第三章量子力学中的力学量
- 格式:ppt
- 大小:980.00 KB
- 文档页数:34
第三章 量子力学中的力学量 1. 证明 厄米算符的平均值都是实数(在任意态)[证] 由厄米算符的定义**ˆˆ()F d F d ψψτψψτ=⎰⎰厄米算符ˆF的平均值 *ˆF Fd ψψτ=⎰ **ˆ[()]F d ψψτ=⎰ ***ˆ[]Fd ψψτ=⎰**ˆ[()]Fd ψψτ=⎰**ˆ[]F d ψψτ=⎰ *F =即厄米算符的平均值都是实数2. 判断下列等式是否正确(1)ˆˆˆHT U =+ (2)H T U =+(3)H E T U ==+[解]:(1)(2)正确 (3)错误因为动能,势能不同时确定,而它们的平均值却是同时确定 。
3. 设()x ψ归一化,{}k ϕ是ˆF的本征函数,且 ()()k kkx c x ψϕ=∑(1)试推导k C 表示式(2)求征力学量F 的()x ψ态平均值2k k kF c F =∑(3)说明2k c 的物理意义。
[解]:(1)给()x ψ左乘*()m x ϕ再对x 积分**()()()()mm k k k x x dx x c x dx ϕϕϕτϕ=⎰⎰*()()k m k kc x x dx ϕϕ=∑⎰因()x ψ是ˆF的本函,所以()x ψ具有正交归一性**()()()()mk m k k k kkx x dx c x x dx c mk c ϕψϕϕδ===∑∑⎰⎰ ()m k = *()()k m c x x dx ϕψ∴=⎰(2)k ϕ是ˆF 的本征函数,设其本征值为kF 则 ˆk k kF F ϕϕ= **ˆˆm k m k k kF F dx F c dx ψψψϕ==∑⎰⎰**()m mk k k kc x F c dx ϕϕ=∑∑⎰**m k kmkx mkc c F dϕϕ=∑⎰*m k k mk mkcc F δ=∑2k k kc F =∑即 2k k kF c F =∑(3)2k c 的物理意义;表示体系处在ψ态,在该态中测量力学量F ,得到本征值k F 的 几率为2k c 。
量子力学中的量子力学力学量的表示量子力学是描述微观世界的物理学理论,它提供了一种描述粒子性质的数学框架。
在量子力学中,力学量是描述系统状态的物理量。
本文将探讨在量子力学中,如何表示力学量以及不同力学量的物理意义。
一、力学量的表示在经典物理学中,力学量通常可以用数值来表示,例如质量、速度、位移等。
然而,量子力学中的力学量不能简单地用数值表示,而是需要用算符表示。
力学量的算符通常用大写字母表示,比如位置算符X,动量算符P等。
对于某个具体的力学量,它的算符作用在波函数上,得到的结果是该力学量对应的本征值乘以波函数。
这可以用数学表达式表示为:AΨ = aΨ其中A是力学量的算符,Ψ是波函数,a是力学量的本征值。
这个方程称为力学量的本征值方程。
二、不同力学量的表示1. 位置算符在量子力学中,粒子的位置可以用位置算符X来表示。
位置算符的本征态是位置本征态,它表示粒子在某个确定的位置。
对于一维情况,位置本征态的波函数可以写为:Ψ(x) = δ(x - x0)其中x0是位置本征态对应的位置。
2. 动量算符动量算符P描述粒子的运动状态。
动量算符的本征态是动量本征态,它表示粒子具有某个确定的动量。
对于一维情况,动量本征态的波函数可以写为:Ψ(p) = e^(ipx/ħ)其中p为动量本征态对应的动量,ħ为普朗克常数除以2π。
3. 能量算符能量是量子力学中的另一个重要的力学量。
能量算符H描述粒子的能量状态。
能量算符的本征态是能量本征态,它表示粒子具有某个确定的能量。
能量本征态的波函数可以写为:Ψ(E) = e^(-iEt/ħ)其中E为能量本征态对应的能量,t为时间。
三、力学量的测量和物理意义在量子力学中,力学量的测量是通过对算符的作用得到的本征值来实现的。
当对某个力学量进行测量时,系统将处于该力学量的某个本征态上,从而得到相应的本征值。
力学量的本征值对应着可能的测量结果。
例如,对位置算符进行测量,可以得到粒子的位置值;对动量算符进行测量,可以得到粒子的动量值。
第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
第三章例题剖析1 一刚性转子转动惯量为I ,它的能量的经典表示式是ILH 22=,L 为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数。
(1)转子绕一固定轴转动 (2)转子绕一固定点转动[解]:(1)ϕ∂∂-= i L zˆ 22222ˆˆϕ∂∂-= zL L2222222ˆ2ˆˆϕ∂∂-===I IL IL Hz能量的本征方程: )()(ˆϕψϕψE H =,or )()(2222ϕψϕψϕE I =∂∂- 引入 222IE =λ⇒=+0)()(222ϕψλϕψϕd dλϕϕψi Ae=)(由波函数的单值性 )()2(ϕψϕπψ=+λϕλϕπi i AeAe=+)2( ⇒ 12=πλi eππλn 22= ⇒ n =λ ,2,1,0±±=nIn E n 222 =∴,ϕψin Ae=其中 π21=A(2) IL H2ˆˆ2=,在球极坐标系中⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-=22222sin 1sin sin 1ˆϕθθθθθ L 