洛必达法则详解
- 格式:pdf
- 大小:946.12 KB
- 文档页数:29
第3章 导数的应用本章介绍导数的一些应用,利用导数求未定式的极限,利用导数研究函数的性态:判断函数的单调性和凹凸性,求函数的极值、最大值、最小值,并解决实际工作中的一些简单最优化问题。
§3.1 洛必达法则如果当0x x →(或x →∞)时,函数()f x 与()g x 都趋于零或都趋于无穷大,则极限0()lim()x x f x g x →(或()lim ()x f x g x →∞)可能存在,也可能不存在,通常称这种极限为未定式,并分别记为00或∞∞。
例如,极限0sin lim x x x →是00型未定式,极限221lim 23x x x →∞-+是∞∞型未定式。
在第1章中,我们曾计算过这种极限,由于不能直接利用极限运算法则,通常需要经过适当的变形,转化成可利用极限运算法则的形式进行计算,这种变形没有一般方法,需视具体问题而定。
下面介绍利用导数计算未定式极限的一般方法——洛必达法则。
一、 00型与∞∞型未定式定理3.1 设函数()f x 、()g x 满足: (1)0lim ()0x x f x →=,0lim ()0x x g x →=;(2)在点0x 的某去心邻域内,()f x '及()g x '都存在,且()0g x '≠; (3)0()lim()x x f x g x →''存在(或为∞); 则 ()()=→x g x f x x 0lim()()x g x f x x ''→0lim 。
证明从略.这种在一定条件下通过对分子分母分别求导再求极限来确定未定式的值的方法称 为洛必达法则。
注:(1)在定理3.1中,把“0x x →”换成“x →∞”(或其他情形)时,结论也成立。
(2)定理3.1中的条件(1),若改为lim x x →)(x f =∞, 0lim x x →)(x g =∞,则定理仍成立.(3)如果0()lim'()x x f x g x →'仍是00型或∞∞型未定式,并且函数)(x f '、'()g x 满足定理3.1中的条件,则可以继续利用洛必达法则,即有()()limx x f x g x →=0()lim'()x x f x g x →'0''()lim ''()x x f x g x →== . 例1 求0ln(1sin )limx x x →+.解 这是0型未定式,应用洛必达法则,得000cos ln(1sin )cos cos01sin lim lim lim 111sin 1sin 0x x x xx x x x x →→→++====++. 注:上式中的0cos lim 1sin x xx→+已经不是未定式,不能再对它应用洛必达法则,否则会得出错误的结论;事实上,利用初等函数的连续性即可求出它的值。
洛必达法则原理推导洛必达法则原理推导洛必达法则是微积分学中的一种重要理论,它描述了函数在逼近某个点时的极限趋近问题。
这个原理是由法国数学家洛必达在18世纪发明的。
在本文中,我们将通过推导的方式来理解洛必达法则的原理。
在微积分中,洛必达法则的表述是:当函数$f(x)$和$g(x)$在$x=a$处都可导,且$g'(a)$不等于$0$时,如果$\lim_{x\rightarrow a}f(x)=0$且$\lim_{x\rightarrow a}g(x)=0$,则$\lim_{x\rightarrowa}\frac{f(x)}{g(x)}$存在,且有$\lim_{x\rightarrowa}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}$。
我们可以通过导数的定义来理解洛必达法则。
考虑$f(x)$和$g(x)$在$x=a$处的导数,假设都存在,我们可以将它们展开为下面的形式:$$f'(a) = \lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}$$$$g'(a) = \lim_{x\rightarrow a}\frac{g(x)-g(a)}{x-a}$$由于$\lim_{x\rightarrow a}f(x)=0$和$\lim_{x\rightarrow a}g(x)=0$,我们可以将$f(x)$和$g(x)$展开为泰勒级数:$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+...$$$$g(x)=g(a)+g'(a)(x-a)+\frac{g''(a)}{2}(x-a)^2+...$$因为$f(x)$和$g(x)$在$x=a$处可导,所以它们的一阶导数存在,而一阶导数在$x=a$处的值分别是$f'(a)$和$g'(a)$。
洛必达法则求导是高等数学中一种常见的求导方法,其可以解决一些特殊函数的导数计算问题。
在本文中,我们将向读者详细介绍洛必达法则的概念及其应用。
一、洛必达法则的含义洛必达法则又称为洛必达-夹逼定理,它是对不定型(即在求极限时出现 $\frac{0}{0}, \frac{\infty}{\infty}$ 等形式)极限的一种求法。
当 $\frac{0}{0}, \frac{\infty}{\infty}$ 等形式出现时,我们可以利用洛必达法则将其转化为可求得的极限。
二、洛必达法则的公式在理解洛必达法则的基本思想后,我们可以了解其公式:假设 $f(x)$ 和 $g(x)$ 连续,且当$x→a$ 时,$f(x)$ 和$g(x)$ 同时趋于 $0$ 或$±∞$,则:$$\lim_{x→a}\frac{f(x)}{g(x)}=\lim_{x→a}\frac{f'(x)}{g'(x)}$$其中,$f'(x)$ 和 $g'(x)$ 分别表示 $f(x)$ 和 $g(x)$ 的导函数。
三、洛必达法则的应用下面,我们就来看一下几个应用洛必达法则的例子。
