2019届高三数学上册知识点测试题5
- 格式:doc
- 大小:164.00 KB
- 文档页数:4
专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。
第讲直线与圆.()[·全国卷Ⅰ]一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为. ()[·全国卷Ⅱ]过三点()()()的圆交轴于两点,则()[试做]命题角度圆的方程()解决圆的方程问题,关键一:通过研究圆的性质求出圆的基本量.关键二:设出圆的一般方程,用待定系数法求解.()圆的常用性质:圆心在过切点且垂直切线的直线上;圆心在任一弦的垂直平分线上;两圆内切或外切时,切点与两圆圆心共线..()[·全国卷Ⅲ]直线分别与轴轴交于两点,点在圆()上,则△面积的取值范围是().[] .[] .[] .[]()[·全国卷Ⅲ]已知直线与圆交于两点,过分别作的垂线与轴交于两点.若,则.[试做]命题角度直线与圆的问题关键一:求直线被圆所截得的弦长时,一般考虑由弦心距、弦长的一半、半径所构成的直角三角形,利用勾股定理求解.关键二:弦心距可利用点到直线的距离公式求解.小题直线的方程及应用()已知直线与直线平行,且直线在轴上的截距为,则的值为()()过定点的直线与过定点的直线交于点(异于),则·的最大值为()[听课笔记]【考场点拨】()求直线方程主要有直接法和待定系数法.直接法是选择适当的形式,直接求出直线方程.待定系数法是由条件建立含参数的方程,再据条件代入求参数得方程.()平行与垂直位置关系问题主要依据:已知直线(不同时为)与直线(不同时为),若∥,则且≠或≠;若⊥,则.【自我检测】.命题“”是命题“直线与直线平行”的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.已知直线的斜率为,在轴上的截距为直线的斜率的倒数,则直线的方程为().已知直线经过直线与的交点,且直线的斜率为,则直线的方程是().设两条直线的方程分别为和,已知是关于的方程的两个实根≤≤,则这两条直线间的距离的最大值为()..小题圆的方程及应用()已知一圆的圆心为(),圆的某一条直径的两个端点分别在轴和轴上,则此圆的方程是().()().()().()().()()()已知()(),点在圆()上运动,若△的面积的最小值为,则实数的值为().或或或或[听课笔记]【考场点拨】()由圆心和半径可直接得圆的标准方程;()过不在同一条直线上的三点可确定一个圆;()弦的垂直平分线一定过圆心;()与圆上的点有关的问题常转化为圆心的有关问题去处理.【自我检测】.以()为圆心,且与两条直线和同时相切的圆的标准方程为().()().()().()().若直线始终平分圆,则()()的最小值为().已知两点()和()(>),若在直线上存在点,使得⊥,则实数的取值范围是().() .().[∞) .[∞).若方程表示圆,则的取值范围是.小题直线与圆的位置关系()已知圆,点为直线上一动点,过点向圆引两条切线分别为为切点,则直线经过定点()...()已知直线与圆交于两点为圆外一点,若四边形是平行四边形,则实数的取值范围为.[听课笔记]【考场点拨】直线与圆的问题:()解决直线与圆的位置关系问题主要是利用几何法,即利用圆心到直线的距离与半径的大小关系判断;()弦长问题,主要依据弦长的一半、弦心距、半径恰构成一直角三角形的三边进行求解;()经过圆内一点,垂直于过这点的半径的弦最短.【自我检测】.已知△的三边长为,直线与圆相离,则△是 ().直角三角形.锐角三角形.钝角三角形.以上情况都有可能.已知直线与圆相交于两点,且∠°(为坐标原点),则实数的值为()或或.已知圆(>)及圆上的点(),过点的直线交轴于点(),交圆于另一点,若,则直线的斜率为..点()是直线上一动点是圆的两条切线是切点,若四边形的面积的最小值为,则的值为.模块五解析几何第讲直线与圆典型真题研析.()()[解析] ()设圆心为()(>),则半径为,所以(),解得,所以圆的标准方程为.()方法一:设圆的方程为,将点()()()的坐标代入得方程组解得所以圆的方程为,即()(),所以.方法二:因为,所以,所以⊥,所以△为直角三角形,所以△的外接圆圆心为的中点(),半径,所以.方法三:由·得⊥,下同方法二..()()[解析] ()由题意知()().圆心()到直线的距离为.设点到直线的距离为,圆()的半径为,则∈[],即∈[],又△的面积△·,所以△面积的取值范围是[].()直线()过定点(,),又,∴(),解得.直线方程中,当时.又(,),()两点都在圆上,∴直线与圆的两交点为(,)().设过点(,)且与直线垂直的直线为,将(,)代入直线方程,得.令,得,同理得过点且与垂直的直线与轴交点的横坐标为,∴.考点考法探究小题例()()[解析] ()因为直线与直线平行,所以,又因为直线在轴上的截距为,所以,解得,所以,所以,故选.()由题意可知().,即(),则().∵过定点的直线与过定点的直线始终垂直又是两条直线的交点,∴⊥,∴.故·≤,当且仅当时取等号.【自我检测】[解析] 当两直线平行时±,若,则两直线均为;若,则两直线分别为.所以“”是“直线与直线平行”的充要条件,故选.[解析] ∵直线的斜率为,∴直线在轴上的截距为,∴直线的方程为,故选.[解析] 解方程组得所以两直线的交点为().因为直线的斜率为,所以直线的方程为(),即.故选.[解析] 因为是方程的两个实根,所以.两条直线间的距离,所以.因为≤≤,所以≤≤,即∈,所以两条直线间的距离的最大值为,故选.小题例()()[解析] ()设该直径的两个端点分别为()(),则()是线段的中点,所以()(),圆的半径.故圆的方程为()().故选.()直线,即,若△的面积最小,则点到直线的距离最小,又∵△的面积的最小值为,∴××,即,解得或.故选.【自我检测】[解析] 由题易知,圆心在直线上,将点()代入上式可得,即圆心为(),半径,∴圆的标准方程为()().[解析] 由直线始终平分圆,知直线必过圆的圆心,由圆的方程可得圆心为(),代入中,可得.()()表示点()与点()之间的距离的平方.点()到直线的距离,所以()()的最小值为,故选.[解析] 以为直径的圆的方程为()().若在直线上存在点,使得⊥,则直线与圆有公共点,所以≤,解得≥.故选..(∞)[解析] 方程,即()(),由方程表示圆,可得>,解得<,故的取值范围为(∞).小题例()()()∪()[解析] ()设().∵是圆的切线为切点,∴⊥⊥,∴是圆与以为直径的圆的公共弦.易知以为直径的圆的方程为[()]()①,圆的方程为②,①②得直线的方程为×(),即(),∴直线恒过定点,故选.()如图所示,∵四边形是平行四边形,且,∴平行四边形是菱形,∴⊥.设相交于点,则.圆心到直线的距离为,∴.∵点在圆外,点在圆内,∴<<,解得<<或<<,∴实数的取值范围是()∪().[解析] ∵直线与圆相离,∴圆心到直线的距离>,即>,故△是钝角三角形.[解析] 圆的标准方程为(),作⊥于点,由圆的性质可知△为等腰三角形,其中.