高考数学一轮复习 7.2 均值不等式及其应用课件 理 新人教B版
- 格式:ppt
- 大小:1.63 MB
- 文档页数:34
§7.2均值不等式及其应用最新考纲考情考向剖析1.认识基本不等式的证明过程 . 主要考察利用基本不等式求最值.常与函数、解析几何、不等式相联合考察,作为求最值的方2.会用基本不等式解决简单的最大(小 )值问题 .法,常在函数、分析几何、不等式的解答题中考察,难度为中档 .a+ b1.均值不等式:ab≤2(1)均值不等式成立的条件:a>0, b>0.(2)等号成立的条件:当且仅当a= b 时取等号 .2.几个重要的不等式(1)a2+ b2≥ 2ab(a, b∈R ).b a(2)a+b≥ 2(a, b 同号 ).a+ b 2(3)ab≤( a,b∈ R).(4) a2+ b2 a+ b 2(a, b∈ R ).≥22以上不等式等号成立的条件均为a=b.3.算术均匀数与几何均匀数设 a>0, b>0,则 a, b 的算术均匀值为a+b,几何均匀值为ab,均值不等式可表达为两个2正实数的算术均匀值大于或等于它们的几何均匀值.4.利用均值不等式求最值问题已知 x>0, y>0,则(1)假如积 xy 是定值 p,那么当且仅当x=y 时, x+ y 有最小值2 p.(简记:积定和最小 )p2(2)假如和 x+y 是定值 p,那么当且仅当x= y 时, xy 有最大值4 .(简记:和定积最大 )概念方法微思考1.若两个正数的和为定值,则这两个正数的积必定有最大值吗?提示不必定 .若这两个正数能相等,则这两个数的积必定有最大值;若这两个正数不相等,则这两个正数的积无最大值.12.函数 y = x + x 的最小值是 2 吗?提示不是 .由于函数y = x + 1x 的定义域是{ x|x ≠ 0} ,当 x<0时, y<0 ,所以函数y = x + 1x 无最小值 .题组一 思虑辨析1.判断以下结论能否正确 (请在括号中打“√”或“×”) 4 , x ∈ π的最小值等于 4.( × )(1)函数 f(x) = cos x + cos x0, 2(2)“ x>0 且 y>0 ”是“ x + y≥ 2”的充要条件 .( × )y x(3)( a + b)2 ≥4ab(a , b ∈R ).( √ )(4)若 a>0 ,则 a 3+ 12的最小值为 2a.( × )a(5)不等式 a 2+ b 2≥2ab 与a +b≥ ab 有同样的成立条件 .( × )2(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二教材改编2.设 x>0, y>0,且 x + y = 18,则 xy 的最大值为 ( )A.80B.77C.81D.82答案 C∵ x>0, y>0, ∴ x + yxy ,分析 2 ≥即 xy ≤x + y2= 81, 2 当且仅当 x = y =9 时, (xy)max = 81.3.若把总长为 20 m 的篱笆围成一个矩形场所,则矩形场所的最大面积是________ m 2.答案25分析设矩形的一边为 x m ,面积为 y m 2,则另一边为 12× (20- 2x)= (10- x)m ,此中 0<x<10 ,∴y = x(10-x)≤x +10- x2=25, 2当且仅当 x = 10- x ,即 x =5 时, y max =25.题组三 易错自纠4.“ x>0”是“ x + 1≥ 2 成立”的 ( )xA. 充分不用要条件B. 必需不充分条件C.充要条件D.既不充分也不用要条件答案 C分析11当 x>0 时, x + ≥ 2x ·= 2.xx11 1 1 成立 ” 的充要条件,由于 x , 同号,所以若 x +x ≥2,则 x>0 , >0,所以 “x>0 ” 是 “x +≥ 2xxx应选 C.5.若函数 f(x)= x + 1(x>2) 在 x = a 处取最小值,则 a 等于 ( )x - 2A.1 + 2B.1+ 3C.3D.4答案 C分析 当 x>2 时, x - 2>0 ,f(x)= (x - 2)+ 1+ 2≥ 2x - 2 × 1+ 2= 4,当且仅当 x -2x - 2 x - 21= x - 2( x>2) ,即 x = 3 时取等号,即当f(x) 获得最小值时, x = 3,即 a = 3,应选 C.6.