《高等数学B》 第四章 中值定理及导数的应用 第2节 洛必达法则
- 格式:ppt
- 大小:1.26 MB
- 文档页数:14
《高等数学B(经管类)》课程教学大纲(Advanced Mathematics B(Economics and Management))课程编号:161990172学分:10学时:160 (其中:讲课学时:160 实验学时:0 上机学时:0 )先修课程:无后续课程:线性代数、概率论与数理统计适用专业:经管类专业本科生开课部门:理学院一、课程的性质与目标本课程属于经管类公共基础必修课。
本课程的任务是使学生获得一元函数微积分及其应用、多元函数微积分及其应用、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,以及在经济管理中的一些简单应用,为学习后继课程奠定必要的数学基础,同时培养学生思维能力、推理能力、自学能力、解决问题的能力。
二、课程的主要内容及基本要求第1章函数(4学时)[知识点]集合、函数的基本性质、复合函数与反函数、基本初等函数与初等函数、函数关系的建立、经济学中的常用函数[重点]函数概念,基本初等函数;经济学中的常用函数[难点]建立函数关系[基本要求]1、识记:函数的基本性质;复合函数、反函数的概念及其运算;2、领会:基本初等函数的类型,理解初等函数的概念;3、简单应用:简单问题中函数关系的建立;4、综合应用:经济学中的常用函数关系的建立[考核要求]回顾中学相关知识,介绍有关函数的新知识,为后续学习打下基础第2章极限与连续(18学时)[知识点]数列的极限、函数极限、无穷小与无穷大、极限运算法则、极限存在准则、两个重要极限、连续复利、无穷小的比较、函数的连续性、闭区间上连续函数的性质[重点]极限运算法则,求极限的方法,无穷小的比较、函数的连续性[难点]求极限的方法;函数的间断点的判定[基本要求]1、识记:数列极限的定义和性质;函数极限的定义和性质;无穷小的定义、性质及其与无穷大的关系;函数连续性、间断点的概念;闭区间上连续函数的性质2、领会:理解极限运算法则,掌握求极限的方法;理解极限存在准则,掌握两个重要极限,;掌握等价无穷小及其在求极限中的应用方法;3、简单应用:等价无穷小及其在求极限中的应用;4、综合应用:经济学中的连续复利问题[考核要求]要求学生能直观理解极限的含义,掌握求极限的方法,明确本章的重要地位。
《高等数学B》第四章中值定理及导数的应用第2节洛必达法则洛必达法则(L'Hôpital's rule)是一种常用于求解极限的方法,该方法是由法国数学家Guillaume de l'Hôpital在1696年提出的。
洛必达法则适用于形如$\frac{0}{0}$或$\frac{\infty}{\infty}$的极限。
具体来说,如果对于函数$f(x)$和$g(x)$,当$x \to a$时,$f(x)$和$g(x)$分别趋于0或无穷大,且$f'(x)$和$g'(x)$都存在(其中$f'(x)$和$g'(x)$分别表示$f(x)$和$g(x)$的导数),则有:$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}\frac{f'(x)}{g'(x)}$$其中,等式右边的极限表示对$\frac{f'(x)}{g'(x)}$求导后再取$x \to a$的极限。
这个法则的推导基于泰勒展开的思想。
我们知道,对于充分光滑(即具有连续的导数)的函数,它在其中一点周围可以用泰勒级数展开。
假设$f(x)$和$g(x)$在$a$的邻域内都可展开,则有:$$f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 +\cdots$$$$g(x) = g(a) + g'(a)(x-a) + \frac{1}{2}g''(a)(x-a)^2 +\cdots$$根据极限的定义,我们希望求解的极限是$x \to a$时的极限,因此可以将$x-a$看作一个无穷小量。
我们忽略展开式中的高阶无穷小量,得到:$$\lim_{x \to a} \frac{f(x)}{g(x)} \approx \lim_{x \to a}\frac{f(a) + f'(a)(x-a)}{g(a) + g'(a)(x-a)}$$将$a$代入极限中,我们可以得到:$$\lim_{x \to a} \frac{f(a)}{g(a)}$$上述结果是前提条件$f(a)=g(a)=0$下的结果,而当$f(a) \neq 0$或$g(a) \neq 0$时,我们可以对$\frac{f(x)}{g(x)}$做除法的等价变形,具体来说,我们可以将除法变化为乘法,然后再求极限。