·BD →=(AD →+DM →)·(BA →+AD →)=0+|AD →|2-|DM →|·|BA →|+0=4-1×2=2.故正确答案为2.14.5 作出不等式组⎩⎪⎨⎪⎧y ≤1x +y ≥1y ≥x -1表示的平面区域,得到如图的△ABC 及其内部:其中A (1,0),B (0,1),C (2,1),设z =2x +y ,将直线z =2x +y 进行平移,当经过点C 时,目标函数z 达到最大值,此时z =2×2+1=5.故答案为5.15.12 设A (x 1,y 1),B (x 2,y 2), 因为直线l 与抛物线y 2=4x 相交于不同两点A ,B所以y 21=4x 1,y 22=4x 2,则两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2) 因为M (x 0,4)是AB 中点 所以8(y 1-y 2)=4(x 1-x 2)所以y 1-y 2x 1-x 2=12.故答案为12.16.10 在钝角△ABC 中,若A =3π4,|BC |=1,由正弦定理可得|BC |sin A =|AB |sin C =|AC |sin B =122=2,所以|AB |=2sin C ,|AC |=2sin B所以22|AB |+3|AC |=4sin C +32sin B =4sin C +32sin ⎝⎛⎭⎪⎫C +3π4=sin C +3cos C =10sin(C +φ),其中tan φ=3>tan π3因为C ∈⎝⎛⎭⎪⎫0,π4所以C +φ∈⎝ ⎛⎭⎪⎫π3,7π12 所以当C +φ=π2时,22|AB |+3|AC |取得最大值,最大值为10.故答案为10.17.解析:(1)由题意知,由f (x )=3sin 2x +sin x cos x =sin ⎝⎛⎭⎪⎫2x -π3+32.因为x ∈⎣⎢⎡⎦⎥⎤0,π3所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,π3所以sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,32 所以f (x )∈[0,3] (2)因为f ⎝ ⎛⎭⎪⎫A 2=32所以sin ⎝⎛⎭⎪⎫A -π3=0因为A ∈(0,π)所以A =π3因为a =4,b +c =5,所以由余弦定理可得16=b 2+c 2-bc =(b +c )2-3bc =25-3bc 所以bc =3所以S △ABC =12bc sin A =334.18.解析:(1)课外体育不达标 课外体育达标 合计 男 60 30 90 女 90 20 110合计 150 50 200(2)K 2=20060×20-30×902150×50×90×110=20033≈6.060<6.635所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关.19.解析:(1)取AB 1中点G ,连接EG 、FG ,则FG ∥BB 1且FG =12BB 1.E 为CC 1中点,CE ∥BB 1且CE =12BB 1,所以FG ∥CE 且FG =CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为CF ⊄平面AEB 1,EG ⊂平面AEB 1, 所以CF ∥平面AEB 1;(2)因为△ABC 中,AC =BC ,F 是AB 中点 所以CF ⊥AB又因为直三棱柱ABC -A 1B 1C 1中,CF ⊥BB 1,AB ∩BB 1=B , 所以CF ⊥平面ABB 1,且C 到平面ABB 1的距离为CF =1, 因为CC 1∥平面ABB 1所以E 到平面ABB 1的距离等于C 到平面ABB 1的距离等于1. 设点B 到平面AEB 1的距离为d . 因为VB -AEB 1=VE -ABB 1所以13×SAEB 1×d =13×SABB 1×1,易求SABB 1=23,SAEB 1=2,解得d = 3.所以点B 到平面AEB 1的距离为 3.20.解析:(1)由题意可知过F 的直线l 斜率存在,设直线l 的方程为y =k (x -2)联立⎩⎪⎨⎪⎧x 2+3y 2=6y =k x -2,得(3k 2+1)x 2-12k 2x +12k 2-6=0因为x 1+x 2=3所以k 2=1,则x 1x 2=32所以|AB |=1+k 2|x 1-x 2|=2x 1+x 22-4x 1x 2= 6(2)因为3OA →·OB →tan θ=4 6所以|OA ||OB |sin θ=463所以S △AOB =263,即12×2×|y 1-y 2|=263.设直线l 的方程为x =my +2,联立⎩⎪⎨⎪⎧x =my +2x 26+y22=1,得(m 2+3)y 2+4my -2=0,所以y 1+y 2=-4m m 2+3,y 1y 2=-2m 2+3, 所以(y 1+y 2)2-4y 1y 2=83,即m 4-3m 2=0,所以m =0或m =±3,所以直线l 的方程为x =2,y =±33(x -2). 