由∠°,易得,即圆心()到直线的距离,即,即,解得或..或[解析] 由题知,直线的方程为,即,联立直线与圆的方程得,∵,∴,解得或,∴直线的斜率或..±[解析] 根据题意画出图形,如图所示,圆的标准方程为(),由题易得四边形△××·,∴当取得最小值时,四边形的面积取得最小值.而的最小值即为点到直线的距离,.∵,∴,则,解得,即±.[备选理由] 例在直线与圆的位置关系的基础上,考查圆的面积的计算,需要从特殊的等边三角形入手分析;例考查直线与圆的综合问题,涉及圆的方程的确定,点到直线及两点间的距离问题等;例在直线与圆的位置关系的基础上,考查最值问题,理解不难,但运算量大,对培养学生的计算与求解能力有所帮助.例[配例使用]已知直线与圆交于两点,且△为等边三角形,则圆的面积为.[答案] π[解析] 圆的标准方程为()(),则圆心(),半径.∵直线和圆交于两点,且△为等边三角形,∴圆心到直线的距离为°×,又∵圆心到直线的距离,∴×,解得,∴圆的面积为ππ×()π.例[配例使用]已知圆经过原点且圆心在轴正半轴上,经过点()且倾斜角为°的直线与圆相切于点,点在轴上的射影为点,设点为圆上的任意一点,则()[解析] 如图所示,由题可知直线(),即.设圆心()(>),则,得,所以圆的方程为().由图易知,则,则().设(),则,将圆的方程代入得,所以,故选.例[配例使用]直线与圆有公共点(),则的最大值为().[解析] 因为直线与圆有公共点(),所以圆心到直线的距离不大于圆的半径,易知,则≤≤,解得≥.由即得,所以.设,则<≤,则<≤,由二次函数的性质可得当时取得最大值,故选.。
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。
一、选择题(本大题共8小题,共40.0分)1.已知集合A={x|x2-4≤0},集合B={x|1-x>0},则A∩B=()A. (1,2)B. (1,2]C. [-2,1)D. (-2,1)2.“”是“cos 2α=0”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3.设变量x,y满足约束条件,则目标函数z=x+2y的取值范围是()A. [6,+∞)B. [5,+∞)C. [5,6]D. [0,5]4.阅读如图所示的程序框图,若输入的a,b分别是1,2,运行相应的程序,则输出S的值为()A. B. C. D.5.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知sin C=sin 2B,且b=2,c=,则a等于()A. B. C. 2 D. 26.如图,平面四边形ABCD,∠ABC=∠ADC=90°,BC=CD=2,点E在对角线AC上,AC=4AE=4,则的值为()A. 17B. 13C. 5D. 17.已知函数f(x)=e x+e-x(其中e是自然对数的底数),若当x>0时,mf(x)≤e-x+m-1恒成立,则实数m的取值范围为()A. (0,)B. (]C. [)D. []8.已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. c>a>b二、填空题(本大题共5小题,共25.0分)9.已知i为虚数单位,则=______.10.一个四棱柱的三视图如图所示,该四棱柱的体积为______.11.已知曲线y=x3与直线y=kx(k>0)在第一象限内围成的封闭图形的面积为4,则k=______.12.已知函数f(x)=若函数f(x)-ax=0恰有3个零点,则实数a的取值范围为______.13.已知a,b∈R,且a-3b+6=0,则的最小值是__________.三、解答题(本大题共7小题,共93.0分)14.已知函数f(x)=cos2x-sin2x+2sin x cosx(x∈R).(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[]上的最大值与最小值.15.某大学现有6名包括A在内的男志愿者和4名包括B在内的女志愿者,这10名志愿者要参加第十三届全运会志愿服务工作,从这些人随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.(Ⅰ)求参加田赛服务工作的志愿者中包含A但不包含B的概率;(Ⅱ)设X表示参加径赛服务工作的女志愿者人数,求随机变量X的分布列和数学期望.16.在如图所示的几何体中,DE∥AC,∠ACB=∠ACD=90°,AC=2DE=3,BC=2,DC,二面角B-AC-E的大小为60°.(Ⅰ)求证:BD⊥平面ACDE;(Ⅱ)求平面BCD与平面BAE所成角(锐角)的大小;(Ⅲ)若F为AB的中点,求直线EF与平面BDE所成角的大小.17.已知{a n}是等比数列,满足a1=2,且a2,a3+2,a4成等差数列.(1)求数列{a n}的通项公式;(2)设b n=2na n,数列{b n}的前n项和为S n,(n≥2,n∈N*),求正整数k的值,使得对任意n≥2均有g(k)≥g(n).18.已知函数f(x)=ln x+a(1-x)(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a=-时,令g(x)=x2-1-2f(x),其导函数为g′(x).设x1,x2是函数g(x)的两个零点,判断是否为g′(x)的零点?并说明理由.19.已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明:x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E-BC-F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.答案和解析1.【答案】C2.【答案】A3.【答案】B4.【答案】D5.【答案】C6.【答案】D 【解析】7.【答案】B8.【答案】D【解析】解:a=log2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.根据对数函数的单调性即可比较.本题考查了对数函数的图象和性质,属于基础题,9.【答案】10.【答案】3611.【答案】412.【答案】[,)【解析】解:画出函数f(x)的图象,如图所示:,若函数f(x)-ax=0恰有3个零点,则f(x)=ax恰有3个交点,当a=时,y=x和y=f(x)有3个交点,(如红色直线),直线y=ax和f(x)相切时,(如绿色直线),设切点是(m,lnm),由(lnx)′=,故a=,故lnm=1,解得:m=1,故a=,故直线y=x和f(x)相切时,2个交点,综上,a∈[,),故答案为:[,).画出函数的图象,结合图象求出a的范围即可.本题考查了数形结合思想,考查函数零点问题,是一道中档题.13.【答案】14.