从位移、速度、力到向量
- 格式:ppt
- 大小:455.00 KB
- 文档页数:13
子洲县职教中心 数学 导学案2013-2014学年第 一 学期 高二 年级 3班 组 姓名 编写者 王治强 审核者 使用时间2013年 10 月 日课题 :从位移、速度、力到向量学习目标:(1)理解向量与数量、向量与力、速度、位移之间的区别; (2)理解向量的几何表示 重点难点:向量及向量的有关概念、表示方法 自主学习 (一)、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)(二)、新课学习学习过程1、数量与向量的区别?2.向量的表示方法? ① ② ③④向量AB 的大小――长度称为向量的模,记作 .3.有向线段:具有方向的线段就叫做有向线段,三个要素: . 向量与有向线段的区别:(1) .(2) . 4、零向量、单位向量概念:① 叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.② 叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:① 叫平行向量;②我们规定0与 平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a ∥b∥c.6、相等向量定义: 叫相等向量。
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向...线段的起点无关........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为(与有向线段.....的起点无关)....... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 合作交流 1.判断 (1)平行向量是否一定方向相同?ABCDA(起点)B(终点)a(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.如图,设O 是正六边形ABCDEF 的中心,①分别写出图中与向量−→−OA 、−→−OB 、−→−OC 相等的向量;②分别写出图中与向量−→−OD 、−→−OE 、−→−OE 共线的向量.达标训练1.下列各量中不是向量的是( ) A.浮力 B.风速 C.位移 D.密度 2.下列说法中错误..的是( ) A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.圆上一群孤立点 D.一个单位圆4.下列命题正确的是( )A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行 5.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.DEOAB CF。
从位移、速度、力到向量(导学案)使用说明:1.自学71~73页内容,提高自学能力;2.限时完成导学案的预习案部分,找出自己的疑惑和需要解决的问题,准备课上讨论探究,学有余力的学生可提前完成其他部分。
【学习目标】(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系. (3)通过学习发现知识结论,培养自己抽象概括能力和逻辑思维能力 【重点难点】 重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.相关知识:1.在物理学中,位移、速度和力这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”。
它们和长度、面积、质量等只有大小的量是不同的。
2.前面我们提到过三角函数线(正弦线和余弦线)。
你是如何理解的? 教材助读:1.向量的定义既有________又有________的量统称为向量. 2.有向线段具有________和________的线段叫作有向线段.以A 为起点,B 为终点的有向线段记作,线段AB 的长度也叫作有向线段________的长度,记作________. 3.向量的表示向量可以用________来表示,有向线段的长度表示________,箭头所指的方向表示________.向量也可以用黑体小写字母如a ,b ,c 来表示,书写用来表示.4.向量的模、零向量、单位向量______________表示向量(或a )的大小,即长度(也称模).________的向量称为零向量,记作________.与向量a 同方向,________的向量,叫作a 方向上的单位向量,记作a 0.5.相等向量长度________且方向________的向量,叫作相等向量,向量a 和向量b 相等.记作________.6.共线向量如果表示两个向量的有向线段所在的直线________,则称这两个向量平行或共线,a 与b 平行或共线,记作________.规定零向量与任一向量________. 预习自测1.下列说法中错误的是( )A .零向量是没有方向的B .零向量的长度为0C .零向量与任一向量平行D .零向量的方向是任意的 2.下面有四个说法: ①向量的长度与向量的长度相等;②任何一个非零向量都可以平行移动; ③所有的单位向量都相等;④两个有共同起点的相等向量,其终点必相同. 其中正确说法的个数是( ) A .4 B .3 C .2 D .13.下列说法正确的是( )预习案A.方向相同的向量叫相等向量B.零向量的长度为0C.共线向量是在一条直线上的向量D.零向量是没有方向的向量基础知识探究综合应用探究如图,设O是正六边形ABCDEF的中心,①分别写出图中与向量−→−OA、−→−OB、−→−OC相等的向量;②分别写出图中与向量−→−OD、−→−OE、−→−OE共线的向量.当堂检测1.|a|=1,则向量a是________向量;若|a|=0,则向量a是________向量.2.如图,D、E、F分别是△ABC三边AB、BC、AC的中点.(1)与相等的向量为________;(2)与共线的向量为________.我的收获:D EOABC F。