例1:计算 $\lim_{x→∞}\frac{e^x}{x^2}$由于 $\frac{\infty}{\infty}$ 的形式,我们可以利用洛必达法则将其转化为:$$\lim_{x→∞}\frac{e^x}{2x}$$继续利用洛必达法则,得到其极限为:$$\lim_{x→∞}\frac{e^x}{2}=∞$$例2:计算 $\lim_{x→0}\frac{x-\sin{x}}{x^3}$在这个例子中,当$x→0$ 时,$\frac{0}{0}$ 的形式出现,因此我们可以使用洛必达法则。
将其分子分母求导,得:$$\lim_{x→0}\frac{1-\cos{x}}{3x^2}=\frac{1}{6}$$例3:计算 $\lim_{x→∞}\frac{\ln{x}}{x}$当$x→∞$ 时,$\frac{\infty}{\infty}$ 的形式出现,因此我们可以使用洛必达法则。
洛必达法则通俗理解洛必达法则,又称为洛必达定理,是微积分中的基本定理之一。
它是由法国数学家洛必达于1696年提出的。
洛必达法则用于求解极限问题,是微积分中非常重要的工具之一。
下面我们来通俗理解洛必达法则。
我们需要了解一下极限的概念。
在数学中,极限是指函数在某一点无限接近于某个值的过程。
而洛必达法则则是用来求解某些特定函数在极限点处的极限值的方法。
洛必达法则的核心思想是将函数的极限转化为两个函数的极限之商的形式,从而更加方便地计算。
洛必达法则的具体表述是:如果函数f(x)和g(x)在某一点a的某个去心邻域内都可导,且g'(x)不等于0,那么当x趋近于a时,f(x)除以g(x)的极限等于f'(x)除以g'(x)的极限。
这个表述可能有些抽象,下面我们通过几个具体的例子来说明洛必达法则的应用。
我们来计算极限lim(x->0) (sinx)/x。
根据洛必达法则,我们可以将这个极限转化为lim(x->0) cosx/1。
因为cosx在x=0处可导,且cos(0)=1,那么根据洛必达法则,上述极限的值为1。
接下来,我们来计算极限lim(x->∞) (x^2+3x)/(2x^2+5)。
根据洛必达法则,我们可以将这个极限转化为lim(x->∞) (2x+3)/(4x),因为x^2在x趋近于无穷大时增长的速度远远大于x,所以x^2+3x 和2x^2+5的极限值相等。
那么根据洛必达法则,上述极限的值为1/2。
我们来计算极限lim(x->0) (e^x-1)/x。
根据洛必达法则,我们可以将这个极限转化为lim(x->0) e^x/1,因为e^x在x=0处可导,且e^0=1,那么根据洛必达法则,上述极限的值为1。
通过以上几个例子,我们可以看出洛必达法则在求解极限问题中的重要性和实用性。
它能够将复杂的极限问题转化为更简单的形式,从而更便于计算。
当然,在使用洛必达法则时,我们需要注意一些条件,比如函数可导性和分母不等于0等。
3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)技法01端点效应(必要性探索)解题技巧知识迁移端点效应的类型1.如果函数f(x)在区间[a,b]上,f(x)≥0恒成立,则f(a)≥0或f(b)≥0.2.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),则f (a)≥0 或f (b)≤0 .3.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0,f (a)=0(或f(b)=0,f (b)≤0 则f (a)≥0 或f (b)≤0 .1(2023·全国·统考高考真题)已知函数f(x)=ax-sin xcos3x,x∈0,π2(1)当a=8时,讨论f(x)的单调性;(2)若f(x)<sin2x恒成立,求a的取值范围.【法一】端点效应一令g(x)=f(x)-sin2x,x∈0,π2,得g(0)=0,且g(x)<0在x∈0,π2上恒成立画出草图根据端点效应, 需要满足g (0)≤0,而g (x)=a-1+2sin2xcos4x-2cos2x则g (0)=a-3, 令g (0)≤0, 得a≤3当a≤3时, 由于g(0)=0, 只需证g (x)<0即可而g (x)含有参数a, 故可对g (x)进行放缩即g x =a-1+2sin2xcos4x-2cos2x≤3-1+2sin2xcos4x-2cos2x=5-3-2cos2xcos4x-4cos2x令t=cos2x, 其中0<t<1设h(t)=5-3-2tt2-4t则h (t)=6t3-2t2-4=-4t3-2t+6t3令p(t)=-4t3-2t+6则p (t)=-12t2-2<0, 故p(t)在(0,1)上递减, 得p(t)>p(1)=0则h (t)>0, 得h(t)在(0,1)上单调递增, 则h(t)<h(1)=0即g (x)<0, 满足g(x)<g(0)=0成立当a>3时,由于g 0 =a-3>0,故存在x0, 使得在0,x0上g (x)>0,所以g(x)在0,x0上单调递增, 则g(x)>g(0)=0, 不成立特上所述:a≤3.【法二】端点效应二(2)f(x)<sin2x⇒ax-sin xcos3x <sin2x⇒g(x)=ax-sin2x-sin xcos3x<0由于g(0)=0, 且g (x)=a-2cos2x-cos2x+3sin2xcos4x,注意到当g (0)>0, 即a>3时, ∃x0∈0,π2使g (x)>0在x∈0,x0成立, 故此时g(x)单调递减∴g(x)>g(0)=0, 不成立.另一方面, 当a≤3时, g(x)≤3x-sin2x-sin xcos3x≡h(x), 下证它小于等于0 .令h x =3-2cos2x-3-2cos2x cos2x=3cos4x+2cos2x-3-2cos2x cos4xcos4x =3cos4x-1+2cos2x1-cos2x cos2xcos4x=-cos2x-124cos2x+3cos4x<0.