【答案】解:(Ⅰ)函数f(x)=cos2x-sin2x+2sin x cosx=cos2x+sin2x…(2分)=2(cos2x+sin2x)=2sin(2x+);…(4分)所以T==π,所以f(x)的最小正周期为π;…(6分)(Ⅱ)由x∈[-,],得2x+∈[-,],…(7分)所以当2x+∈[-,],即x∈[-,]时,函数f(x)单调递增;当2x+∈[,],即x∈[,]时,函数f(x)单调递减;…(9分)且当2x+=-,即x=-时,sin(2x+)=-,此时f(x)=2sin(2x+)=-1;当2x+=,即x=时,sin(2x+)=1,此时f(x)=2sin(2x+)=-2;当2x+=,即x=时,sin(2x+)=,此时f(x)=2sin(2x+)=-;…(12分)所以当x=-时,f(x)取得最小值-1;当x=时,f(x)取得最大值2.…(13分)【解析】(Ⅰ)化函数f(x)为正弦型函数,再求出它的最小正周期;(Ⅱ)由x∈[-,]求得f(x)的单调区间,从而求得f(x)的最大、最小值.本题考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换的问题,是中档题.15.【答案】解:(I)记参加田赛服务工作的志愿者中包含A但不包含B的事件为M,则基本事件的总数为,事件M包含基本事件的个数为,则P(M)==.(II)由题意知X可取的值为:0,1,2,3,4.则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4 )==.因此X分布列为:∴X的数学期望为EX=0×+1×+2×+3×+4×=2.【解析】(I)根据组合数公式和古典概型概率公式计算;(II)利用超几何分布的概率公式求出概率卖得出分布列,再计算数学期望.本题考查了古典概型的概率计算,超几何分布列与数学期望,属于中档题.16.【答案】(Ⅰ)证明:∵∠ACB=∠ACD=90°,∴AC⊥CD,AC⊥CB,∴∠BCD为二面角B-AC-E的平面角,即∠BCD=60°,在△BCD中,BC=2,CD=1,∠BCD=60°,∴,∴BD2+DC2=BC2,即BD⊥DC,由AC⊥CD,AC⊥CB,且BC∩DC=C,可知AC⊥平面BCD,又BD⊂平面BCD,∴AC⊥BD,又∵AC∩CD=C,AC⊂平面ACDE,DC⊂平面ACDE,∴BD⊥平面ACDE;(Ⅱ)解:由BD⊥平面ACDE,得BD⊥DC,BD⊥DE,又AC⊥CD,即DB,DC,DE两两垂直,则分别以DB,DC,DE所在直线为x,y,z轴建立空间直角坐标系,如图所示.由(Ⅰ)知,BD=,则D(0,0,0),B(,0,0),C(0,1,0),由AC=2DE=3,得E(0,0,),A(0,1,3),∴,,设平面BAE的一个法向量为,则,取y=3,可得,由AC⊥平面BCD,可知平面BCD的一个法向量为,设平面BCD与平面BAE所成的角(锐角)为θ,∴cosθ=|cos<>|=||=,于是,∴平面BCD与平面BAE所成的角(锐角)为;(Ⅲ)解:若F为AB的中点,则由(II)可得F(),∴,依题意CD⊥平面BDE,可知平面BDE的一个法向量为,设直线EF与平面BDE所成角为α,则sinα=|cos<>|=||=,∴直线EF与平面BDE所成角的大小.本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求解线面角与面面角,是中档题.17.【答案】解:(Ⅰ)设数列{a n}的公比为q,则由条件得:2(a3+2)=a2+a4,又a1=2,则2(2q2+2)=2q+2q3,因为1+q2>0,解得:q=2,故a n=2n;(Ⅱ)由(Ⅰ)得:b n=2na n=n•2n+1,则前n项和为S n=1•22+2•23+…+n•2n+1①2S n=1•23+2•24+…+n•2n+2②,①-②得:-S n=22+23+…+2n+1-n•2n+2=-n•2n+2,化简可得S n=4+(n-1)•2n+2,则g(n)==(n≥2,n∈N*),由g(n+1)-g(n)=-=,得当9-2n>0,即2≤n≤4时,g(2)<g(3)<g(4)<g(5);当9-2n<0,即n≥5时,g(5)>g(6)>g(7)>…;所以对任意n≥2,且n∈N*均有g(5)≥g(n),故k=5.18.【答案】解:(Ⅰ)依题意,知函数的定义域为(0,+∞),且f′(x)=-a,1°当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,2°当a>0时,令f′(x)=0,得x=,,)(所以,f(x)在区间(0,)内单调递增,在区间(,+∞)内单调递减.(Ⅱ)不是导函数g′(x)的零点,由(Ⅰ)知,g(x)=x2-2ln x-x,∵x1,x2是函数g(x)的两个零点,不妨设0<x1<x2,∴x12-2ln x1-x1=0,x22-2ln x2-x2=0,两式相减,得(x1-x2)(x1+x2-1)=2(ln x1-ln x2),即x1+x2-1=,又g′(x)=2x--1,∴g′()=x1+x2--1=-=[(ln x1-ln x2)-],设t=,则0<t<1,令φ(t)=ln t-,∴φ′(t)=-=>0在(0,1)恒成立,∴φ(t)在(0,1)上是增函数,∴φ(t)<φ(1)=0,∴ln t-<0,从而(ln x1-ln x2)-<0,∵<0,∴[(ln x1-ln x2)-],∴g′()>0,∴不是导函数g′(x)的零点,【解析】(Ⅰ)先求导,再分类讨论,根据导数和函数单调性的关系即可求出,(Ⅱ)由(Ⅰ)知,g(x)=x2-2lnx-x,x1,x2是函数g(x)的两个零点,不妨设0<x1<x2,可得x12-2lnx1-x1=0,x22-2lnx2-x2=0,两式相减化简可得x1+x2-1=,再对g(x)求导,判断g′()的符号即可证明本题考查了导数和函数单调性的关系,以及导数和函数的极值的关系,和函数零点的判断,考查了运算能力转化能力,属于难题19.【答案】(Ⅰ)解:由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:∴函数h(x)的单调减区间为(-∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a ln a=0,∴x1+g(x2)=;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnln a≥-1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+x ln a,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.20.【答案】(Ⅰ)证明:依题意,以D为坐标原点,分别以、、的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).设为平面CDE的法向量,则,不妨令z=-1,可得;又,可得.又∵直线MN⊄平面CDE,∴MN∥平面CDE;(Ⅱ)解:依题意,可得,,.设为平面BCE的法向量,则,不妨令z=1,可得.设为平面BCF的法向量,则,不妨令z=1,可得.因此有cos<>=,于是sin<>=.∴二面角E-BC-F的正弦值为;(Ⅲ)解:设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),可得,而为平面ADGE的一个法向量,故|cos<>|=.由题意,可得,解得h=∈[0,2].∴线段DP的长为.【解析】本题考查直线与平面平行的判定,考查空间角的求法,训练了利用空间向量求解空间角,是中档题.。