若正数 x , y 知足 3x + y = 5xy ,则 4x + 3y 的最小值是 ( )A.2B.3C.4D.5答案 D3x +y 31分析 由 3x + y =5xy ,得xy = y + x =5,1 31所以 4x + 3y = (4x + 3y) ·+5 yx=13y +12x5 4+9+ xy 1≥5(4+ 9+ 2 36)= 5,当且仅当3y = 12x,即 y = 2x 时, “ =” 成立,xy故 4x + 3y 的最小值为 5.应选 D.题型一利用均值不等式求最值命题点 1 配凑法例 1 (1) 已知 0<x<1,则 x(4- 3x)获得最大值时 x 的值为 ________.答案231分析x(4- 3x)= 3·(3x)(4 - 3x)≤1 3x +4-3x2=4,·233当且仅当 3x = 4- 3x ,即 x =23时,取等号 .x 2 + 2(2)函数 y = x - 1 (x>1) 的最小值为 ________. 答案 2 3+2分析 ∵ x>1, ∴x - 1>0 ,∴ y = x 2 + 2 x 2- 2x + 1 + 2x - 2 + 3 =x - 1x - 1=x - 1 2+ 2 x - 1 + 3 x - 1= (x - 1)+ 3+ 2≥ 2 3+ 2. x- 1当且仅当 x - 1=3,即 x = 3+ 1 时,等号成立 . x - 1命题点 2 常数代换法例 2 (2019 ·大连模拟 )已知首项与公比相等的等比数列 { a n } 中,知足 22a m a n =a 4(m , n ∈N +),则 2+1的最小值为 () m n39A.1B. 2C.2D. 2答案 A分析 由题意可得, a 1= q ,22∵ a m a n = a 4,∴ a 1·q m -1·(a 1·q n -1 )2= (a 1·q 3)2,即 q m ·q 2n = q 8, 即 m + 2n =8.∴ 2 + 1= (m + 2n) 2 + 1 ×1m nm n 8= 2+m +4n+ 2 ×1≥ (4+ 2 4)× 1= 1. n m88当且仅当 m = 2n 时,即 m = 4, n = 2 时,等号成立 .命题点 3 消元法例 3已知正实数 a , b 知足 a 2- b +4≤ 0,则 u =2a +3ba +b ()1414A. 有最大值 5B. 有最小值 5C.有最小值 3D.有最大值 3答案B分析∵ a 2- b +4≤ 0, ∴ b ≥ a 2+ 4,∴ a + b ≥ a 2+ a +4.又 ∵ a , b>0, ∴ a≤a ,a +b a 2+ a +4∴ -a≥ - a ,a +b a 2 +a + 42a + 3baa∴ u = a + b = 3- a + b ≥3- a 2+ a +4 = 3-1 ≥ 3-1= 14 ,a + 42 45+ 1a ·+ 1aa当且仅当 a = 2, b = 8 时取等号 .应选 B.思想升华 (1) 前提: “一正 ”“ 二定 ”“ 三相等 ”.(2)要依据式子的特色灵巧变形,配凑出积、和为常数的形式,而后再利用均值不等式.(3)条件最值的求解往常有三种方法:一是消元法;二是将条件灵巧变形,利用常数“ 1” 代换的方法;三是配凑法.追踪训练 1 (1)(2019·东质检丹)设x>0, y>0,若 xlg 2, lg 2, ylg 2 成等差数列,则1x +9y 的最小值为()A.8B.9C.12D.16答案D分析∵ xlg 2 , lg 2, ylg 2成等差数列,∴ 2lg 2= (x + y)lg 2 ,∴ x + y = 1.∴1x +9y = (x + y) 1x + 9yy 9x ≥ 10+2· = 10+ 6= 16,x y当且仅当 x = 1, y = 3时取等号,4 4故 1+9的最小值为 16.应选 D.x y(2)若 a, b,c 都是正数,且4 +1的最小值是 () a+b+ c= 2,则a+1 b+ cA.2B.3C.4D.6答案 B分析∵ a, b,c 都是正数,且a+ b+ c= 2,∴a+ b+ c+ 1=3,且 a+1>0 , b+c>0.∴4+1=1·(a+1+ b+ c) ·4+1 a+ 1 b+ c 3 a+ 1 b+ c 14 b+ c a+ 1 1=3 5+a+1+b+c≥3(5+ 4)= 3.当且仅当a+ 1= 2(b+ c),即 a=1, b+ c=1 时,等号成立.应选 B. 