∴g(x)单调递减, ∴g(x)≤g(0)=0. 特上所述:a≤3.【法三】设g(x)=f(x)-sin2xg (x)=f (x)-2cos2x=g(t)-22cos2x-1=at2+2t-3t2-2(2t-1)=a+2-4t+2t-3t2设φ(t)=a+2-4t+2t -3 t2φ (t)=-4-2t2+6t3=-4t3-2t+6t3=-2(t-1)(2t2+2t+3)t3>0所以φ(t)<φ(1)=a-3.1°若a∈(-∞,3],g (x)=φ(t)<a-3≤0即g(x)在0,π2上单调递减,所以g(x)<g(0)=0.所以当a∈(-∞,3],f(x)<sin2x,符合题意.2°若a∈(3,+∞)当t→0,2t-3t2=-31t-132+13→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以∃t0∈(0,1),使得φt0 =0,即∃x0∈0,π2,使得g x0 =0.当t∈t0,1,φ(t)>0,即当x∈0,x0,g (x)>0,g(x)单调递增.所以当x∈0,x0,g(x)>g(0)=0,不合题意.综上,a的取值范围为(-∞,3].1(2023·全国·统考高考真题)已知函数f x =ax-sin xcos2x,x∈0,π2.(1)当a=1时,讨论f x 的单调性;(2)若f x +sin x<0,求a的取值范围.【答案】(1)f x 在0,π2上单调递减(2)a≤0【分析】(1)代入a=1后,再对f x 求导,同时利用三角函数的平方关系化简f x ,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数g x =f x +sin x,从而得到g x <0,注意到g0 =0,从而得到g 0 ≤0,进而得到a≤0,再分类讨论a=0与a<0两种情况即可得解;法二:先化简并判断得sin x-sin xcos2x<0恒成立,再分类讨论a=0,a<0与a>0三种情况,利用零点存在定理与隐零点的知识判断得a>0时不满足题意,从而得解.【详解】(1)因为a=1,所以f x =x-sin xcos2x,x∈0,π2,则f x =1-cos x cos2x-2cos x-sin xsin xcos4x=1-cos2x+2sin2xcos3x=cos3x-cos2x-21-cos2xcos3x=cos3x+cos2x-2cos3x,令t=cos x,由于x∈0,π2,所以t=cos x∈0,1 ,所以cos 3x +cos 2x -2=t 3+t 2-2=t 3-t 2+2t 2-2=t 2t -1 +2t +1 t -1 =t 2+2t +2 t -1 ,因为t 2+2t +2=t +1 2+1>0,t -1<0,cos 3x =t 3>0,所以f x =cos 3x +cos 2x -2cos 3x <0在0,π2 上恒成立,所以f x 在0,π2 上单调递减.(2)法一:构建g x =f x +sin x =ax -sin x cos 2x +sin x 0<x <π2 ,则g x =a -1+sin 2xcos 3x +cos x 0<x <π2 ,若g x =f x +sin x <0,且g 0 =f 0 +sin0=0,则g 0 =a -1+1=a ≤0,解得a ≤0,当a =0时,因为sin x -sin xcos 2x =sin x 1-1cos 2x ,又x ∈0,π2 ,所以0<sin x <1,0<cos x <1,则1cos 2x >1,所以f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sin xcos 2x <0,满足题意;综上所述:若f x +sin x <0,等价于a ≤0,所以a 的取值范围为-∞,0 .法二:因为sin x -sin x cos 2x =sin x cos 2x -sin x cos 2x =sin x cos 2x -1 cos 2x =-sin 3xcos 2x ,因为x ∈0,π2 ,所以0<sin x <1,0<cos x <1,故sin x -sin xcos 2x <0在0,π2 上恒成立,所以当a =0时,f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sinxcos 2x <0,满足题意;当a >0时,因为f x +sin x =ax -sin x cos 2x +sin x =ax -sin 3xcos 2x ,令g x =ax-sin3xcos2x0<x<π2,则g x =a-3sin2x cos2x+2sin4xcos3x,注意到g 0 =a-3sin20cos20+2sin40cos30=a>0,若∀0<x<π2,gx >0,则g x 在0,π2上单调递增,注意到g0 =0,所以g x >g0 =0,即f x +sin x>0,不满足题意;若∃0<x0<π2,gx0<0,则g 0 g x0<0,所以在0,π2上最靠近x=0处必存在零点x1∈0,π2,使得g x1 =0,此时g x 在0,x1上有g x >0,所以g x 在0,x1上单调递增,则在0,x1上有g x >g0 =0,即f x +sin x>0,不满足题意;综上:a≤0.【点睛】关键点睛:本题方法二第2小问讨论a>0这种情况的关键是,注意到g 0 >0,从而分类讨论g x 在0,π2上的正负情况,得到总存在靠近x=0处的一个区间,使得g x >0,从而推得存在g x >g0 =0,由此得解.2(2020·全国·统考高考真题)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.【答案】(1)当x∈-∞,0时,f'x <0,f x 单调递减,当x∈0,+∞时,f'x >0,f x 单调递增.