21.解析:(1)当a =-1时,f (x )=ln x +x +2x-1,x ∈(0,+∞)f ′(x )=1x +1-2x2,f (2)=ln2+2,f ′(2)=1,所以切线方程为:y =x +ln2(2)因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-ax 2,x ∈(0,+∞),令g (x )=ax 2-x +1-a ,x ∈(0,+∞), (i)当a =0时,g (x )=-x +1,x ∈(0,+∞)所以当x ∈(0,1)时g (x )>0,f ′(x )<0此时函数f (x )单调递减, x ∈(1,∞)时,g (x )<0,f ′(x )>0此时函数f (x )单调递增.(ii)当a ≠0时,由f (x )>0,解得:x 1=1,x 2=1a-1①若a =12,函数f (x )在(0,+∞)上单调递减,②若0<a <12,在(0,1),⎝ ⎛⎭⎪⎫1a -1,+∞单调递减,在⎝ ⎛⎭⎪⎫1,1a -1上单调递增. ③当a <0时,由于1a-1<0,x ∈(0,1)时,g (x )>0,此时f ′(x ),函数f (x )单调递减;x ∈(1,∞)时,g (x )<0 ,f ′(x )>0,此时函数f (x )单调递增.综上所述:当a ≤0 时,函数f (x )在(0,1)上单调递减; 函数f (x )在(1,+∞)上单调递增当a =12时,函数f (x )在(0,+ ∞)上单调递减当0<a <12时,函数f (x )在(0,1),⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减; 函数f (x )在⎝⎛⎭⎪⎫1,1a-1上单调递增;22.解析:(1)由ρ2=31+sin 2θ,得ρ2+2ρ2sin 2θ=3,则x 2+y 2+2y 2=3,即x 23+y 2=1,所以曲线C 1的参数方程为C 1:⎩⎨⎧x =3cos αy =sin α(α为参数)由⎩⎪⎨⎪⎧x =2+32t y =12t(t 为参数)消去参数t ,整理得曲线C 2的普通方程为x -3y -2=0.(2)设曲线C 1上任意一点P (3cos α,sin α),点P 到x -3y -2=0的距离d =|3cos α-3sin α-2|2=⎪⎪⎪⎪⎪⎪6cos ⎝ ⎛⎭⎪⎫α+π4-22因为-6-2≤6cos ⎝⎛⎭⎪⎫α+π4-2≤6-2 所以0≤d ≤6+22所以曲线C 1上的点到曲线C 2的距离的最大值为6+22. 23.解析:(1)当a =1时,不等式为2|x -1|-|x +2|≥0⇔2|x -1|≥|x +2|两边平方得4(x -1)2≥(x +2)2,解得x ≥4或x ≤0 所以f (x )≥0的解集为(-∞,0]∪[4,+∞) (2)当a =2时,f (x )=2|x -2|-|x +2|=⎩⎪⎨⎪⎧6-x ,x ≤-2,2-3x ,-2<x <2,x -6,x ≥2,可得t =-4,所以1m +14n=4(m >0,n >0)所以m +n =14(m +n )⎝ ⎛⎭⎪⎫1m +14n =14⎝ ⎛⎭⎪⎫54+n m +m 4n ≥14⎝ ⎛⎭⎪⎫54+1=916,当且仅当m =2n ,即n =316,m =38时取等号.。
2019高三数学(文)二轮练习知能练习:2.10变化率与导数、导数的计算注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。
在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。
考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。
只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。
【一】选择题1、(2018·中山模拟)假设函数f(x)=ax4+bx2+c满足f′(1)=2,那么f′(-1)=()A、-1B、-2C、2D、02、(2017·重庆高考)曲线y=-x3+3x2在点(1,2)处的切线方程为()A、y=3x-1B、y=-3x+5C、y=3x+5D、y=2x3、设f(x)=x ln x,假设f′(x0)=2,那么x0=()A、e2B、eC.ln 22D、ln24、设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y =2x+1,那么曲线y=f(x)在点(1,f(1))处切线的斜率为()A、4B、-14C、2D、-125、曲线y=x24-3ln x的一条切线的斜率为12,那么切点的横坐标为()A、3B、2C、1D.1 2【二】填空题6、曲线y=x