风机变浆系统控制原理
- 格式:pptx
- 大小:469.10 KB
- 文档页数:16
图1 变桨电机图2 备用电池组 安全锁定系统安全锁定系统是指变桨电机采用单向制动,单向制动是指叶片在变桨时有制动功能,顺桨时没有。
当电网掉电时,叶片会由于自身重力向顺桨方向转动,保护设备。
变桨滑环变桨滑环(见图3)用来传递机舱部分与轮毂部分的电源和控制信号,安装在轮毂内。
图3 变桨滑环 变桨变频器变桨变频器(见图4)与PLC之间的通信基于图4 变桨变频器6 变桨限位变桨角度范围为0~90°,86°时有一个电磁感应开关来检测叶片是否在顺桨位置,在-4°时有一个极限位置开关来保护叶片不会超出工作位置。
变桨变频器程序传输1 连接变桨程序硬件由装有COMBIVIS软件的电脑与变桨变频器使用专用连接线(见图5)连接。
2 传输程序软件.1 Parameter_Pitch.dw5为变桨变频器的参数文件,这个文件包含变桨变频器的所有必需的设置,包括CANopen通信的参数设置,必须下载到所有变桨变频器中,如图6所示。
.2 CANopen.on on PLC设置CANopen通信的文图6 Parameter_Pitch.dw5文件图7 CANopen.on PLC文件(1)检查PLC左上角的通信线是否接触良好。
(2)控制面板内无变桨程序版本号,可能为1)偏航变频器上的小开关拨的位置有误,应;2)三个变桨变频器上的小开关拨的位置有误,pitch1-OFF、pitch2-OFF、pitch3-ON。
(3)变桨变频器内的程序版本与一致,重传变桨变频器的程序或修改的参数跟控制面板上显示的变桨版本号一致。
(4)变桨控制柜间的线内部断裂,接触不良,更换线。
(5)检查主PLC的18线、浪涌保护的1和3号端子的线接触是否良好。
(6)更换滑环。
3.3 故障号:19(SS-11:Hub drives分析及处理方法:(1)检查主PLC的20线、浪涌保护图5 装有COMBIVIS软件的电脑与变桨变频器专用连接线连接经验共享Experience Sharing(1)检查轮毂滑环支撑杆是否松动,检查滑环支撑杆是否添加紧固螺母。
1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。
优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。
缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。
优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。
变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。
变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。
▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;通过变桨控制使机组保持额定输出功率不变,目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5° /s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7° /s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。
变桨系统原理及维护变桨系统是风力发电系统中的核心部件,用于控制风机的叶片角度,以适应不同风速下的转速和输出功率。
它由电气控制系统、机械传动系统和叶片角度测量系统组成。
本文将介绍变桨系统的原理和维护。
首先,变桨系统的原理是根据环境气象条件和主轴转速实时监测风力发电机的转速和功率输出,通过调整叶片角度控制风机的输出功率。
当风速较低时,变桨系统将自动调整叶片角度,使风机转矩增加,从而提高转速和功率输出;当风速较高时,变桨系统将减小叶片角度,减少风机转矩,以防止过载。
变桨系统的主要任务是保证风机在不同风速下的安全运行和最大功率输出。
变桨系统的维护包括定期检查和维修工作。
首先,需要定期检查变桨系统的电气控制部件,包括传感器、控制器、电机和电缆等,确保其运行正常。
其次,需要检查机械传动系统,包括转动轴、齿轮和传动带等,保证其没有松动或磨损,并注油润滑。
同时,应定期检查叶片角度测量系统,确保测量准确,及时调整或更换传感器。
另外,还需检查电缆连接是否牢固,机械部件是否有异常噪声和振动等。
如果发现故障或异常,应及时维修或更换受损部件。
对于变桨系统的维护,还需要注意以下几点。
首先,要定期清洁变桨系统的尘埃和污垢,以防止对系统运行产生干扰。
其次,应定期校准传感器,确保测量准确。
此外,需要备好备件,以备紧急更换。
在维护期间,应使用专业工具和设备,以确保操作安全和有效。
最后,为了保证变桨系统的正常运行和延长使用寿命,还应定期对系统进行性能测试和分析,通过数据监测和故障诊断,及时发现和解决潜在问题。
此外,还应进行系统的升级和改进,以适应新的技术和需求。
总之,变桨系统是风力发电系统中不可缺少的关键部件,通过调整叶片角度实现对风机输出功率的控制。
正确维护和保养变桨系统可以保证其正常运行和延长使用寿命,同时还需不断通过技术升级和改进提高系统性能和可靠性。
风机转速控制方法一、引言风机转速控制是风机运行过程中非常重要的一项技术,它可以实现风机的启停、调速、保护等功能,从而满足不同工况下的需求。
本文将介绍几种常见的风机转速控制方法,包括变频控制、变桨控制和阻力控制。
二、变频控制1. 原理变频控制是通过改变电源频率来控制电动机的转速。
当电源频率增加时,电动机转速也会增加;相反,当电源频率降低时,电动机转速会减小。
通过改变变频器的输出频率,可以实现对风机转速的精确控制。
2. 优点变频控制具有以下优点:- 转速调节范围广:变频器可以实现宽范围的转速调节,满足不同工况下的需求。