(2)7-e24,+∞【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当a=1时,f x =e x+x2-x,f x =e x+2x-1,由于f x =e x+2>0,故f'x 单调递增,注意到f 0 =0,故:当x∈-∞,0时,f x <0,f x 单调递减,当x∈0,+∞时,f x >0,f x 单调递增.(2)[方法一]【最优解】:分离参数由f x ≥12x3+1得,e x+ax2-x≥12x3+1,其中x≥0,①.当x=0时,不等式为:1≥1,显然成立,符合题意;②.当x>0时,分离参数a得,a≥-e x-12x3-x-1x2,记g x =-e x-12x3-x-1x2,g x =-x-2e x-12x2-x-1x3,令h x =e x-12x2-x-1x≥0,则h x =e x-x-1,h x =e x-1≥0,故h'x 单调递增,h x ≥h 0 =0,故函数h x 单调递增,h x ≥h0 =0,由h x ≥0可得:e x-12x2-x-1≥0恒成立,故当x∈0,2时,g x >0,g x 单调递增;当x∈2,+∞时,g x <0,g x 单调递减;因此,g xmax=g2 =7-e2 4,综上可得,实数a的取值范围是7-e24,+∞.[方法二]:特值探路当x≥0时,f(x)≥12x3+1恒成立⇒f(2)≥5⇒a≥7-e24.只需证当a≥7-e24时,f(x)≥12x3+1恒成立.当a≥7-e24时,f(x)=ex+ax2-x≥e x+7-e24⋅x2-x.只需证明e x+7-e24x2-x≥12x3+1(x≥0)⑤式成立.⑤式⇔e2-7x2+4x+2x3+4e x≤4,令h(x)=e2-7x2+4x+2x3+4e x(x≥0),则h (x)=13-e2x2+2e2-9x-2x3e x=-x2x2-13-e2x-2e2-9e x=-x(x-2)2x+e2-9e x,所以当x∈0,9-e2 2时,h(x)<0,h(x)单调递减;当x∈9-e22,2,h (x)>0,h(x)单调递增;当x∈(2,+∞),h (x)<0,h(x)单调递减.从而[h(x)]max=max{h(0),h(2)}=4,即h(x)≤4,⑤式成立.所以当a≥7-e24时,f(x)≥12x3+1恒成立.综上a≥7-e2 4.[方法三]:指数集中当x≥0时,f(x)≥12x3+1恒成立⇒e x≥12x3+1-ax2+x⇒12x3-ax2+x+1e-x≤1,记g x =12x3-ax2+x+1e-x(x≥0),g x =-12x3-ax2+x+1-32x2+2ax-1e-x=-12x x2-2a+3x+4a+2e-x=-1 2x x-2a-1x-2e-x,①.当2a+1≤0即a≤-12时,gx =0⇒x=2,则当x∈(0,2)时,g x >0,g x 单调递增,又g0 =1,所以当x∈(0,2)时,g x >1,不合题意;②.若0<2a+1<2即-12<a<12时,则当x∈(0,2a+1)∪(2,+∞)时,gx <0,g x 单调递减,当x∈(2a+1,2)时,g x >0,g x 单调递增,又g0 =1,所以若满足g x ≤1,只需g2 ≤1,即g2 =(7-4a)e-2≤1⇒a≥7-e24,所以当⇒7-e24≤a<12时,g x ≤1成立;③当2a+1≥2即a≥12时,g x =12x3-ax2+x+1e-x≤12x3+x+1e-x,又由②可知7-e24≤a<12时,g x ≤1成立,所以a=0时,g(x)=12x3+x+1e-x≤1恒成立,所以a≥12时,满足题意.综上,a≥7-e2 4.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!3(2022·全国·统考高考真题)已知函数f(x)=xe ax-e x.(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N ∗,证明:112+1+122+2+⋯+1n 2+n>ln (n +1).【答案】(1)f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)a ≤12(3)见解析【分析】(1)求出f x ,讨论其符号后可得f x 的单调性.(2)设h x =xe ax -e x +1,求出h x ,先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论h x 符号,最后就a ≤0结合放缩法讨论h x 的范围后可得参数的取值范围.(3)由(2)可得2ln t <t -1t对任意的t >1恒成立,从而可得ln n +1 -ln n <1n 2+n 对任意的n ∈N *恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当a =1时,f x =x -1 e x ,则f x =xe x ,当x <0时,f x <0,当x >0时,f x >0,故f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)设h x =xe ax -e x +1,则h 0 =0,又h x =1+ax e ax -e x ,设g x =1+ax e ax -e x ,则g x =2a +a 2x e ax -e x ,若a >12,则g 0 =2a -1>0,因为g x 为连续不间断函数,故存在x 0∈0,+∞ ,使得∀x ∈0,x 0 ,总有g x >0,故g x 在0,x 0 为增函数,故g x >g 0 =0,故h x 在0,x 0 为增函数,故h x >h 0 =0,与题设矛盾.若0<a ≤12,则h x =1+ax e ax -e x =e ax +ln 1+ax -e x ,下证:对任意x >0,总有ln 1+x <x 成立,证明:设S x =ln 1+x -x ,故S x =11+x -1=-x 1+x<0,故S x 在0,+∞ 上为减函数,故S x <S 0 =0即ln 1+x <x 成立.