题型二均值不等式的综合应用命题点 1 均值不等式与其余知识交汇的最值问题例 4 在△ ABC 中,点→→M,P 知足 BP= 2PC,过点 P 的直线与 AB, AC 所在直线分别交于点→→→→N,若 AM =mAB, AN= nAC(m>0, n>0) ,则 m+2n 的最小值为 ()8 10A.3B.4C.3D. 3答案 A分析→ →→∵ AP= AB+ BP→ 2 → →=AB+3(AC-AB)1 →2 → 1 → 2 →=AB + AC =AM +3n AN ,333m∵M ,P ,N 三点共线, ∴ 1+2= 1,3m 3n∴ m + 2n =( m + 2n) 1+ 23m 3n=13+43+ 3m 2n + 2m3n≥ 5+ 2 2n × 2m 33m 3n=53+43= 3,当且仅当 m = n = 1 时等号成立 . 命题点 2 求参数值或取值范围例 5 (2018 ·包头模拟 )已知不等式 (x +y) 1 a ≥ 9 对随意正实数 x ,y 恒成立, 则正实数 a 的 x +y 最小值为 ( ) A.2B.4C.6D.8答案 B1 a1 a分析 已知不等式 (x + y) x + y ≥ 9 对随意正实数 x , y 恒成立,只需求 (x + y) x + y 的最小值 大于或等于 9,∵ 1+ a + y + ax≥ a + 2 a + 1,x y当且仅当 y = ax 时,等号成立,∴ a + 2 a +1≥ 9,∴ a ≥ 2 或 a ≤ - 4(舍去 ), ∴ a ≥ 4,即正实数 a 的最小值为 4,应选 B.思想升华 求参数的值或范围:察看题目特色,利用均值不等式确立有关成立条件,进而得参数的值或范围 .π2sin C sin B 追踪训练 2 (1)在△ ABC 中, A =6,△ ABC 的面积为 2,则 sin C + 2sin B +sin C 的最小值为 ()3 3 3 3 5 A. 2 B.4 C.2D.3答案 C分析 由 △ ABC 的面积为 2,所以1 1 πS =bcsin A = bcsin = 2,得 bc =8,22 6在△ABC 中,由正弦定理得2sin C + sin B= 2c +b sin C+ 2sin B sin C c+2bc =2cb + b2b c+ 2b bc=16 2 8 +b 2+ 41+b=8-8+ 2b2 8 4+ b2 2≥ 2 8b2+ 4 1=2-1= 3,2·-4+ b 8 2 2 2当且仅当 b= 2, c= 4 时,等号成立,应选 C.(2)已知函数f(x)= ax2+bx(a>0, b>0)的图象在点 (1,f(1))处的切线的斜率为2,则8a+b的最ab小值是 ( )A.10B.9C.8D.3 2答案 B分析由函数 f(x)= ax2+ bx,得 f′( x)= 2ax+ b,由函数 f(x)的图象在点 (1, f(1)) 处的切线斜率为2,所以 f′ (1)= 2a+ b= 2,所以 8a+ b= 1+8= 1 1+ 8ab a b 2 a b (2a+ b)1 b 16a 1 b 16a=2 10+a+b ≥2 10+2 a ·b1=2(10+8)= 9,当且仅当ba=16ab,即 a=13, b=43时等号成立,所以8a+b的最小值为9,应选 B. ab利用均值不等式求解实质问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法建立模型解决问题 .过程主要包含:在实质情形中从数学的视角发现问题、提出问题、剖析问题、成立模型、确立参数、计算求解、查验结果、改良模型,最后解决实质问题 .例 某厂家拟在 2019 年举行促销活动,经检查测算,该产品的年销售量 (即该厂的年产量 )x万件与年促销花费 m 万元 (m ≥ 0)知足 x = 3-km + 1(k 为常数 ) ,假如不搞促销活动,则该产品的年销售量只好是 1 万件 .已知 2019 年生产该产品的固定投入为8 万元 .每生产 1 万件该产品需要再投入 16 万元,厂家将每件产品的销售价钱定为每件产品年均匀成本的 1.5 倍 (产品成本包含固定投入和再投入两部分资本).(1)将 2019 年该产品的收益y 万元表示为年促销花费 m 万元的函数;(2)该厂家 2019 年的促销花费投入多少万元时,厂家的收益最大?