荆州中学2018—2019学年第五次双周练高三数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分.) 1.已知集合,,则集合( )A .B .C .D . {}0{}10,{}21,{}20,2.已知复数,则复数的虚部是( ) 113iz i -=+z A . B . C . D .2525i 25-25i -3.函数的部分图象如图,则可能的值是( )A .B .C .D .4.已知向量与的夹角为120°,||=3,|+,则||=( )A .5B .4C .3D .1 5.已知,,则数列的通项为( )11a =131nn n a a a +=+{}n a n a =A .B .C .D . 121n -21n -132n -32n -6.“”是“关于的方程有实数根”的( )2a =x 230x x a -+=A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.函数的图象大致为( )A. B C D .8.设函数()的图像是曲线,则下列说法中正确的是( )2sin(36y x π=+x ∈R C A .点是曲线的一个对称中心(0)3A π,C B .直线是曲线的一条对称轴6x π=CC.曲线的图像可以由的图像向左平移个单位得到 C 2sin 3y x =6πD .曲线的图像可以由的图像向左平移个单位得到C 2sin 3y x =18π9.已知定义在R 上的函数的图像关于对称,且当时,单调递减,(1)f x -1=x 0>x )(x f 若则的大小关系是( )),7.0(),5.0(),3(log 63.15.0f c f b f a ===-c b a ,,A . B . C . D .b ac >>c a b >>b c a >>a b c >>10.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积弦矢矢2),弧田如图由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是A . 16平方米B . 18平方米C . 20平方米D . 25平方米11.已知函数(),若函数在上有两个零点,则的取值2(0)()3(0)x a x f x x a x ⎧-=⎨->⎩≤a ∈R ()f x R a 范围是( )A .B . C. D . (01],[1)+∞,(01)(02) ,,(1)-∞,12.已知偶函数()的导函数为,且满足.当时,,则使得成立的的取值范围是( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分).13.函数,有三个不同的零点,则实数的取值范围是_____22,(0)()3,(0)xa x f x x ax a x ⎧-≤⎪=⎨-+>⎪⎩a 14.函数的图象在点处的切线方程是则)(x f y =))5(,5(f P .8+-=x y ='+)5()5(f f ____15.在中,,若,则的最大ABC ∆A b B c a C b c a cos cos )(cos )22(++=-+3=c b a +值为_______16.设函数,是整数集.给出以下四个命题:①;②1()0R x Zf x x C Z ∈⎧=⎨∈⎩,,Z (1f f =()f x 是上的偶函数;③若,则;④是周期函数,且R 12x x ∀∈R ,1212()()()f x x f x f x ++≤()f x 最小正周期是.请写出所有正确命题的序号 .1三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在中,角所对的边分别是,且. ABC ∆,,A B C ,,a b c 22a bc =(Ⅰ)若,求; sin sin A C =cos A (Ⅱ)若,,求的面积. cos 2A =6a =ABC ∆18.(本小题满分12分)已知命题:函数为定义在上的单调递减函数,实数p ()f x 0+)∞(,满足不等式.命题:当时,方程有m (1)(32)f m f m +<-q 0,2x π⎡⎤∈⎢⎥⎣⎦2cos 2sin m x x =-解.求使“且”为真命题的实数的取值范围 p q m19.(本小题满分12分)已知函数f (x )=sin x +cos x ,.26x R ∈(1)若,且f (α)=2,求α;(]0,απ∈(2)先将y =f (x )的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的12图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x =对称,求θ3π4的最小值.20.(本小题满分12分)数列是公差为正数的等差数列,和是方程的两实数根,数列满足.(Ⅰ)求与;(Ⅱ)设为数列的前项和,求,并求时的最大值.}{n b n n21.(本小题满分12分)已知函数, .()ln f x x =()()()221g x f x mx m x =+-+(Ⅰ)当时,求曲线在处的切线方程; 1m =()y g x =2x =(Ⅱ)当时,讨论函数的单调性;0m >()g x (Ⅲ)设斜率为的直线与函数的图象交于, 两点,其中,k ()f x ()11,P x y ()22,Q x y 12x x <求证:. 2111k x x <<请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本题满分10分)选修4-4 坐标系与参数方程 已知曲线的参数方程是C (sin x y ααα⎧=⎪⎨=⎪⎩为参数)(1)将的参数方程化为普通方程;C (2)在直角坐标系中,,以原点为极点,轴的正半轴为极轴,建立极坐xoy (0,2)P O x 标系,直线的极坐标方程为为上的动点,求线段l cos sin 0,Q ρθθ+=C 的中点到直线的距离的最小值.PQ M l23.(本小题满分10分) 选修4-5:不等式选讲设函数其中. ()33,f x x a x =-+-()13,g x x =-+0a >(Ⅰ)求不等式的解集;()5g x x ≥-(Ⅱ)若对任意,都存在,使得,求实数的取值范围. 1x R ∈2x R ∈12()()f x g x =a。