由上述不等式有e ax +ln 1+ax -e x <e ax +ax -e x =e 2ax -e x ≤0,故h x ≤0总成立,即h x 在0,+∞ 上为减函数,所以h x <h0 =0.当a≤0时,有h x =e ax-e x+axe ax<1-1+0=0, 所以h x 在0,+∞上为减函数,所以h x <h0 =0.综上,a≤1 2 .(3)取a=12,则∀x>0,总有xe 12x-e x+1<0成立,令t=e 12x,则t>1,t2=e x,x=2ln t,故2t ln t<t2-1即2ln t<t-1t对任意的t>1恒成立.所以对任意的n∈N*,有2ln n+1n<n+1n-nn+1,整理得到:ln n+1-ln n<1n2+n,故112+1+122+2+⋯+1n2+n>ln2-ln1+ln3-ln2+⋯+ln n+1-ln n=ln n+1,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.技法02函数凹凸性解题技巧知识迁移凹函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2>f x 1+x22 .凸函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2<f x 1+x22.1在△ABC 中, 求sin A +sin B +sin C 的最大值.因为函数y =sin x 在区间(0,π)上是上凸函数, 则13(sin A +sin B +sin C )≤sin A +B +C 3 =sin π3=32即sin A +sin B +sin C ≤332, 当且仅当sin A =sin B =sin C 时, 即A =B =C =π3时,取等号.上述例题是三角形中一个重要的不等式:在△ABC 中,sin A +sin B +sin C ≤332.2(2021·黑龙江模拟)丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数f (x )在(a ,b )上的导函数为f (x ),f (x )在(a ,b )上的导函数为f (x ),若在(a ,b )上f (x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,则实数m 的取值范围是()A.e -1,+∞B.e -1,+∞C.e 4-14,+∞D.e 4-14,+∞因为f (x )=e x -x ln x -m 2x 2,所以f (x )=e x -1+ln x -mx =e x -mx -ln x -1,f (x )=e x -m -1x,因为f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,所以f (x )=e x -m -1x<0对于x ∈(1,4)恒成立,可得m >e x -1x对于x ∈(1,4)恒成立,令g x =e x -1x,则m >g x max ,因为g x =e x +1x 2>0,所以g x=e x-1x 在(1,4)单调递增,所以g x max <g 4 =e 4-14,所以m ≥e 4-14,【答案】C1(全国·高考真题)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【答案】(Ⅰ)(0,+∞);(Ⅱ)见解析【详解】试题分析:(Ⅰ)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(Ⅱ)借助(Ⅰ)的结论来证明,由单调性可知x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.设g (x )=-xe 2-x -(x -2)e x ,则g '(x )=(x -1)(e 2-x -e x ).则当x >1时,g '(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.试题解析:(Ⅰ)f '(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(Ⅰ)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(Ⅱ)设a >0,则当x ∈(-∞,1)时,f '(x )<0;当x ∈(1,+∞)时,f '(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a 2,则f(b)>a2(b-2)+a(b-1)2=a b2-32b>0,故f(x)存在两个零点.(Ⅲ)设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(Ⅱ)不妨设x1<x2,由(Ⅰ)知x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-xe2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.【考点】导数及其应用【名师点睛】对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简.解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.2(2021·全国·统考高考真题)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【答案】(1)f x 的递增区间为0,1,递减区间为1,+∞;(2)证明见解析.