e x+2x+1在点(0,1)处的切线方程为________、7、函数f(x)=f′(π2)sin x+cos x,那么f(π4)=________.8、(2018·镇江质检)设直线y=12x+b是曲线y=ln x(x>0)的一条切线,那么实数b的值为________、【三】解答题9、假设曲线f(x)=ax2+ln x存在垂直于y轴的切线,试求实数a的取值范围、10、设有抛物线C:y=-x2+92x-4,过原点O作C的切线y=kx,使切点P在第一象限,求切线方程、11、函数f(x)=x2+b ln x和g(x)=x-9x-3的图象在x=4处的切线互相平行、(1)求b的值;(2)求f(x)的极值、答案及解析1、【解析】∵f′(x)=4ax3+2bx是奇函数,又f′(1)=2,∴f′(-1)=-f′(1)=-2.【答案】B2、【解析】∵y′=(-x3+3x2)′=-3x2+6x∴k=y′|x=1=-3+6=3,因此在点(1,2)处的切线为y=3x-1.【答案】A3、【解析】∵f(x)=x·ln x,∴f′(x)=ln x+1,那么f′(x0)=ln x0+1=2,∴ln x0=1,x0=e.【答案】B4、【解析】∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2.又f′(x)=g′(x)+2x,所以f′(1)=g′(1)+2=4.故y=f(x)在点(1,f(1))处切线斜率为4.【答案】A5、【解析】∵y′=x2-3x(x>0),又k=12,∴x2-3x=12,∴x=3.【答案】A6、【解析】∵y′=(x e x+2x+1)′=e x+x·e x+2 ∴y′|x=0=3.∴切线方程为y-1=3(x-0),即3x-y+1=0. 【答案】3x-y+1=07、【解析】f′(x)=f′(π2)cos x-sin x,令x=π2,那么f′(π2)=-sinπ2=-1,∴f(x)=-sin x+cos x,∴f(π4)=-sinπ4+cosπ4=0.【答案】08、【解析】y′=(ln x)′=1x.令1x=12得x=2,∴切点为(2,ln2),代入直线方程y=12x+b,∴ln2=12×2+b,∴b=ln2-1. 【答案】ln2-19、【解】由f(x)=ax2+ln x,得f′(x)=2ax+1 x,又f(x)存在垂直于y轴的切线,不妨设切点为P(x0,y0),其中x0>0.那么f′(x0)=2ax0+1x=0.∴a=-12x20,x0∈(0,+∞),因此a<0.∴实数a的取值范围是(-∞,0)、10、【解】设点P的坐标为(x1,y1),那么y1=kx1,①y 1=-x21+92x1-4,②①代入②得x21+(k-92)x1+4=0.∵P为切点,∴Δ=(k-92)2-16=0得k=172或k=12.当k=172时,x1=-2,y1=-17.当k=12时,x1=2,y1=1.∵P在第一象限,∴所求的斜率k=1 2.故所求切线方程为y=12x.11、【解】(1)对两个函数分别求导,得f′(x)=2x+bx,g′(x)=x-3x-9x -32=6x-32.依题意,有f′(4)=g′(4),∴8+b4=6,∴b=-8.(2)显然f(x)的定义域为(0,+∞),由(1)知b=-8,∴f′(x)=2x-8x=2x2-8x.令f′(x)=0,解得x=2或x=-2(舍去)、∴当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.∴f(x)在(0,2)上是单调递减函数,在(2,+∞)上是单调递增函数、∴f(x)在x=2时取得极小值f(2)=4-8ln2.。
专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=a ln x,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f(x)= x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)= =ln(1+x)-由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0<x<-,且|x|<min时,h'(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h'(x)<0,所以x=0不是h(x)的极大值点.若6a+1=0,则h'(x)=则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,∴f'(e)=3,即a+ln e+1=3,∴a=1.(2)由(1)知,f(x)=x+x ln x,若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-令g'(x)=0,解得x=1.