解 (1) 由题意知,当 m =0 时, x = 1,∴ 1= 3- k? k =2,∴ x = 3- 2,m+ 18+ 16x每万件产品的销售价钱为1.5×(万元 ),∴ 2019 年的收益 y = 1.5x ×8+ 16x-8- 16x - m x2= 4+ 8x - m = 4+ 8 3-m + 1 - m16=- + m + 1+ 29(m ≥ 0).16(2)∵ m ≥ 0 时,+ ( m + 1)≥ 216=8,∴y≤- 8+ 29=21,16当且仅当= m+ 1? m= 3(万元 )时,y max= 21(万元 ).故该厂家2019 年的促销花费投入 3 万元时,厂家的收益最大为21 万元 .修养提高利用均值不等式求解实质问题时依据实质问题抽象出目标函数的表达式,成立数学模型,再利用均值不等式求得函数的最值.x2+ 41.函数 f(x)=|x| 的最小值为 ()A.3B.4C.6D.8答案 B分析f(x)=x2+4=|x|+4≥ 24= 4,|x||x|当且仅当 x=±2 时,等号成立,应选 B.2.若 x>0, y>0,则“ x+ 2y=2 2xy”的一个充分不用要条件是( )A. x= yB. x=2yC.x=2 且 y= 1D.x= y 或 y= 1答案 C分析∵ x>0, y>0,∴ x+ 2y≥ 2 2xy,当且仅当 x= 2y 时取等号 .故“ x= 2 且 y=1 ”是“ x+2y= 2 2xy”的充分不用要条件.应选 C.4+1的最小值为( ) 3.(2018 沈·阳模拟 )已知正数 a, b 知足 a+ b=1,则a b5A. 3B.3C.5D.9答案 D分析由题意知,正数a, b 知足 a+ b= 1,4 1 4+ 1则a+b= a b (a+b)= 4+1+4b+a≥5+ 24b aa b·= 9,a b当且仅当4b=a,即 a=2, b=1时等号成立,a b 3 3所以4+1的最小值为 9,应选 D.a b4.若 a>0, b>0,lg a+ lg b= lg(a+ b),则 a+b 的最小值为 ()A.8B.6C.4D.2答案 C分析由 lg a+ lg b=lg( a+ b) ,得 lg( ab)=lg( a+ b),即 ab= a+ b,则有1+1= 1,所以 a+ b a b1 1 b a≥2+ 2 b aa+ b 的最=+b (a+ b)= 2++·= 4,当且仅当 a=b= 2 时等号成立,所以a ab a b 小值为4,应选 C.5.已知函数x在点 (0,f(0)) 处的切线为 l,动点 (a,b)在直线 l 上,则 2a -b的最小值是f(x)=e +2( )A.4B.2C.2 2D. 2答案 D分析由题意得 f ′(x)= e x,f(0) = e0= 1,k=f ′ (0)= e0= 1.所以切线方程为y-1= x- 0,即 x- y+ 1= 0,∴ a- b+ 1= 0,∴ a-b=- 1,∴ 2a+ 2-b≥ 2 2a·2-b= 2 2a-b= 2 2-1=2当且仅当 a=-1, b=1时取等号,应选 D.2 26.《几何本来》卷 2 的几何代数法 (以几何方法研究代数问题 )成了后代西方数学家办理问题的重要依照,经过这一原理,好多的代数的公义或定理都能够经过图形实现证明,也称之为无字证明 .现犹如下图图形,点 F 在半圆 O 上,点 C 在直径 AB 上,且 OF ⊥ AB,设 AC= a,BC= b,则该图形能够达成的无字证明为()a+ bA.2≥ ab(a>0,b>0)B.a2+b2≥ 2 ab(a>0, b>0)C.2ab≤ ab(a>0 , b>0)+b a a+ b a2+ b2D. 2 ≤2 (a>0 , b>0)答案 D分析由 AC= a,BC = b,可得圆 O 的半径 r =a+b,2又 OC=OB- BC=a+b- b=a-b,2 2a- b 2 a+ b 2 a2+b2,则 FC 2= OC2+ OF2=+=4 4 2再依据题图知FO ≤ FC,即a+ b a2+ b2≤,当且仅当 a= b 时取等号 .应选 D.2 27.设 x, y 均为正数,且 xy+x- y- 10= 0,则 x+ y 的最小值是 ________. 答案 6分析由 xy+ x-y- 10= 0,得 x=y+10=9+ 1,y+ 1 y+ 1∴ x+ y=9+ 1+ y≥ 2 9y+ 1 y+1·1+ y = 6,9当且仅当=1+ y ,即 y = 2 时,等号成立 .98.设正项等比数列 { a n } 的前 n 项和为 S n ,若 S 7- S 5= 3(a 4+ a 5),则 4a 3+a 7的最小值为 ________.