无穷小与无穷大和极限的关系
- 格式:ppt
- 大小:473.00 KB
- 文档页数:26
第4、5讲 无穷小(大)与极限运算(无穷小的比较)及两个重要极限 一、计划学时:2节 二、内容三、要求 四、重点 五、难点六、教学过程:(一) 无穷小与无穷大 一、无穷小量定义1 在某一极限过程中,以0为极限的变量,称为该极限过程中的无穷小量,简称为无穷小。
无穷小量只是极限的一个特殊情况(A =0),因而可由极限的不等式定义得到无穷小的精确定义,共有七种,先以x →x 0为例给出无穷小的精确定义:定义2 设函数f (x )当|x |充分大时有定义。
若 ∀ M >0,∃ X >0,∍ |x |> X ⇒ ⎪f (x ) ⎪>M ,则称函数f (x )当x →∞时为无穷大量,记为)()(∞→∞→x x f 或∞=∞→)(lim x f x . 注 由无穷大定义知,无穷大不是数,再大的数也不是无穷大。
且若函数是无穷大,则函数必无极限。
但为描述函数的这种变化趋势的性态,也称函数的极限是无穷大。
如:x →0时,x 1是无穷大;x → -1时,2)1(1x +也是无穷大;x →∞时,1-ln x 是无穷大。
显然这些无穷大的变化趋势不相同,随着x →∞,的值非负且越来越大,而1-ln x 则取负值且绝对值越来越大,在数学上加以区别就是正无穷大+∞与负无穷大-∞。
将定义2中的“|x |> X ”相应地改为“x < X ”和“x >-X ”即可得到x →∞时正无穷大和负无穷大的定义。
共有21种无穷大的定义。
例2 证明∞=-→11lim 1x x . 证 ∀ M >0,要使⎪f (x ) ⎪=│11-x │>M ,只要 | x -1|< M 1,取 δ =M1,则当δ<-<|1|0x 时,⇒ │11-x │>M , ∴ ∞=-→11lim1x x . 注❶ 证明无穷大的思想方法完全同于极限证明部分。
❷ 从图形(图10—13)上看直线 x =1是曲线y = 的垂直渐近线。
无穷小与无穷大的应用无穷小与无穷大是数学中重要的概念,在各个数学领域都有广泛的应用。
无穷小表示一个趋于零的量,而无穷大则表示一个无限增大的量。
它们在数学分析、微积分、极限理论等领域中扮演着重要的角色。
下面我将为您介绍一些无穷小与无穷大的应用。
1. 极限与连续性:在极限理论中,无穷小是研究极限的基本工具。
通过将一个变量趋于无穷小或无穷大,我们可以研究函数的极限行为。
例如,在计算导数时,我们使用了无穷小的概念,通过求极限来定义导数。
而在证明函数的连续性时,我们也经常使用无穷小的性质。
2. 泰勒级数展开:泰勒级数是一种将函数表示为多项式的方法,通过此展开式,我们可以更方便地计算函数的近似值。
被展开的函数在某一点邻域内以无穷小形式存在,这样可以用无穷小的高阶项去逼近函数。
泰勒级数在物理学、工程学、计算机科学等领域的应用广泛。
3. 微分方程:微分方程是自然科学和工程中经常遇到的数学工具,它描述了变量之间的关系及其变化率。
在求解微分方程时,我们经常遇到无穷小的概念。
例如,在求解常微分方程时,我们使用无穷小的方法将微分方程转化为差分方程,再进行求解。
4. 物理学中的应用:无穷小与无穷大在物理学中具有广泛的应用。
例如,在牛顿力学中,质点的位置、速度和加速度可以用无穷小的方式表示。
无穷大则表示着物体的质量、速度或能量无限增大。
这些概念在描述物体运动、力学系统的稳定性和动力学行为等方面都起着重要的作用。
5. 统计学中的应用:无穷小与无穷大在统计学中的应用也非常广泛。
例如,在极大似然估计中,我们可以利用无穷小的性质进行参数估计。
在假设检验中,无穷小的概念也被用来计算概率值和确定拒绝域。
此外,无穷小的性质还可以用于推导概率分布的性质和进行近似计算。
总之,无穷小与无穷大作为数学中的重要概念,广泛应用于各个领域。
它们不仅为我们提供了一种研究函数性质、计算近似值和解决问题的工具,而且能够帮助我们理解变量之间的关系和数学结构。
无穷小与无穷大无穷小和无穷大是数学中重要的概念,它们在极限运算和微积分中有着重要的作用。
本文将介绍无穷小和无穷大的定义、性质以及它们在数学和物理中的应用。
一、无穷小的定义与性质无穷小是指函数在某一点附近取值时,其值趋近于零的特殊情况。
具体说,对于函数f(x),如果当x无限接近某一点a时,f(x)也无限接近于零,那么f(x)就是在点a处的无穷小。