北师大版(2019)高中数学必修第二册课程目录与教学计划表教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做学习计划、复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!课程目录教学计划、进度、课时安排必修第二册第一章三角函数1 周期变化2 任意角2.1 角的概念推广2.2 象限角及其表示本节综合与测试3 弧度制3.1 弧度概念3.2 弧度与角度的换算本节综合与测试4 正弦函数和余弦函数的概念及其性质4.1 单位圆与任意角的正弦函数、余弦函数定义4.2 单位圆与正弦函数、余弦函数的基本性质4.3 诱导公式与对称4.4 诱导公式与旋转本节综合与测试5 正弦函数、余弦函数的图象与性质再认识5.1 正弦函数的图象与性质再认识5.2 余弦函数的图象与性质再认识本节综合与测试6 函数y=Asin(wx+φ)性质与图象6.1 探究w对y=sinwx的图象的影响6.2 探究φ对y=sin(x+φ)的图象的影响第六章立体几何初步1 基本立体图形1.1 构成空间几何体的基本元素1.2 简单多面体——棱柱、棱锥和棱台1.3 简单旋转体——球、圆柱、圆锥和圆台本节综合与测试2 直观图3 空间点、直线、平面之间的位置关系3.1 空间图形基本位置关系的认识3.2 刻画空间点、线、面位置关系的公理本节综合与测试4 平行关系4.1 直线与平面平行4.2 平面与平面平行本节综合与测试5 垂直关系5.1 直线与平面垂直5.2 平面与平面垂直本节综合与测试6 简单几何体的再认识6.1 柱、锥、台的侧面展开与面积6.2 柱、锥、台的体积6.3 球的表面积和体积本节综合与测试本章综合与测试本册综合。
向量的发展史向量,最初被应用于物理学。
很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。
大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。
“向量”一词来自力学、解析几何中的有向线段。
最先使用有向线段表示向量的是英国大科学家牛顿。
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。
向量能够进入数学并得到发展,首先应从复数的几何表示谈起。
18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数abi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。
把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。
人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。
但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系。
19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量。
他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克斯韦把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。
三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的。
他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数。
他们引进了两种类型的乘法,即数量积和向量积。
并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
北师大版高二数学必修4目录第一章三角函数1.周期现象习题1—12.角的概念与推广习题1—23.弧度制习题1—34.正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式习题1—45.正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质习题1—56.余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数性质习题1—67.正切函数7.1正切函数定义7.2正切函数的图像与性质7.3正切函数的诱导公式习题1—78.函数y=A sin(ωx+ψ)的图像习题1—89.三角函数的简单应用习题1—9阅读材料数学与音乐课题学习利用现代信息技术探究y=A sin(ωx+ψ)(A>0,ω>0)的图像本章小结建议复习题一第二章平面向量1.从位移、速度、力到向量1.1位移、速度和力1.2向量的概念习题2—12.从位移的合成到向量的加法2.1向量的加法2.2向量的减法习题2—23.从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理习题2—34.平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示习题2—45.从力做的功到向量的数量积习题2—56.平面向量数量积的坐标表示习题2—67.向量应用举例7.1点到直线的距离公式7.2向量的应用举例习题2—7阅读材料向量与中学数学本章小结建议复习题二第三章三角恒等变形1.同角三角函数的基本关系习题3—12.两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数习题3—23.二倍角的三角函数习题3—3阅读材料三角函数叠加问题课题学习摩天轮中的数学问题本章小结建议复习题三探究活动升旗中的数学问题附录1 部分数学专业词汇中英文对照表附录2 信息检索网址导引。
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。