当0<x<1时,g'(x)>0,∴g(x)在区间(0,1)内是增函数;当x>1时,g'(x)<0,∴g(x)在区间(1,+∞)内是减函数.故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.(3)证明:令h(x)=,则h'(x)=由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,∴h(x)是区间(1,+∞)内的增函数.∵n>m>1,∴h(n)>h(m),即,∴mn ln n-n ln n>mn ln m-m ln m,即mn ln n+m ln m>mn ln m+n ln n,∴ln n mn+ln m m>ln m mn+ln n n.整理,得ln(mn n)m>ln(nm m)n.∴(mn n)m>(nm m)n,4.解(1)f'(x)=2ax-(x>0).当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.当a>0时,由f'(x)=0,有x=此时,当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.(2)令g(x)=,s(x)=e x-1-x.则s'(x)=e x-1-1.而当x>1时,s'(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.由(1)有f<f(1)=0,而g>0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h'(x)=2ax--e1-x>x->0.因此,h(x)在区间(1,+∞)单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),即a ln x+2x≤(a+3)x-x2,化简,得a(x-ln x)x2-x.由x∈[1,e]知x-ln x>0,因而a设y=,则y'=∵当x∈(1,e)时,x-1>0,x+1-ln x>0,∴y'>0在x∈[1,e]时成立.由不等式有解,可得a≥y min=-,即实数a的取值范围是(2)当a=1时,f(x)=ln x.由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1) >mg(x2)-x2f(x2)恒成立, 设t(x)=x2-x ln x (x>0).由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.因此,记h(x)=,得h'(x)=∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.6.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-当0<a<时,g(x)在区间内单调递增, 在区间内单调递减;当a时,g(x)在区间(0,+∞)内单调递增.(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=令φ(x)=-2ln x+x2-2x-2则φ(1)=1>0,φ(e)=--2<0.故存在x0∈(1,e),使得φ(x0)=0.令a0=,u(x)=x-1-ln x(x≥1).由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.所以0==a0<<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.由(1)知,f'(x)在区间(1,+∞)内单调递增,故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.所以,当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,解不等式x2+2x+a>0,解得x<-1-或x>-1+,解不等式x2+2x+a<0,解得-1-<x<-1+,此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).(2)f(x0)-f+ax0+1--a-1=+a=+a+x0+(4+14x0+7+12a).若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,故方程4+14x0+7+12a=0的两根为x1'=,x'2=由x0>0,得x0=x'2=,依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-, 又由得a=-,故要使满足题意的x0存在,则a≠-综上,当a时,存在唯一的x0满足f(x0)=f,当a时,不存在x0满足f(x0)=f。
压轴提升卷(二)
解答题:解答应写出文字说明、证明过程或演算步骤.