体系的能量算符本征方程:),(),(ˆϕθψϕθψE H= ),(),(sin 1sin sin 122222ϕθψϕθψϕθθθθθE I =⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂- ),(),(sin 1sin sin 1222ϕθλψϕθψϕθθθθθ-=⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂其中22IE =λ,以上方程在πθ≤≤0的区域内存在有限解的条件是λ必须取)1(+l l ,),2,1,0( =l ,即 )1(+=l l λ ,2,1,0=l于是方程的形式又可写成),()1(),(sin 1sin sin 1222ϕθψϕθψϕθθθθθ+-=⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂l l 此方程是球面方程,其解为),(),(ϕθϕθψlm Y =lm l ±±±==,,2,1,0,2,1,0由)1(+=l l λ及IE 2=λ,可解得体系的的能量本征值Il l E l 2)1(2+=,2,1,0=l2 氢原子处于 ()()()32121113,,,,,,44r r r ψθϕψθϕψθϕ=+状态,求:(1)归一化波函数(2)能量有无确定值?如果没有,求其可能值和取这些可能值的概率,并求平均值;(3)角动量平方有无确定值?如果没有,求其可能值和取这些可能值的概率,并求平均值; (4)角动量的z 分量有无确定值?如果有,求其确定值。
第三章量子力学中的力学量1.力学量算符(1)力学量的描述(r)满足正交归一性关系本征函数之间具有正交性.归一化的本征函数ψn其集合具有完备性以后我们总是默认力学量算符的本征函数是归一化的,除非另有说明。
(2)力学量的测量(x)中测量对力学量Q的测量结果为力学量算符的本征值,在本征态ψn.在一般状态ψ中测量Q得到一个概率分布,测出第n个力学量Q得到唯一值qn的概率为本征值qn其中称为概率幅,按照概率论,在状态ψ中力学量Q的期望值为上式等价于这说明我们常用的波函数实质就是测量力学量x时所得到的概率幅。
(3)两个力学量的关系2.力学量的演化(1)力学量的演化规律(2)守恒量3.中心势场问题(1)角动量算符在球坐标中,角动量z分量和角动量平方算符分别为(θ,ψ)称为球谐函数,满足正式中l为角量子数,m为磁量子数,归一化的Ylm交归一性关系具体形式和性质参见附录A的公式(A2—9)。
(2)中心势场的定态薛定谔方程质量为m的粒子在中心势场U(r)中运动,哈密顿算符为(r)满足定态薛定谔方程的径向部分上式中径向本征函数Rnl定义约化的径向本征函数Unl (r)=rRnl(r),(3—20)式化为称为约化的径向方程.与约化的径向本征函数对应的归一化条件为在一般情况下,能量由主量子数n和角量子数l共同确定,即E=Enl,与磁量子数m无关,因此能级简并度为2l+1.(3)径向概率分布和角向概率分布(4)氢原子情况假设原子核不动,取为坐标原点,电子运动的势场为U(r)=-es2/r.当能量E<0时,系统处于束缚定态,能量本征值为其中径向函数Rnl(r)的具体形式参见附录A.由于能量仅与主量子数n有关,因此能级简并度为如果考虑氢原子核的运动,上述公式中的电子质量me 应修正为折合质量mμ=me mp/(me+mp);对于核电荷为Z的类氢离子,能量本征值应改变为Z2En,径向函数变为Rnl(Zr)。
第三章 量子体系的力学量本章讨论在量子力学中如何描述力学量的问题。
它是量子力学的重点之一,对初学者而言,开始显得比较抽象,因此,应注意习题训练。
3.1 力学量的平均值公式 力学量用算符表示~算符进入量子力学一、坐标的平均值⎰⎰⎰∞∞-∞∞-∞∞-==>=<r d r r d r r d t r w r r 3*323),(ψψψ分量: ⎰∞∞->=<r d t r x t r x n n3*),(),(ψψ问题:能否用),(t rψ导出其他力学量的平均值?二、动量的平均值⎰⎰⎰∞∞-∞∞-∞∞-==>=<p d t p C p t p C p d t p C p p d t p w p p3*323),(),(),(),(我们希望直接用),(t r ψ写出><p(注意r d t r p p 32),(⎰>≠<ψ~2),(t r ψ不是p的几率)。
以x 分量为例:⎰∞∞->=<p d t p C p t p C p x x3*),(),(将 r d e t r t p C r p i⎰∞∞-⋅-=323),()2(1),(ψπ 代入,有⎰⎰⎰∞∞-⋅-∞∞-⋅>=<pd r de t r p r d e t r p r p i x r p i x3/3/233*23]}),()2(1[]),()2(1[{/ψπψπ ⎰⎰⎰-⋅=])2(1)[,(),(3)(3//3*3/p d ep t r r d t r r d r r p i xπψψ计算[…]有)()()2(1[...]/33)(3/r r x i p d e x i r r p i-∂∂-=∂∂-=⎰∞∞--⋅δπ 于是 ⎰⎰∞∞-∞∞--∂∂->=<)(),())(,(/3//3*3r r t r r d x i t r r d p x δψψ),())(,(*3t r xi t r r d ψψ⎰∞∞-∂∂-=。