第二节 洛必达法则
- 格式:ppt
- 大小:1002.00 KB
- 文档页数:21
上一页下一页本章知识点学习目标学习进度习题讲解返回主页第二节洛必达法则若当x→a(或x→∞)时,f(x)与F(x)都趋于零或都趋于无穷大,极限可能存在,也可能不存在.通常把这种极限称为未定式,并分别简记为或.对于这类极限不能用“商的极限等于极限的商”法则.对付这类极限有一种简便方法.就是现在要讲的洛必达法则.定理(洛必达法则)设(1)当x→a时,f(x)及F(x)都趋于零;(2)在点a的某空心邻域内,及都存在,且;(3)存在(或为无穷大),则.(*)证因为当x→a时的极限与f(a)及F(a)无关,所以可以假定f(a)=F(a)=0.由条件(1)、(2)知,f(x)及F(x)在点a的某邻域内连续.设x是这邻域内的一点,在以x及a为端点的区间上,f(x)及F(x)满足柯西定理的条件,故(在x与a之间).上式两边,令x→a,取极限,即得(*)式.例1求.解.例2求.解=例2表明,若当x→a时仍属型.且及满足定理中f(x)及F(x)所要满足的条件,则可以继续应用洛必达法则.例3求.解=.对于x→∞时的未定式,以及对于x→a或x→∞时的未定式,也有相应的洛必达法则.例如,对于x→∞时的未定式有定理设(1)当x→∞时,f(x)及F(x)都趋于零;(2)当|x|>n时,及都存在,且;(3)存在(或为无穷大);则.例4求.解=.例5求(n>0).解=例6求(n为正整数,)解=.其他类型的未定型,如0·∞,∞–∞,,,等,也可化成或型来计算.例7求(n>0)解这是0·∞型.通过成为型.例8求解这是∞–∞型.通过化为型.=例9求.解这是型.设,取对数得lny=xlnx.利用例7的结果,得.因为,有(当x→+0).故..洛必达法则是求未定式的有效方法.有时与其他方法结合使用会使得运算简捷.例10 求.解若直接就用洛必达法则.运算较繁.与其他方法结合则简捷得多.=.最后再看一个例子例11 求解这是型.看如下的运算.=不存在.这是错误的.事实上,=.这个例子说明,洛必达法则的条件不满足时,这个法则不能应用了.但所求极限却不一定不存在.例如,当lim不存在时(等于无穷大的情况除外),lim仍可能存在.上一页TOP下一页。