1.(本题满分12分)已知抛物线C :x 2=2py (p >0)及点D ⎝
⎛⎭⎪⎫
0,-p 2,动直线l :y =kx +1与抛物线C 交于A ,B 两点,若直线AD 与BD 的倾斜角分别为α,β,且α+β=π.
(1)求抛物线C 的方程;
(2)若H 为抛物线C 上不与原点O 重合的一点,点N 是线段OH 上与点O ,H 不重合的任意一点,过点N 作x 轴的垂线依次交抛物线C 和x 轴于点P ,M ,求证:
|MN |·|ON |=|MP |·|OH |.
解:(1)把y =kx +1代入x 2=2py 得x 2-2pkx -2p =0, 设A ⎝
⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 2
22p ,则x 1+x 2=2pk ,x 1x 2=-2p . 由α+β=π可知, 直线AD 的斜率与直线BD 的斜率之和为零, 所以x 212p +p 2x 1+x 222p +p 2x 2
=0,去分母整理得(x 1+x 2)(x 1x 2+p 2)=0, 即2pk (p 2
-2p )=0,由该式对任意实数k 恒成立,可得p =2,
所以抛物线C 的方程为x 2=4y . (2)证明:设过点N 的垂线方程为x =t (t ≠0),由⎩⎪⎨⎪⎧x =t ,x 2=4y 得⎩⎪⎨⎪⎧x =t ,
y =t 24
,即点P ⎝ ⎛⎭⎪⎫t ,t 24. 令|MN ||MP |=λ,则N ⎝ ⎛⎭
⎪⎫t ,λt 24,所以直线ON 的方程为y =λt 4x , 由⎩⎪⎨⎪⎧y =λt 4x ,x 2=4y 且x ≠0得⎩
⎪⎨⎪⎧x =λt y =λ2t 24,即点H ⎝ ⎛⎭⎪⎫λt ,λ2t 24, 所以|OH ||ON |=x H x N =λt t =λ,所以|MN ||MP |=|OH ||ON |
, 即|MN |·|ON |=|MP |·|OH |.
2.(本题满分12分)已知函数f (x )=(x -k )e x +k ,k ∈Z ,e =2.718 28…为自然对数的底数.
(1)当k =0时,求函数f (x )的单调区间;
(2)当x ∈(0,+∞)时,不等式f (x )+5>0恒成立,求k 的最大值.
解:(1)当k =0时,f (x )=x e x ,
∴f ′(x )=(x +1)e x .
由f ′(x )=0,得x =-1,
∴当x >-1时,f ′(x )>0,此时函数f (x )单调递增;
当x <-1时,f ′(x )<0,此时函数f (x )单调递减.
∴函数f (x )的单调递增区间是(-1,+∞),单调递减区间是(-∞,-1).
(2)由题意知,5+(x -k )e x
+k >0对x ∈(0,+∞)恒成立.
∵当x ∈(0,+∞)时,e x -1>0, ∴不等式x +x +5e x -1
>k 对x ∈(0,+∞)恒成立. 设h (x )=x +x +5e x -1,则h ′(x )=e x (e x -x -6)(e x -1)2. 令F (x )=e x -x -6,则F ′(x )=e x -1.
当x ∈(0,+∞)时,F ′(x )>0,
∴函数F (x )=e x
-x -6在(0,+∞)上单调递增.
又F (2)=e 2-8<0,F (3)=e 3-9>0,
∴F (2)·F (3)<0.
∴存在唯一的x 0∈(2,3),使得F (x 0)=0,即e x 0=x 0+6.
∴当x ∈(0,x 0)时,F (x )<0,h ′(x )<0,此时函数h (x )单调递减; 当x ∈(x 0,+∞)时,F (x )>0,h ′(x )>0,此时函数h (x )单调递增. ∴当x =x 0时,函数h (x )有极小值(即最小值)h (x 0). ∵h (x 0)=x 0+x 0+5e x 0-1
=x 0+1∈(3,4). 又k <h (x 0),k ∈Z ,
∴k 的最大值是3.。