风电变桨介绍
- 格式:ppt
- 大小:5.57 MB
- 文档页数:79
风力发电与偏航变桨介绍摘要:本文主要介绍了风力发电机及其偏航变桨系统的结构和工作原理。
偏航系统驱动风机对准风向,变桨系统调整桨距角适应相对风速,在保护风机的同时,提高风能利用率。
关键词:风力发电机;风机;偏航系统;变桨系统风力发电机——顾名思义,就是用风力发电的设备。
它首先将风能转化成机械能,再进一步将机械能转化成电能。
风机的种类有许多,市场上常见的还是横轴,上风向,升力型,三叶片风力发电机。
风的功率如下公式所示。
其中:为空气密度,A为垂直于风向的投影面积,V为风速,d为叶轮直径。
当风吹过风机后,叶轮前后的风速会明显下降,这是因为其中一部分动能被风机吸收了。
因为叶轮后的风速不可能降为0,所以风力发电机并不能吸收风的全部功率。
根据Betz定律,风机理论上能提取的最大功率是风功率的59.3%。
风机的功率曲线(如图1所示)反应了风力发电机组的功率特性,是衡量风机风能转化能力的重要指标之一。
它取决于叶片的气动性能和机组的控制策略。
风力发电机的额定功率是由风机和风况共同决定的。
相同型号的风机,在不同的风频分布地带,可能会有完全不同的额定功率,并配置不同功率的发电机。
图1 风机的功率曲线风力发电机的主要工作原理:风况在适用范围内——偏航系统驱动风机对准风向——变桨系统驱动叶片适应相对风速——风”吹动”片旋转——叶片带动主轴旋转——主轴转速经过主齿轮箱增速(其中,直驱技术不需要主齿轮箱)——带动发电机旋转发电——电力通过电缆输送到基站。
目前风力发电机呈现了4个发展方向:大型化,智能化,模块化和多元化。
技术发展的趋势,无非是从减少资金投入,提高风能利用率,提高产品可靠性3个方面降低风电的平准化度电成本,提高竞争力。
下面主要就风机的6个主要组件来简单分析一下风机硬件的多元化技术路线。
●塔架——基本上都为钢管结构,极少数采用混泥土结构。
●叶片——技术分支也主要体现在材料上:玻璃纤维为主,碳纤维为辅。
●发电机——有多个技术路线,总体来看还是以双馈电机和永磁电机为主。
变桨工作原理标题:变桨工作原理引言概述:变桨是现代风力发电机组中重要的组成部分,它通过调整叶片的角度来适应不同的风速和风向,从而优化发电效率。
本文将详细介绍变桨的工作原理,包括传动系统、控制系统、叶片角度调整原理、风速和风向检测以及变桨的效益。
一、传动系统1.1 齿轮箱:变桨系统中的齿轮箱负责将风力转换为机械能,并传递给叶片。
齿轮箱通常由多级齿轮组成,通过传动比例来适应不同的风速。
1.2 转子轴:转子轴是连接齿轮箱和叶片的重要部分,它承受着旋转力和扭矩。
转子轴通常采用高强度合金钢材料制造,以确保其耐用性和可靠性。
1.3 联轴器:联轴器连接转子轴和叶片轴,它能够传递转矩并允许叶片在变桨过程中调整角度。
联轴器的设计要考虑到叶片的旋转速度和扭矩传递的平稳性。
二、控制系统2.1 主控制器:主控制器是变桨系统的核心,它负责监测风速、风向和发电机组的运行状态,并根据预设的参数来调整叶片的角度。
主控制器采用先进的算法和传感器技术,以实现高效的风能利用。
2.2 电动机:电动机是控制叶片角度调整的执行器,主控制器通过电动机来实现叶片的旋转。
电动机的选择要考虑到扭矩输出和响应速度,以确保叶片能够及时调整角度。
2.3 传感器:传感器用于监测风速和风向,以提供准确的数据给主控制器。
常用的传感器包括风速传感器和风向传感器,它们能够实时检测风的变化,以便及时调整叶片的角度。
三、叶片角度调整原理3.1 风速检测:主控制器通过风速传感器获取当前的风速数据。
根据风速的大小,主控制器可以判断是否需要调整叶片的角度。
3.2 风向检测:风向传感器用于检测风的方向,主控制器可以根据风向的变化来调整叶片的角度,使其始终面向风的方向。
3.3 叶片角度调整:主控制器根据风速和风向的数据,通过控制电动机来调整叶片的角度。
当风速增大时,叶片的角度会增加,以提供更大的扭矩;当风速减小时,叶片的角度会减小,以避免过载。
四、风速和风向检测4.1 风速传感器:风速传感器通常采用超声波或热线等技术来测量风速。
风电变桨控制原理是指利用风能发电系统中的变桨机构来调整风机叶片的角度,以使风机在不同风速下保持最佳的转速和功率输出。
风电变桨控制原理主要包括以下几个方面:
1. 风速检测:通过安装在风机上的风速传感器或气象塔上的风速测量仪器,实时监测风速的变化。
2. 风速信号处理:将风速信号传输到控制系统中进行处理,以确定当前的风速状况。
3. 控制策略选择:根据风速信号和预设的控制策略,选择合适的变桨控制策略,以实现最佳的风机运行。
4. 变桨角度调整:根据控制策略,通过控制变桨机构,调整风机叶片的角度,以改变叶片的风阻特性和受力情况,从而使风机保持最佳的转速和功率输出。
5. 系统监测和保护:同时监测风机的运行状态和环境条件,如温度、湿度等,以及风机的故障和异常情况,及时采取相应的保护措施,确保风机的安全运行。
风电变桨控制原理的主要目标是通过调整风机叶片的角度,使风机在不同风速下保持最佳的转速和功率输出,从而提高风能发电系统的发电效率和可靠性。
风力发电机组变桨系统介绍一.风机变桨系统概述风力发电机组控制系统硬件分别安装在三个不同部分:1. 机舱控制,安装在机舱内2. 地面控制,安装在塔架底部3. 变桨控制,安装在轮毂内部人机界面触摸屏显示风机的运行状况和参数,或者启动或停止风机.风力发电机组四种控制方式:1. 定速定浆距控制(Fixed speed stall regulated)发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制2. 定速变浆距控制(Fixed speed pitch regulated)发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率3. 变速定浆距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平.4. 变速变浆距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,浆距控制用于调节功率.二. 变桨系统的工作原理定浆距风机通过叶片的失速,即改变叶片横断面周围流动的气流,导致效率的损失,从而控制风机的最大输出功率;变浆距风机是通过叶片沿其纵向轴转动,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.三. 变桨系统和定桨系统的比较定桨距失速调节型风力发电机组定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化,桨叶翼型本身所具有的失速特性.当风速高于额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。