常表示为lim x→a f(x) = 0。
1.1 阶与比较无穷小可以根据其趋近于零的速度分为不同的阶。
例如,当x无限接近零时,x^2相比于x,其趋近于零的速度更快,因此x^2是x的高阶无穷小。
同样,x^n(n>1)相比于x,其趋近于零的速度更快,因此x^n是x的高阶无穷小。
1.2 运算性质无穷小具有一些运算性质。
例如,两个无穷小的和仍然是无穷小,若f(x)为无穷小,g(x)为有界函数,则f(x)g(x)为无穷小。
此外,无穷小与有界函数的乘积也为无穷小。
1.3 等价无穷小在无穷小的研究中,等价无穷小也是一个重要的概念。
如果两个无穷小f(x)和g(x)满足li m x→a (f(x)/g(x)) = 1,那么称f(x)和g(x)是在点a处等价的无穷小。
等价无穷小具有相似的性质,在一些极限运算中可以互相替换。
二、无穷大的定义与性质无穷大是指函数在某一点附近取值时,其值趋近于正无穷或负无穷的情况。
具体说,对于函数f(x),如果当x趋近于某一点a时,f(x)的值无限增大或无限减小,那么f(x)就是在点a处的无穷大。
2.1 正无穷和负无穷无穷大可以分为正无穷大和负无穷大。
当x趋近于某一点a时,若f(x)的值无限增大,则称f(x)为正无穷大。
若f(x)的值无限减小,则称f(x)为负无穷大。
2.2 无穷大的性质无穷大具有一些基本性质。
例如,正无穷大与负无穷大的和仍然是无穷大。
另外,无穷大与常数的乘积仍然是无穷大。
然而,无穷大的乘积与除法需要谨慎处理。
2.3 无穷大与极限在求解极限问题时,无穷大也扮演了重要的角色。
举例说明无穷大无穷小及其关系
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时,f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。
特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量。
无穷大就是在自变量的某个变化过程中绝对值无限增大的变量或函数。
无穷大与无穷小具有倒数关系,即当x→a是f(x)为无穷大,则1/f(x)为无穷小。
无穷大为数学符号,是一种变量,记作∞。
第三节无穷小与无穷大一、无穷小 二、无穷大 三、无穷小与无穷大的关系基本要求: 1. 理解无穷小与无穷大的定义。
2. 掌握无穷小与无穷大的相关关系。
一、无穷小 1. 定义 定义1 定义 如果函数 f ( x) 当 x → x0 (或 x → ∞ )时的 极限为零,那么 称函数 f ( x ) 为当 x → x0 (或 x → ∞ ) 时的无穷小。
1 x = 0 lim cos x = 0, = 0 limsin 例:lim x →0 π x →∞ x x→ 2 1 故 , sin x, cos x是相应过程的无穷小量 x注1:无穷小与极限过程分不开, 不能脱离极限 过程谈无穷小。
如:f (x)=sinx 当x →∵ lim sin == 1≠ ∵ lim sinx x 00 πx→ →0 x 2当x→0时,f (x)=sinx为无穷小π2时,f (x)=sinx不是无穷小.注2:0是任何极限过程的无穷小. 即 lim 0 = 0 注3: 由于limC = C(常数), 所以, 除0外的任何 常数不是无穷小量. 注4: 不能将无穷小与很小的数混淆; 如: 数10-10 ≈0,但不是无穷小。
定理lim f ( x ) = A ⇔ f ( x ) = A + α ( x ). 其中α ( x )是该极限过程中的无穷小量. A为常数. (省去x→xo , x→∞的极限符号“lim” 表示任一极限过程).2.无穷小的性质在自变量的同一变化过程中,无穷小具有以下的性质: 性质: 1 有限个无穷小的和是无穷小 注1:无穷多个无穷小的代数和未必是无穷小.。
1 例. 求 lim x sin x →0 x解: 因为 x → 0 时, x为无穷小, sin 1 ≤ 1 x 1 sin 为有界函数, x 1 。
由定理1.4 2 , 得到 lim x sin = 0 x →0 x2.无穷小的性质在自变量的同一变化过程中,无穷小具有以下的性质: 性质: 1 有限个无穷小的和是无穷小 2 有界函数与无穷小的乘积是无穷小。