知识点7 无穷大与无穷小的概念与关系
- 格式:pdf
- 大小:113.75 KB
- 文档页数:3
无穷小与无穷大无穷小和无穷大是数学中重要的概念,它们在极限运算和微积分中有着重要的作用。
本文将介绍无穷小和无穷大的定义、性质以及它们在数学和物理中的应用。
一、无穷小的定义与性质无穷小是指函数在某一点附近取值时,其值趋近于零的特殊情况。
具体说,对于函数f(x),如果当x无限接近某一点a时,f(x)也无限接近于零,那么f(x)就是在点a处的无穷小。
常表示为lim x→a f(x) = 0。
1.1 阶与比较无穷小可以根据其趋近于零的速度分为不同的阶。
例如,当x无限接近零时,x^2相比于x,其趋近于零的速度更快,因此x^2是x的高阶无穷小。
同样,x^n(n>1)相比于x,其趋近于零的速度更快,因此x^n是x的高阶无穷小。
1.2 运算性质无穷小具有一些运算性质。
例如,两个无穷小的和仍然是无穷小,若f(x)为无穷小,g(x)为有界函数,则f(x)g(x)为无穷小。
此外,无穷小与有界函数的乘积也为无穷小。
1.3 等价无穷小在无穷小的研究中,等价无穷小也是一个重要的概念。
如果两个无穷小f(x)和g(x)满足li m x→a (f(x)/g(x)) = 1,那么称f(x)和g(x)是在点a处等价的无穷小。
等价无穷小具有相似的性质,在一些极限运算中可以互相替换。
二、无穷大的定义与性质无穷大是指函数在某一点附近取值时,其值趋近于正无穷或负无穷的情况。
具体说,对于函数f(x),如果当x趋近于某一点a时,f(x)的值无限增大或无限减小,那么f(x)就是在点a处的无穷大。
2.1 正无穷和负无穷无穷大可以分为正无穷大和负无穷大。
当x趋近于某一点a时,若f(x)的值无限增大,则称f(x)为正无穷大。
若f(x)的值无限减小,则称f(x)为负无穷大。
2.2 无穷大的性质无穷大具有一些基本性质。
例如,正无穷大与负无穷大的和仍然是无穷大。
另外,无穷大与常数的乘积仍然是无穷大。
然而,无穷大的乘积与除法需要谨慎处理。
2.3 无穷大与极限在求解极限问题时,无穷大也扮演了重要的角色。