天一大联考2019届高三阶段性测试(五)数学(文科)试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={03|2≤-x x x },B ={1<<1|x x -},则=B A A.(0,+∞) B.(0,1)C.[0,1)D.[1,+∞)2.已知复数i iz -=12,则z 的共轭复数在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.设n S 为数列{n a }的前n 项和,若332-=n n a S ,则=n a A.27 B.81 C.93 D.2434.已知:p 平面α与平面β内的无数条直线平行;:q 平面α与平面β平行.则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数||||ln )(x x x x f =的大致图象为6.若点P 是拋物线:y x 22=上一点,且点P 到焦点F 的距离是到x 轴距离的2倍,则A.1 B.1C.1D.27.已知53)24sin(=-x π,则x 4sin 的值为A.7B.7± C.18 D.18±8.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等。
某人朝靶上任意射击一次没有脱靶,设其命中10,9,8,7环的概率分别为,,,,4321P P P P ,则下列选项正确的是A.21P P = B.321P P P =+C.5.04=P D.3422P P P =+9.某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为A.π7 B.π8C.π9 D.π1010.已知矩形ABCD 的对角线长为4,若PC AP 3=,则=⋅A.-2 B.-3 C.-4 D.-511.设等差数列{n a }的公差不为0,其前n 项和为n S ,若2019)1()1(,2019)1()1(3201832018232-=-+-=-+-a a a a ,则=2019a A.O B.2 C.2019D.403812.已知函数⎪⎩⎪⎨⎧≥+-=0,250<,)(2x x x x e x f x ,若方程1)(+=kx x f 有3个不同的实根,则实数k 的取值范围为A.(-∞,0]B.(0,21)C.(21,+∞)D.(0,+∞)7.有5名学生需从数学建模、程序设计两门课中选择一门,且每门课至少有2名学生选择,则不同的选择方法共有A.10种B.12种C.15种D.20种8.已知)2<||0,>0,>()sin()(πϕωϕωA B x A x f ++=的图象如图所示,则函数)(x f的对称中心可以为A.)0,2(πB.)1,(πC.)0,6(π-D.)1,6(π-10.已知抛物线C:82x y =,定点A(0,2),B(0,-2),点P 是抛物线C 上不同于顶点的动点,则乙的取值范围为A.]4,0(π B.2,4[ππ C.]3,0(π D.2,3[ππ12.设)('x f 是函数)(x f 的导函数,若0>)('x f ,且)22f(<)()(),(,21212121x x x f x f x x R x x ++≠∈∀,,则下列选项中不一定正确的一项是A.)(<)(<)2(πf e f f B.)2('<)('<)('f e f f πC.)3(<)3(')('<)2(f f e f f - D.)2('<)2()3(<)3('f f f f -二、填空题:本题共4小题,每小题5分,共20分.13.已知函数ax e x f x -=)(在0=x 处取得极小值,则=a 14.不等式组⎪⎩⎪⎨⎧≤+--≥+-≤-=0204202)(y x y x x x f ,表示的平面区域的面积为。
【母题原题1】【2019年高考全国Ⅲ卷理数】已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3= A .16 B .8 C .4 D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,联立等比数列的通项公式和前n 项和公式构成方程组,可以知其三求其二,属于基础题.【母题原题2】【2018年高考全国Ⅲ卷理数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =.【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.专题05 等比数列(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.【母题原题3】【2017年高考全国Ⅲ卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【命题意图】1.熟练掌握等比数列的通项公式、前n 项和公式.2.掌握与等比数列有关的数列求和的常见方法.3.了解等比数列与指数函数的关系.【命题规律】从近三年高考情况来看,本讲是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n 项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题. 【答题模板】求数列的通项、求和问题时,第一步:根据题意求通项.注意等比数列通项形如指数函数的形式. 第二步:利用函数性质研究数列的性质,例如周期、单调性等. 第三步:利用函嫩、数列的交汇性质来综合求解问题.第四步:查看关键点、易错点及解题规范,例如错位相减去的计算量较大,注意检验. 【方法总结】1.等比数列的判定与证明常用方法如下: (1)定义法.1n n a a +=q (q 为常数且q ≠0)或-1n n aa =q (q 为常数且q ≠0,n ≥2)⇔{a n }为等比数列; (2)等比中项法.21n a +=a n ·a n+2(a n ≠0,n ∈N *)⇔{a n }为等比数列;(3)通项公式法.a n =a 1q n –1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列;(4)前n 项和公式法.若S n 表示数列{a n }的前n 项和,且S n =–aq n +a (a ≠0,q ≠0,q ≠1),则数列{a n }是公比为q 的等比数列.由a n+1=qa n ,q ≠0,并不能断言{a n }为等比数列,还要验证a 1≠0.证明一个数列{a n }不是等比数列,只需要说明前三项满足22a ≠a 1·a 3,或者存在一个正整数m ,使得21m a +≠a m ·a m+2即可.2.等比数列的基本运算方法:(1)通项法:等比数列由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列的相关问题,一般给出两个条件就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题. 