【分析】(1)首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令1a =m,1b=n,命题转换为证明:2<m+n<e,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)f x 的定义域为0,+∞.由f x =x1-ln x得,f x =-ln x,当x=1时,f′x =0;当x∈0,1时f′x >0;当x∈1,+∞时,f'x <0.故f x 在区间0,1内为增函数,在区间1,+∞内为减函数,(2)[方法一]:等价转化由b ln a-a ln b=a-b得1a1-ln1a=1b1-ln1b,即f1a =f1b .由a≠b,得1a≠1b.由(1)不妨设1a∈(0,1),1b∈(1,+∞),则f1a>0,从而f1b >0,得1b∈(1,e),①令g x =f2-x-f x ,则g (x)=ln(2-x)+ln x=ln(2x-x2)=ln[1-(x-1)2],当x∈0,1时,g′x <0,g x 在区间0,1内为减函数,g x >g1 =0,从而f2-x>f x ,所以f2-1 a>f1a =f1b ,由(1)得2-1a<1b即2<1a+1b.①令h x =x+f x ,则h'x =1+f x =1-ln x,当x∈1,e时,h′x >0,h x 在区间1,e内为增函数,h x <h e =e,从而x+f x <e,所以1b+f1b<e.又由1a∈(0,1),可得1a<1a1-ln1a=f1a =f1b ,所以1a+1b<f1b+1b=e.②由①②得2<1a+1b<e.[方法二]【最优解】:b ln a-a ln b=a-b变形为ln aa -ln bb=1b-1a,所以ln a+1a=ln b+1b.令1a=m,1b=n.则上式变为m1-ln m=n1-ln n,于是命题转换为证明:2<m+n<e.令f x =x1-ln x,则有f m=f n,不妨设m<n.由(1)知0<m<1,1<n<e,先证m+n>2.要证:m +n >2⇔n >2-m ⇔f n <f 2-m ⇔f (m )<f 2-m ⇔f m -f 2-m <0.令g x =f x -f 2-x ,x ∈0,1 ,则g ′x =-ln x -ln 2-x =-ln x 2-x ≥-ln1=0,∴g x 在区间0,1 内单调递增,所以g x <g 1 =0,即m +n >2.再证m +n <e .因为m 1-ln m =n ⋅1-ln n >m ,所以需证n 1-ln n +n <e ⇒m +n <e .令h x =x 1-ln x +x ,x ∈1,e ,所以h 'x =1-ln x >0,故h x 在区间1,e 内单调递增.所以h x <h e =e .故h n <e ,即m +n <e .综合可知2<1a +1b<e .[方法三]:比值代换证明1a +1b>2同证法2.以下证明x 1+x 2<e .不妨设x 2=tx 1,则t =x 2x 1>1,由x 1(1-ln x 1)=x 2(1-ln x 2)得x 1(1-ln x 1)=tx 1[1-ln (tx 1)],ln x 1=1-t ln tt -1,要证x 1+x 2<e ,只需证1+t x 1<e ,两边取对数得ln (1+t )+ln x 1<1,即ln (1+t )+1-t ln tt -1<1,即证ln (1+t )t <ln tt -1.记g (s )=ln (1+s )s ,s ∈(0,+∞),则g (s )=s1+s-ln (1+s )s2.记h (s )=s 1+s -ln (1+s ),则h ′(s )=1(1+s )2-11+s <0,所以,h s 在区间0,+∞ 内单调递减.h s <h 0 =0,则g 's <0,所以g s 在区间0,+∞ 内单调递减.由t ∈1,+∞ 得t -1∈0,+∞ ,所以g t <g t -1 ,即ln (1+t )t <ln t t -1.[方法四]:构造函数法由已知得ln a a -ln b b =1b -1a ,令1a =x 1,1b=x 2,不妨设x 1<x 2,所以f x 1 =f x 2 .由(Ⅰ)知,0<x1<1<x2<e,只需证2<x1+x2<e.证明x1+x2>2同证法2.再证明x1+x2<e.令h(x)=1-ln xx-e(0<x<e),h (x)=-2+ex+ln x(x-e)2.令φ(x)=ln x+ex-2(0<x<e),则φ′(x)=1x-ex2=x-ex2<0.所以φx >φe =0,h′x >0,h x 在区间0,e内单调递增.因为0<x1<x2<e,所以1-ln x1x1-e<1-ln x2x2-e,即1-ln x11-ln x2>x1-ex2-e又因为f x1=f x2,所以1-ln x11-ln x2=x2x1,x2x1>x1-ex2-e,即x22-ex2<x21-ex1,x1-x2x1+x2-e>0.因为x1<x2,所以x1+x2<e,即1a+1b<e.综上,有2<1a+1b<e结论得证.【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于x1+x2-e<0的式子,这是本方法证明不等式的关键思想所在.3(陕西·高考真题)已知函数A(1,1).(1)若直线y=kx+1与f(x)的反函数的图像相切, 求实数k的值;(2)设x>0, 讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小, 并说明理由.【答案】(1)k=1 e2(2)当m>e24时两曲线有2个交点;当m=e24时两曲线有1个交点;当m<e24时两曲线没有交点(3)f(a)+f(b)2>f(b)-f(a)b-a,理由见解析.【分析】(1)设切点(x0,kx0+1),利用导数的几何意义得到方程组可得答案;(2)e x=mx2(x>0)⇔m=e xx2(x>0),转化为y=m与g(x)=e xx2(x>0)图象交点的个数问题;(3)作差得到e ab-a1+e b-a-21-e b-a2b-a,令b-a=t>0,构造新函数g(t)=(t+2)e t+t-2,求导即可得到答案.