- 节能效果好:变频器可以根据实际负荷情况调整电动机转速,从而实现节能效果。
- 启停平稳:变频器可以实现平稳的启停过程,减少设备的机械冲击。
3. 缺点变频控制的缺点主要包括:- 造价较高:变频器的价格较高,增加了设备的投资成本。
- 对电动机要求高:变频器对电动机的电压、电流等参数有一定要求,需要选用适配的电机。
三、变桨控制1. 原理变桨控制是通过改变风机叶片的角度来控制风机转速。
当叶片角度增大时,风阻增加,风机转速减小;相反,当叶片角度减小时,风阻减小,风机转速增加。
通过控制变桨系统的机械结构,可以实现对风机转速的调节。
2. 优点变桨控制具有以下优点:- 转速调节灵活:变桨控制可以实现对风机转速的灵活调节,适应不同工况下的需求。
- 结构简单可靠:变桨控制的机械结构相对简单,可靠性高。
3. 缺点变桨控制的缺点主要包括:- 受限于叶片角度:叶片角度的调节范围有限,可能无法满足某些特殊工况的需求。
- 能耗较大:变桨控制需要消耗一定的能量来调节叶片角度,会造成一定的能耗。
四、阻力控制1. 原理阻力控制是通过改变风机的外部负载来控制风机转速。
当外部负载增加时,风机转速减小;相反,当外部负载减小时,风机转速增加。
通过改变阻力装置的工作状态,可以实现对风机转速的调节。
2. 优点阻力控制具有以下优点:- 控制方式简单:阻力控制的操作方式相对简单,易于实施。
变桨系统设计范文变桨系统是风力发电机组中的重要组成部分,主要用于调整风机叶片的角度,以便在不同的风速下最大限度地捕捉风能并转化为机械能。
本文将基于风力发电机组的工作原理、变桨系统的组成部分、工作原理和常见的设计参数等方面,对变桨系统进行详细阐述。
一、工作原理:风力发电机组由风机、变桨系统、发电机和控制系统等组成。
当风速增加时,风机的旋转速度也会增加,这会引起超速现象,对风机和发电机造成损害。
为了防止超速,就需要通过变桨系统来调整风机叶片的角度,以控制风机的旋转速度。
变桨系统的工作原理是利用控制器对风机叶片的角度进行调整。
当风速低于额定风速时,控制器会将风机叶片调整为最佳角度,以利用最小风速来产生最大的风能;当风速超过额定风速时,控制器会自动将风机叶片调整为零角度,以保护风机和发电机。
二、组成部分:变桨系统主要由叶片、叶片安装结构、执行机构、传感器和控制器等组成。
1.叶片:叶片是最重要的组成部分,常见的叶片材料有玻璃钢、碳纤维等,具有轻量化、高强度和耐腐蚀等特点。
2.叶片安装结构:用于将叶片连接到轴上,并提供角度调整的功能。
常见的叶片安装结构包括铰链机构和驱动机构。
3.执行机构:用于提供叶片角度调整的能力。
常见的执行机构有液压系统和电动机系统。
液压系统由液压泵、液压缸、液压油管等组成,通过控制液压油的流量和压力来实现叶片角度的调整;电动机系统由电动机、减速器、转动机构等组成,通过电动机的旋转来实现叶片角度的调整。
4.传感器:用于监测风速、叶片角度和负荷等参数。
常见的传感器有风速传感器、角度传感器和负荷传感器。
5.控制器:根据传感器的反馈信号,对叶片角度进行控制和调整。
常见的控制器有微机控制器和可编程逻辑控制器。
三、设计参数:设计一个合理的变桨系统需要考虑以下参数:1.风速范围:考虑所处地区的风能资源,确定变桨系统能够适应的风速范围。
通常将设计风速和额定风速作为参数进行设计。
2.负荷和效率:考虑发电机的额定负荷和发电效率,确定叶片角度的调整范围和步长。
风力发电机变桨系统所属分类:技术论文来源:电器工业杂志更新日期:2011-07-20摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。
关键词:变桨系统;构成;作用;保护种类;故障分析1 综述变桨系统的所有部件都安装在轮毂上。
风机正常运行时所有部件都随轮毂以一定的速度旋转。
变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。
风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。
变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。
风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。
任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。
变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。
此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。
由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。
风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。
风电变桨控制原理是指利用风能发电系统中的变桨机构来调整风机叶片的角度,以使风机在不同风速下保持最佳的转速和功率输出。
风电变桨控制原理主要包括以下几个方面:
1. 风速检测:通过安装在风机上的风速传感器或气象塔上的风速测量仪器,实时监测风速的变化。
2. 风速信号处理:将风速信号传输到控制系统中进行处理,以确定当前的风速状况。
3. 控制策略选择:根据风速信号和预设的控制策略,选择合适的变桨控制策略,以实现最佳的风机运行。
4. 变桨角度调整:根据控制策略,通过控制变桨机构,调整风机叶片的角度,以改变叶片的风阻特性和受力情况,从而使风机保持最佳的转速和功率输出。
5. 系统监测和保护:同时监测风机的运行状态和环境条件,如温度、湿度等,以及风机的故障和异常情况,及时采取相应的保护措施,确保风机的安全运行。
风电变桨控制原理的主要目标是通过调整风机叶片的角度,使风机在不同风速下保持最佳的转速和功率输出,从而提高风能发电系统的发电效率和可靠性。