答案4分析设正项等比数列 { a n } 的公比为 q(q>0) ,∵ S 7- S 5= a 7+ a 6= 3(a 4 +a 5),∴a 7+a 6= q 2=3.a 5+ a 4∴ 4a9=4a 9 = 4a 1 ≥ 2 4a 1= 4, 3+7 3+4 3+33·3a 3aa qa当且仅当 4a 31,即 a 31时等号成立 .=a 3= 2∴ 4a 3+ 9的最小值为 4.a 79.已知△ ABC 的角 A ,B ,C 的对边分别为 a ,b ,c ,若 a 2= b 2+ c 2- bc ,且△ ABC 的面积为33,4则 a 的最小值为 ________. 答案3分析 由题意得 b 2+ c 2- a 2= bc ,∴ 2bccos A = bc ,1 π ∴ cos A = , ∴A = .23∵△ ABC 的面积为33,4∴ 1bcsin A = 3 3, ∴ bc = 3.24∵ a 2= b 2+ c 2- bc ,∴ a 2≥ 2bc - bc = bc = 3(当且仅当 b = c 时,等号成立 ),∴ a ≥ 3.10.已知 a , b 为正实数,且 (a - b)2= 4(ab)3,则1a + 1b 的最小值为 ________.答案2 2分析由题意得 (a - b)2 =(a + b)2-4ab ,代入已知得 (a + b)2= 4(ab)3+ 4ab ,两边同除以 (ab)2得a +b 2=4 ab 3 4ab ab 2 2 + 2 2a ba b = 4 ab + 1≥4·21ab ab · = 8,ab当且仅当 ab = 1 时取等号 .所以 1+1≥2 2,a b即1a +1b 的最小值为 2 2.11.已知 x>0 , y>0 ,且 2x + 5y = 20.(1)求 u = lg x + lg y 的最大值;1 1(2)求 x + y 的最小值 . 解 (1) ∵ x>0, y>0,∴ 由均值不等式,得 2x +5y ≥ 2 10xy.∵ 2x +5y = 20,∴ 2 10xy ≤20, xy ≤ 10,当且仅当 2x = 5y 时,等号成立 .所以有2x + 5y = 20,2x = 5y ,解得x =5,y = 2,此时 xy 有最大值 10.∴ u = lg x +lg y = lg( xy)≤ lg 10 = 1.∴ 当 x = 5, y = 2 时, u = lg x + lg y 有最大值 1.(2)∵ x>0, y>0,∴ 1+1= 1+ 1 2x + 5yx yx y ·20= 1 7+ 5y + 2x ≥ 17+ 2 5y 2x 20 x y 20 ·x y=7+ 2 10,20当且仅当5y = 2x时,等号成立 .x y2x +5y = 20, x =10 10- 20, 由5y 2x 解得3= 20- 4 10x , y = . y3∴ 1+1的最小值为 7+ 2 10.x y2012.某人准备在一块占地面积为 1 800 平方米的矩形地块中间建三个矩形温室大棚,大棚四周均是宽为 1 米的小道 (如下图 ),大棚占地面积为S 平方米,此中 a ∶b = 1∶ 2.(1)试用 x, y 表示 S;(2)若要使 S 的值最大,则x, y 的值各为多少?解 (1) 由题意可得 xy=1 800, b= 2a,则 y=a+ b+ 3=3a+ 3,所以 S= (x- 2)a+ (x- 3)b= (3x- 8)a= (3x- 8) y-3= 1 808-3x-8 y(x>3, y>3).3 3(2)方法一S= 1 808-3x-8×1 800 3x= 1 808- 3x+ 4 800 ≤1 808- 2 3x×4 800x x =1 808- 240=1 568,当且仅当3x=4 800,即 x= 40 时等号成立, S 获得最大值,此时y=1 800= 45,x x所以当 x= 40, y= 45 时, S 获得最大值 .方法二设 S=f(x)= 1 808- 3x+4 800(x>3) ,x则 f′ (x)=4 8002 -3=3 40- x 2 40+ xx x令 f′ (x)= 0,则 x= 40,当 0<x<40 时, f′ (x)>0 ;当 x>40 时, f′ (x)<0.所以当 x= 40 时, S 获得最大值,此时,y= 45.13.