例如:①若已知n ,a n ,S n ,先验证q=1是否成立,若q ≠1,可以通过列方程组-111,(1-),1-n n n n a a q a q S q ⎧=⎪⎨=⎪⎩求出关键量a 1和q ,问题可迎刃而解.②若已知数列{a n }中的两项a n 和a m ,可以利用等比数列的通项公式,得到方程组-11-11,,n n m ma a q a a q ⎧=⎨=⎩两式相除可先求出q ,然后代入其中一式求得a 1,进一步求得S n .另外,还可以利用公式a n =a m ·q n –m 直接求得q ,可减少运算量.(3)对称设元法:一般地,若连续奇数个项成等比数列,则可设该数列为…,xq,x ,xq ,…;若连续偶数个项成等比数列,则可设该数列为…,3x q ,x q,xq ,xq 3,…(注意:此时公比q 2>0,并不适合所有情况).这样既可减少未知量的个数,也使得解方程较为方便. 3.错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求解,一般是在等式的两边同乘以等比数列{b n }的公比,然后作差求解.若{b n }的公比为参数(字母),则应对公比分等于1和不等于1两种情况讨论.1.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若23a =,524a =-,则1a =A .23 B .23- C .32-D .32【答案】C 【解析】因为3528a q a ==-,所以2q =-,从而132a =-.故选C . 【名师点睛】本题考查了等比数列的基本量运算,属于基础题.2.【广西南宁市2019届高三毕业班第一次适应性测试数学】在等比数列{}n a 中,若22a =,554a =-,则1a = A .23B .23-C .32-D .32【答案】B 【解析】因为35227a q a ==-,所以3q =-,从而2123a a q ==-.故选B . 【名师点睛】本题主要考查了等比数列的基本量运算,属于基础题.3.【四川省成都市外国语学校2019届高三一诊模拟考试数学】在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为A .10B .11C .12D .13【答案】C【解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=,∴26q q +=. ∵0q >,解得,2q =或3q =-(舍),∴1132a =,∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n nn -->⨯.整理得,()1152n n n ⎛⎫>-- ⎪⎝⎭,∴112n <≤,经检验12n =满足题意,故选C .【名师点睛】本题主要考查了等比数列的通项公式及求和公式,等比数列的性质等知识的简单综合应用,属于中档试题.4.【四川省巴中市2019届高三零诊考试数学】记n S 为等比数列{a n }的前n 项和,已知S 2=2,S 3=–6.则{a n }的通项公式为A .(2)nn a =- B .2nn a =- C .(3)nn a =-D .3nn a =-【答案】A【解析】根据题意,设等比数列{}n a 的首项为1a ,公比为q ,又由22S =,36S =-,则有()()1211216a q a q q ⎧+=⎪⎨++=-⎪⎩,解得12a =-,2q =-,则()2nn a =-,故选A . 【名师点睛】本题考查等比数列中基本量的计算,属于简单题.5.【四川省南充市高三2019届第二次高考适应性考试高三数学】已知等比数列{}n a 中的各项都是正数,且1321,,22a a a 成等差数列,则101189a a a a +=+ A.1+B.1C.3+D.3-【答案】C【解析】因为等比数列{a n }中的各项都是正数,设公比为q ,得q >0, 且1321,,22a a a 成等差数列,可得3122a a a =+,即a 1q 2=a 1+2a 1q , 因为10a ≠,得q 2–2q –1=0,解得q =或q =1(舍),则101189a a a a +=+()28989q a a a a +=+q 2=C . 【名师点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查方程思想和运算能力,属于基础题.6.【四川省攀枝花市2019届高三第二次统一考试数学】已知等比数列{}n a 的各项均为正数,且13a ,312a ,22a 成等差数列,则64a a = A .1 B .3 C .6 D .9【答案】D【解析】设各项都是正数的等比数列{a n }的公比为q ,(q >0) 由题意可得2312a ⨯=13a +22a ,即q 2–2q –3=0, 解得q =–1(舍去),或q =3,故64a a =q 2=9.故选D .【名师点睛】本题考查等差中项的应用和等比数列的通项公式,求出公比是解决问题的关键,属于基础题.7.【四川省成都石室中学2019届高三第二次模拟考试数学】设等比数列{}n a 的前n 项和为n S ,公比为q .若639S S =,562S =,则1a =A .3 BC D .2【答案】D【解析】等比数列{a n }中,若S 6=9S 3,则q ≠±1, 若S 6=9S 3,则()()631111911a q a q qq--=⨯--,解可得q 3=8,则q =2,又由S 5=62,则有S 5=()5111a q q--=31a 1=62,解得a 1=2,故选D .【名师点睛】本题考查等比数列的前n 项和公式的应用,属于基础题.8.【四川省宜宾市2019届高三第二次诊断性考试数学】等比数列{}n a 的各项均为正数,已知向量()45,a a =a ,()76,a a =b ,且4⋅=a b ,则2122210log log log a a a ++⋯+=A .12B .10C .5D .22log 5+【答案】C【解析】()45,a a =a ,()76,a a =b ,且4⋅=a b ,∴47a a +56a a =4, 由等比数列的性质可得:110a a =…=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选C .【名师点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.9.【贵州省贵阳市2019届高三2月适应性考试(一)数学】等比数列{a n }的前n 项和S n =a •2n +1(n ∈N *),其中a 是常数,则a =A .2-B .1-C .1D .2【答案】B【解析】n =1时,a 1=S 1=2a +1.n ≥2时,a n =S n –S n –1=a •2n +1–(a •2n –1+1),化为a n =a •2n –1, 对于上式n =1时也成立, ∴2a +1=a ,解得a =–1.故选B .