【详解】函数f(x)=e x,x∈R⇒f (x)=e x(1)函数1x0=k⇒kx0=1,f(x)=e x,x∈R的反函数为y=ln x,x>0,y =1x,设切点坐标为(x0,kx0+1)则1x0=k⇒kx0=1,ln x0=2⇒x0=e2⇒k=1e2.(2)令f(x)=mx2即e x=mx2(x>0)⇒m=e xx2(x>0),设g(x)=e xx2(x>0)有g (x)=e x(x-2)x3(x>0),当x∈(0,2],g (x)<0,当x∈[2,+∞),g (x)>0所以函数g(x)在(0,2]上单调递减,在[2,+∞)上单调递增,g(x)min=g(2)=e24,所以当m>e24时,两曲线有2个交点;当m=e24时,两曲线有1个交点;当m<e24时,两曲线没有交点.(3)f(a)+f(b)2>f(b)-f(a)b-a.f a +f b2-f b -f ab-a=e a+e b2-e a-e bb-a=e a1+e b-a2-1-e b-ab-a=e ab-a1+e b-a-21-e b-a2b-a∵a<b,令b-a=t>0∴上式=e a t1+e t-21-e t2t=e a2t⋅t+2e t+t-2令g(t)=(t+2)e t+t-2,则g (t)=(t+3)e t+1>0恒成立,∴g(t)>g(0)=0,而e a2t >0,∴e a2t⋅t+2e t+t-2>0,故f(a)+f(b)2>f(b)-f(a)b-a.【点睛】本题考查函数、导数、不等式、参数等问题,属于难题.第二问运用数形结合思想解决问题,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.技法03洛必达法则解题技巧知识迁移洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。
洛必达法则通俗理解洛必达法则是管理学中的一种经典理论,它主要用于解决企业中的生产管理问题。
洛必达法则的核心思想是通过合理的资源配置和生产计划,实现生产效率的最大化,从而提高企业的竞争力和盈利能力。
本文将以通俗易懂的方式解释洛必达法则的原理和应用。
一、什么是洛必达法则?洛必达法则是由意大利经济学家洛达诺·洛必达于1913年提出的,他在研究生产管理时发现了一种生产效率的规律。
他认为,生产过程中存在着瓶颈资源,这些资源的利用效率直接影响到整个生产线的产能。
只有找到并优化这些瓶颈资源,才能实现生产效率的最大化。
二、洛必达法则的原理洛必达法则的原理可以用一个简单的例子来解释。
假设一个工厂有三个工序,每个工序的加工时间分别是1小时、2小时和3小时,而每个工序的产能分别是100件、50件和30件。
现在工厂的生产线上有1000个产品需要加工,那么按照洛必达法则,应该如何安排生产计划呢?根据洛必达法则,我们首先需要找到瓶颈工序,也就是产能最低的那个工序。
在这个例子中,第三个工序的产能最低,只有30件,所以它是瓶颈工序。
接下来,我们就需要根据瓶颈工序的产能来确定整个生产线的产能。
根据洛必达法则,整个生产线的产能取决于瓶颈工序的产能。
在这个例子中,瓶颈工序的产能是30件,而且每个产品需要依次经过三个工序才能完成。
所以,整个生产线每小时最多只能产出30件产品。
如果我们有1000个产品需要加工,那么至少需要1000/30=33.33个小时才能完成。
三、洛必达法则的应用洛必达法则的应用主要涉及到生产计划和资源配置。
根据洛必达法则,我们可以合理安排生产计划,确保生产线的产能得到最大化。
具体来说,可以采取以下几个步骤:1. 找到瓶颈资源:通过对生产线进行分析,找到产能最低的工序或资源,这些就是瓶颈资源。
2. 优化瓶颈资源:通过提高瓶颈资源的利用效率,可以增加整个生产线的产能。
可以采取加班、增加设备数量等方式来提高瓶颈资源的产能。
洛必达法则原理推导洛必达法则(L'Hôpital's rule)是一种用于求解极限的重要方法,由法国数学家洛必达(Guillaume-François-Antoine, Leibniz的同事)于18世纪提出。
洛必达法则可以用于解决一些经典的极限问题,尤其是当使用代数方法无法得到明确结果时。
洛必达法则的核心思想是将求极限的问题转化为求导数的问题。
1.当x→a时,f(x)和g(x)都趋近于0或无穷大;2.g'(x)≠0,当x趋近于a时,即g(x)不为常数。
下面我们通过一个具体的例子来推导洛必达法则的核心思想。
例子:求解极限lim(x→0)sin(x)/x。
解:根据洛必达法则的要求,在求解极限之前,我们首先考虑lim(x→0)[sin(x)]/[x]的极限。
可以看出,当x→0时,分子sin(x)和分母x都趋近于0。
我们注意到,sin(x)是连续函数,并且在x=0处可导,因此按照导数的定义,我们有:[sin(x)]/[x] = lim(h→0)[sin(h)]/[h] = d/dx[sin(x)] = cos(x)其中h=x-0,即h是自变量与a的差值。
在洛必达法则中,我们将h看作自变量,而不是真正的x值。
接下来,考虑到cos(0)=1lim(x→0)sin(x)/x = lim(h→0)cos(h) = cos(0) = 1从上述推导可以看出,利用洛必达法则,我们将原来的极限问题转化为了求导数的问题,从而成功地求解了极限。
进一步推广洛必达法则,我们可以得到更一般的形式。
若lim(x→a)f(x)/g(x)是一个0/0或∞/∞型的极限,我们可以将f(x)和g(x)在a点附近使用洛必达法则的推导方法,并将其转化为f'(x)和g'(x)的极限。
这样,我们就能够求解出原本较难的极限问题,使之更加容易处理。
总结起来,洛必达法则是一种非常重要的数学工具,可以用于解决一些经典的极限问题。