在△ ABC 中,角 A ,B , C 的对边分别为 a ,b ,c ,若2a - c = cos C,b =4,则△ ABC 面积bcos B的最大值为 ( ) A.4 3B.23答案 A2a - c cos C分析 ∵ b= cos B ,∴ (2a - c)cos B = bcos C ,由正弦定理得 (2sin A -sin C)cos B = sin Bcos C ,∴ 2sin Acos B = sin Ccos B + sin Bcos C = sin(B + C) =sin A.又 sin A ≠0, ∴ cos B = 1. 2π ∵ 0<B<π, ∴ B = 3. 由余弦定理得b 2=16= a 2+c 2- 2accos= a 2+ c 2- ac ≥ 2ac - ac = ac ,π3∴ ac ≤16,当且仅当 a = c 时等号成立 .1 π 1× 16× 3=4 3.∴ S △ABC = acsin≤ 2 2 3 2故 △ABC 面积的最大值为 4 3.应选 A.2214.已知 P 为椭圆 x+ y= 1 上一个动点, 过点 P 作圆 (x + 1)2+ y 2= 1 的两条切线, 切点分别是4 3→ →的取值范围为 ( )A ,B ,则 PA ·PB3,+∞3, 56A. 2B. 2 956D.[ 2 2-3,+∞) C. 2 2-3,9答案 C分析如图,由题意设∠APB= 2θ,则 |PA|= |PB |=1,tan θ→→ →→∴ PA·PB=|PA||PB|cos 2θ=1 1+ cos 2θ2·cos 2θ=·cos 2θ,tan θ1- cos 2θ设 cos 2θ= t,→ →=t 1+t = (1- t)+2- 3则 PA·PB 1- t 1- t≥21- t ·2-3= 2 2- 3,1- t2当且仅当1- t=,即t=1-2时等号成立,此时 cos 2θ= 1-2.1又当点 P 在椭圆的右极点时,sin θ=,∴cos 2θ= 1- 2sin2θ=79,7→ →最大,且最大值为1+9 7 56此时 PA·PB 7 × =9 .9 1-9→ →56∴ PA·PB的取值范围是 2 2-3,9 .应选 C.15.已知正三棱柱 ABC -A 1B 1C 1,侧面 BCC 1B 1 的面积为4 6,则该正三棱柱外接球表面积的最小值为 ( )A.24 πB.16 2πC.8 πD.4 π答案 B分析 设 BC = a ,CC 1= b ,则 ab = 4 6, 底面三角形外接圆的半径为 r ,则 a = 2r , ∴r =3sin 60 ° 3 a.所以 R 2= b 2+ 3 a 2= b 2 a 22 3 +34 ≥ 2 b 2 a 2 96 = 4 2,4 · = 2123 当且仅当 a =3时,等号成立 .2 b所以该正三棱柱外接球表面积的最小值为4π× 4 2= 16 2π.16.已知曲线 C : y 2= 2x + a 在点 P n ( n , 2n + a)( a>0 ,n ∈ N)处的切线 l n 的斜率为 k n ,直线 l n交 x 轴、 y 轴分别于点 A n (x n,0), B n (0,y n ),且 |x 0 |= |y 0|.给出以下结论:① a = 1;2 3②当 n ∈ N + 时, y n 的最小值为 3 ;③当 n ∈ N + 时, k n > 2sin1 ;2n + 1④当 n ∈ N + 时,记数列 { k n } n nn + 1-1).的前 n 项和为 S ,则 S< 2( 此中,正确的结论有 ________.( 写出全部正确结论的序号)答案①②④1分析令 y=(2x+ a) 2,-1-1所以 y′=21(2 x+ a) 2× 2=(2x+a) 2 ,1k n=(2 n a) 2,1所以 l n: y- 2n+ a=(2 n a) 2(x-n),所以 x0=- a, y0= a,∴ a= a∴ a= 1,① 对;令 t=2n+ 1≥3,所以 y n= 2n+1-n t2-1 1 1,= t-= t+2n+ 1 2t 2 2t所以 y n≥13+1=2 3,②对;2 23 31,令 f(x)=x- 2sin x x∈ 0,3所以 f′ (x)= 1- 2cos x<0,所以 f(x)<f(0) = 0,即 1 < 2sin 1 ,③ 错;2n+ 12n+ 1由于 k n=1 2= 2( n+ 1- n),<2n+1 n+ 1+ n所以 S n=k1+k2++ k n< 2( 2- 1)+ 2( 3- 2)++ 2( n+1- n)= 2( n+ 1- 1),④对 .。