【名师点睛】本题考查了等比数列的通项公式、方程的解法,考查了推理能力与计算能力,属于中档题. 10.【河南省新乡市2019届高三第三次模拟测试数学】已知等比数列{}n a 的前n 项和为n S ,且55S =,1030S =,则15S =A .90B .125C .155D .180【答案】C【解析】因为等比数列{}n a 的前n 项和为n S , 所以51051510,,S S S S S --成等比数列,因为5105,30S S ==,所以105151025,255125S S S S -=-=⨯=, 故1512530155.S =+=故选C .【名师点睛】本题考查了等比数列的性质,若等比数列{}n a 的前n 项和为n S ,则232,,n n n n nS S S S S --也成等比数列,这是解题的关键,属于较为基础题.11.【甘肃、青海、宁夏2019届高三上学期期末联考数学】设等比数列{}n a 的前n 项和为n S ,若122a a -=,236a a -=,则4S =A .–60B .–40C .20D .40【答案】B【解析】设等比数列的公比为q ,由12232,6a a a a -=-=,可得1121126a a q a q a q -=⎧⎨-=⎩,解得131q a =⎧⎨=-⎩, 故()441134013S -⨯-==--,故选B .【名师点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 12.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评数学】在等比数列{}n a 中,131a a +=,5791120a a a a +++=,则1a =A .16B .13C .2D .4【答案】B【解析】因为()45713a a a a q +=+=q 4,()891113a a a a q +=+,所以q 8+q 4=20,所以q 4=4或q 4=–5(舍),所以q 2=2,13a a +211a a q =+=13a =1,所以1a 13=. 故选B .【点睛】本题考查了等比数列的通项公式,考查等比数列的性质,要求熟练掌握等比数列的性质的应用,比较基础.13.【湖南省益阳市桃江县第一中学2019届高三5月模拟考试数学】已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S = A .10 B .7 C .8 D .4【答案】C【解析】由题意得13123321231322111124a a a a a S a a a a a a a +++++=+===,38S ∴=,故选C . 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.14.【江西省临川一中2019届高三年级考前模拟考试数学】已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为A .1B .1或12CD.±【答案】C【解析】因为2474S S =,所以()()()124234344a a S S a a +=-=+, 故234q =,因为{}n a 为正项等比数列,故0q >,所以q =C . 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q m n p q ∈+=+N ,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --为等比数列(0n S ≠)且公比为nq .15.【山东省临沂市2019年普通高考模拟考试(三模)数学】已知等比数列{}n a 中,37a =,前三项之和321S =,则公比q 的值为A .1B .12-C .1或12-D .112-或【答案】C【解析】等比数列{}n a 中,37a =,前三项之和321S =, 若1q =,37a =,33721S =⨯=,符合题意;若1q ≠,则()213171211a q a q q⎧=⎪-⎨=⎪-⎩,解得12q =-,即公比q 的值为1或12-,故选C .【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题.等比数列基本量的运算是等比11数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知三求二”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.【安徽省江淮十校2019届高三年级5月考前最后一卷数学】已知等比数列{}n a 的公比12q =-,该数列前9项的乘积为1,则1a = A .8 B .16C .32D .64【答案】B 【解析】由已知1291a a a =,又2192837465a a a a a a a a a ====,所以951a =,即51a =,所以41112a ⎛⎫-= ⎪⎝⎭,116a =,故选B . 【点睛】本题主要考查等比数列的性质以及等比数列的基本量计算,熟记等比数列的性质与通项公式即可,属于常考题型.17.【山西省2019届高三高考考前适应性训练(三)数学】已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则8T = A .1024 B .2048 C .4096 D .8192【答案】C【解析】设等比数列{}n a 的公比为q ,由29T T =得761a =,故61a =,即511a q =.又2121512a a a q ==,所以91512q =,故12q =,所以36312832424096a T T a q ⎛⎫===== ⎪⎝⎭.故选C .【点睛】本题考查等比数列的性质、等比数列的通项公式,考查计算化简的能力,属中档题.。
湖南省常德市2019年高三上学期理数第五次质量检测数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分) (2016高一上·重庆期中) 设集合M={x|﹣3<x<2},N={x|1≤x≤3},则M∪N=()A . [2,3]B . [1,2]C . (﹣3,3]D . [1,2)2. (2分)(2018·衡水模拟) 已知复数,(其中为虚数单位,),若的模等于,则实数的值为()A .B .C .D .3. (2分)设向量与垂直,则等于()A .B .C .D . 14. (2分) (2018高二上·云南期中) 把化为二进制数为()A .B .C .D .5. (2分)(2017·江门模拟) 已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a﹣b|=()A . 2B . 4C . 8D . 126. (2分)将三个半径为3的球两两相切地放在水平桌面上,若在这三个球的上方放置一个半径为1的小球,使得这四个球两两相切,则该小球的球心到桌面的距离为()A . 