导数与函数的洛必达法则详解在微积分中,导数是一种用来描述函数变化率的工具。
而洛必达法则则是一种常用的求解函数极限的方法。
本文将详细介绍导数的定义,以及如何应用洛必达法则来解决一些特殊函数的极限问题。
导数的定义导数可以理解为函数的瞬时变化率。
对于给定的函数y = f(x),在某一点x处的导数可以表示为lim(x→a) [f(x) - f(a)] / (x - a)。
在这个定义中,我们通过取一个趋近于a的点x来计算函数的变化率。
当这个极限存在时,这个极限就是函数在x=a处的导数。
导数的计算常用的方法是利用导数的定义进行计算,也称为导数的第一原理。
根据导数的定义,我们可以推导出一些常见函数的导数公式,如常数函数的导数为零,多项式函数的导数等等。
洛必达法则的应用洛必达法则是一种用来解决形如0/0或无穷/无穷的极限问题的方法。
当我们试图计算一个极限,得到的结果为0/0或无穷/无穷时,我们可以应用洛必达法则来求解。
洛必达法则的核心思想是利用函数的导数来简化原极限的计算。
具体来说,如果我们得到的极限形式为0/0,那么我们可以对分子和分母分别求导,然后再计算导数的极限。
如果这个导数的极限存在,那么它就是原极限的值。
举例来说,假设我们要计算极限lim(x→0) sin(x) / x。
直接代入0会得到0/0的形式,这时我们可以应用洛必达法则。
对于分子sin(x)和分母x分别求导得到cos(x)和1,然后计算导数的极限。
经过计算可得lim(x→0) cos(x) / 1 = cos(0) / 1 = 1。
因此,原极限的值为1。
洛必达法则的条件在应用洛必达法则时,需要注意以下几个条件:1. 极限形式必须为0/0或无穷/无穷,不能是其他形式,如无穷减无穷或零乘无穷等。
2. 分子和分母必须是可导的函数。
3. 极限是单侧的,即接近某一特定值时只能从一侧接近。
4. 当极限形式为0/0时,需要对分子和分母分别求导并计算导数的极限。
洛必达法则的有限和无穷大洛必达法则是微积分学中的基本规律之一,它描述了在某一点附近两个函数的增长趋势之间的关系。
简单来说,它告诉我们当一个函数在某一点趋近于另一个函数时,它们的增长趋势是类似的。
这个法则有很多应用,包括在求导和极限中的应用。
在微积分中,我们将洛必达法则分为有限和无穷大两种情况。
在有限情况下,洛必达法则告诉我们,当一个函数在某一点趋近于另一个函数时,它们在该点的导数之比等于它们在该点的函数值之比。
换句话说,如果两个函数f(x)和g(x)在x=a处都有定义,且g(a)≠0,则在x=a处,有:lim [f(x) / g(x)] = L,即f(x)和g(x)趋近于同一极限,L为有限数。
则有:lim [f(x) / g(x)] = lim [f'(x) / g'(x)] = L其中f'(x)表示f(x)在x=a处的导数,g'(x)表示g(x)在x=a处的导数。
这个式子的意义是,如果两个函数在某一点处的导数比例等于它们在该点的函数值比例,则它们在该点处趋近于相同的极限值。
这个法则有许多重要的应用。
例如,在求解极限时,我们可以使用洛必达法则来简化问题,以便找到正确的极限值。
在求导数时,我们也可以使用洛必达法则来简化问题,以便找到导数的值。
而当函数在某一点处趋近于无穷大时,洛必达法则的表达形式也不同。
此时其表达式如下:lim [f(x) / g(x)] = lim [f'(x) / g'(x)] = ∞/∞ or 0/0意即,在从x=a处趋于∞或-a处趋于-∞时,如果f(x)和g(x)都趋于∞或-a处趋于-∞,那么这个比值也描述了它们的增长趋势。
如果比值的极限是无穷大,那么f(x)的增长趋势比g(x)快,否则它们增长趋势相同。
这个法则非常常用,因为当我们用极限来描述无穷大的行为时,洛必达法则是最常见的技巧之一。
例如,在求解某些无穷大极限时,我们可能需要将函数变形,以满足洛必达法则的条件。
洛必达法则的一些应用洛必达法则(Lotka-Volterra equations),也称为捕食-食饵模型,是对生态系统中捕食者和食饵之间相互作用关系的数学描述。
它由阿尔弗雷德·洛特卡(Alfred J. Lotka)和瓦尔特·福尔泰拉(Vito Volterra)于1920年代提出,成为生态学的重要理论基础之一、洛必达法则主要用于揭示生态系统中捕食者和食饵之间相互依赖和相互制约的关系,对生物多样性和生态平衡研究有着重要意义。
dx/dt = αx - βxydy/dt = δxy - γy其中,x表示食饵的种群数量,y表示捕食者的种群数量,t表示时间。
α、β、δ和γ分别表示捕食者对食饵的增长率、食饵被捕食的速率、捕食者的死亡率和食饵的自然增长率。
这个模型假设捕食者和食饵之间不存在其他相互作用。
1.解释捕食者-食饵动态:洛必达法则可以用来解释捕食者和食饵之间的种群动态变化。
当食饵的数量增多时,捕食者的数量也会相应增多;而当捕食者的数量增多时,食饵的数量会减少。
这种反馈机制使得捕食者和食饵之间能够达到一种相对平衡的状态。
2.研究生物多样性:洛必达法则可以用来研究生态系统中不同物种之间的相互作用和竞争关系。
通过观察捕食者和食饵的数量变化,可以了解不同物种对资源的利用和竞争情况,从而揭示生态系统的物种组成和多样性。
3.预测和控制生态系统变化:洛必达法则可以通过数学模拟来预测生态系统的变化趋势。
通过改变模型中的参数值,可以模拟不同环境条件下捕食者和食饵之间的相互作用,进而预测生态系统的稳定性和可持续性。
4.生物害虫防治:洛必达法则在农业害虫防治中有重要应用。
通过研究害虫与天敌(捕食者)之间的相互关系,可以选择合适的天敌进行生物防治,控制害虫数量从而减少农药使用。
5.环境保护和生态恢复:洛必达法则可以用来评估生态系统遭受破坏后的恢复能力。
通过研究捕食者和食饵之间的动态变化,可以了解恢复过程中物种之间的相互关系和依赖程度,从而指导生态恢复工作。