章3 量子力学初步(3)
- 格式:ppt
- 大小:500.50 KB
- 文档页数:21
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子物理学习题第一章 原子的核式结构1.选择题:(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A. 绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .(4)动能为5.0MeV 的α粒子被金核散射,试问当瞄准距离分别为1fm 和10fm 时,散射角各为多大?(5)假设金核半径为7.0fm ,试问:入设质子需要多大能量,才能在对头碰撞时刚好到达金核表面?(6)在α粒子散射实验中,如果用银箔代替金箔,二者厚度相同,那么在同样的偏转方向,同样的角度间隔内,散射的α粒子数将减小为原来的几分之几?银的密度为10.6公斤/分米3,原子量为108;金的密度为19.3公斤/分米3,原子量197。
第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(b y a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何?解:能量的本征值和本征函数为mE yx n n 222π =)(2222b n a n yx +,2,1, ,sinsin2==y x y x n n n n byn axn abyxππψ若b a =,则 )(222222y x n n n n maE yx +=π ay n a x n a y x nn yxππψsin sin 2= 这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(c z b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn b n an m n n n E z yxzy x ++=π ,,3,2,1,, ,sin sin sin 8==z y x z y x n n n c z n b y n a x n abc n n n zy x πππψ当c b a ==时,)(2222222z y x n n n man n n E z y x ++=π ay n a y n a x n a n n n z y x z y x πππψsinsin sin 223⎪⎭⎫ ⎝⎛= z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
量子力学基础教程量子力学是一门研究微观世界的物理学科,它描述了微观粒子的行为和性质。
本文将为读者介绍量子力学的基础知识,帮助大家对这一领域有一个初步的了解。
第一章:量子力学的起源量子力学起源于20世纪初,当时科学家们发现传统物理学无法解释一些实验现象,例如黑体辐射和光电效应。
为了解决这些难题,一些科学家开始重新思考物质和能量的本质。
这些思考最终导致了量子力学的诞生。
第二章:波粒二象性量子力学的核心概念之一是波粒二象性。
在经典物理学中,我们认为光可以被看作是一种波动现象。
然而,量子力学揭示了光既可以表现出波动性,又可以表现出粒子性。
这种奇妙的特性不仅出现在光中,也出现在其他微观粒子(如电子和中子)中。
第三章:不确定性原理不确定性原理是量子力学的另一个重要概念。
它指出,在测量某个粒子的位置和动量时,我们无法同时获得精确的结果。
这意味着,我们无法完全预测微观粒子的行为。
不确定性原理的提出颠覆了经典物理学中确定性的观念,揭示了微观世界的混沌和难以捉摸的一面。
第四章:量子态和波函数量子态是描述微观粒子状态的数学概念。
它可以用波函数来表示,波函数是一个复数函数,描述了粒子的概率分布。
通过对波函数的测量,我们可以获得粒子的位置、动量等信息。
波函数的演化由薛定谔方程描述,它是量子力学的基本方程之一。
第五章:量子力学的应用量子力学在物理学和工程学的许多领域都有广泛的应用。
例如,它在原子物理学中用于解释原子的结构和性质;在材料科学中用于研究材料的电子结构和导电性;在量子计算中用于开发新型的计算机技术等等。
量子力学的应用正在不断拓展,为人类的科技发展带来了巨大的潜力。
结语:量子力学是一门复杂而奇妙的学科,它颠覆了传统物理学的观念,揭示了微观世界的独特规律。
本文介绍了量子力学的起源、波粒二象性、不确定性原理、量子态和波函数以及量子力学的应用。
希望通过这篇文章,读者对量子力学有了初步的了解,并能进一步探索这一神秘的学科。