3B . 2C . 6D . 57. (2分)(2020·贵州模拟) 已知曲线,,则下面结论正确的是()A . 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线;B . 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线;C . 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线;D . 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线;8. (2分)幂函数f(x)=xα的图象过点(2,4),那么函数f(x)的单调递增区间是()A . (﹣2,+∞)B . [﹣1,+∞)C . [0,+∞)D . (﹣∞,﹣2)9. (2分)(2020·漳州模拟) 已知正项等比数列的前项和为,,且,,成等差数列,则与的关系是()A .B .C .D .10. (2分) (2018高二上·巴彦期中) 在平面直角坐标系中,点为椭圆:的下顶点,,在椭圆上,若四边形为平行四边形,为直线的倾斜角,若,则椭圆的离心率的取值范围为()A .B .C .D .11. (2分) (2015高三上·包头期末) 已知双曲线﹣ =1(a>0,b>0)的离心率为,则双曲线的渐近线方程为()A . y=±2xB . y=± xC . y=± xD . y=± x12. (2分)已知函数在O,A点处取到极值,其中O是坐标原点,A在曲线上,则曲线的切线的斜率的最大值是()A .B .C .D .13. (2分) R上的奇函数满足,当时,,则()A .B . 2C .D .二、填空题 (共3题;共3分)14. (1分)设a=sinxdx,则二项式的展开式中的常数项等于________15. (1分)(2018·齐齐哈尔模拟) 已知实数满足条件若的最小值为 ,则实数 ________.16. (1分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M为AA1的中点,则A到面MBD的距离为________.三、解答题 (共7题;共55分)17. (5分) (2018高一下·开州期末) 在中,,为边的中点, .(1)求;(2)若的外接圆半径为,求的外接圆半径.18. (5分)(2018·绵阳模拟) 十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来3年里,至多1年污水排放量的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种文案,哪种方案好,并请说明理由.19. (10分)(2019·桂林模拟) 已知三棱柱中,,,,.(1)求证:平面平面;(2)若,为线段上一点,且平面和平面所成角的余弦值为,求的值.20. (10分) (2017高二上·静海期末) 已知椭圆的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.(1)求椭圆的方程;(2)若、分别是椭圆长轴的左、右端点,动点满足,连接,交椭圆于点.证明:为定值.(3)在(2)的条件下,试问轴上是否存异于点的定点,使得以为直径的圆恒过直线、的交点,若存在,求出点的坐标;若不存在,请说明理由.21. (10分) (2018高二下·遂溪月考) 已知函数 .(1)若,求函数的单调区间;(2)若,函数有两个极值点,且,求证: .22. (5分)在平面直角坐标系XOY中,以原点O为极点,X轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ=1,曲线C2参数方程为(θ是参数).(1)求曲线C1和C2的直角坐标系方程;(2)若曲线C1和C2交于两点A、B,求|AB|的值.23. (10分)(2017·凉山模拟) 已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.参考答案一、单选题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共3题;共3分)14-1、15-1、16-1、三、解答题 (共7题;共55分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、。
§1.7 定积分的简单应用
学习目标:
1. 会用微积分基本定理求面积和路程;
2. 会用定积分求功。
一.选择题:
1.曲线3x y =与直线x y =所围成的平面图形的面积等于( ) A.
41 B.21 C.31 D.1 2.一质点运动时,速度与时间的关系为-=2)(t t v
2+t ,若质点作直线运动,则此质点在]2,1[时间内的位移为( ) A.
6
17 B.314 C.613 D.611
3.若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则正数=a ( ) A.
32 B.3
1 C.95 D.94
4.由直线1,+-==x y x y 及x 轴围成的平面图形的面积为( ) A.⎰--10])1[(dy y y B.
⎰-+-210])1[(dx x x C.
⎰--210])1[(dx y y D.⎰+--10
)]1([dx x x 5.如果N 1力能拉长弹簧cm 1,为将弹簧拉长cm 6,所耗的功是( )
A.18.0
B.26.0
C.12.0
D.28.0
二.填空题:
6.=-⎰dx x 2024
7.由x y cos =及x 轴围成的介于0与π2之间的平面图形的面积,利用定积分应表达为
8.由曲线32,x y x y ==围成的封闭图形的面积为
9.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为
三.解答题:
10.计算下列定积分的值:
(1)⎰-+112sin dx x x )(
(2)
⎰--2224
11dx x
11.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实数根,且22)(/+=x x f .
(1)求)(x f y =的表达式;
(2)求曲线)(x f y =与两坐标轴所围成的平面图形的面积;
(3)若直线)10(,<<-=t t x 把曲线)(x f y =与两坐标轴所围成图形的面积二等份,求t 的值.
12.抛物线bx ax y +=2在第一象限内与直线+x
4=y 相切,此抛物线与x 轴所围成的图形的面积记为S ,求使S 达到最大值的b a ,值.
答案
一.B A D C A
二.6.π 7.dx x ⎰π20cos 8.
121 9.2021gt
三.10.(1)3
2 (2)π 11.(1)12)(2++=x x x f
(2)3
1 (3)221
1-
=t
12.3,1=-=b a。